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CNN-GRU model based on
attention mechanism for
large-scale energy storage
optimization in smart grid

Xuhan Li*

School of Electrical Engineering, Hebei University of Technology, Tianjin, China

Introduction: Smart grid (SG) technologies have a wide range of applications
to improve the reliability, economics, and sustainability of power systems.
Optimizing large-scale energy storage technologies for smart grids is an
important topic in smart grid optimization. By predicting the historical load and
electricity price of the power system, a reasonable optimization scheme can be
proposed.

Methods: Based on this, this paper proposes a prediction model combining a
convolutional neural network (CNN) and gated recurrent unit (GRU) based on an
attention mechanism to explore the optimization scheme of large-scale energy
storage in a smart grid. The CNN model can extract spatial features, and the
GRU model can effectively solve the gradient explosion problem in long-term
forecasting. Its structure is simpler and faster than LSTM models with similar
prediction accuracy. After the CNN-GRU extracts the data, the features are finally
weighted by the attention module to improve the prediction performance of the
model further. Then, we also compared different forecasting models.

Results and Discussion: The results show that our model has better predictive
performance and computational power, making an important contribution to
developing large-scale energy storage optimization schemes for smart grids.

KEYWORDS

CNN, GRU, attentional mechanisms, smart grid, large-scale energy storage optimization
solutions

1 Introduction

Smart Grid is a new type of power grid based on information technology, automation
technology, and energy technology (Estévez-Bén et al., 2020b). Through monitoring,
scheduling, and controlling the whole process of power production, transmission,
distribution, and use, it realizes intelligent management and optimization of the power
system Alvarez-Diazcomas et al. (2019), thus improving its reliability, economy, and
sustainability. Energy storage technology is an important part of the smart grid, which
can increase the power system’s flexibility and dispatchability, reduce the system’s peak-
to-valley difference, and improve the efficiency and stability of power grid operation.
Deep learning is a neural network-based machine learning method that can automatically
extract features from data and perform pattern recognition and prediction by learning from
a large amount of data López et al. (2018). In a large-scale energy storage optimization
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scheme for smart grids, deep learning models can be used to predict
the load of the power system and theprice of electricity to develop
an optimal energy storage strategy.

At this stage, a common deep learning-based large-scale energy
storage optimization scheme for smart grids is that: First, perform
data preprocessing: collect historical load and electricity price data
of the power system and perform preprocessing, including data
cleaning, normalization, and temporalization (Rezaeimozafar et al.,
2022); second, perform deep learning modeling: use deep learning
models such as RecurrentNeuralNetwork (RNN) (Abedi andKwon,
2023) or Long Short-term memory (LSTM) (Zhao et al., 2022) to
Second, deep learning modeling is performed: using deep learning
models such as Recurrent Neural Network (RNN) or Long Short-
term memory (LSTM) to learn and predict historical load and
electricity price data. The prediction results are compared with the
actual data to evaluate the accuracy and stability of the model;
thirdly, energy storage optimization is formulated: according to the
prediction results of the deep learning model, the optimal energy
storage strategy is formulated, including the selection of the best
energy storage equipment, energy storage capacity, charging and
discharging strategy. At the same time, considering the changes in
the power market and the economics of energy storage equipment,
the optimal energy storage plan is formulated by considering
the costs and benefits; finally, real-time control: according to the
energy storage plan, the energy storage equipment is controlled
and dispatched in real-time to ensure the stable operation of the
power Estévez-Bén et al. (2019) system (Lai et al., 2022).Themodels
commonly used for learning and forecasting historical load and
power price data are time series model: time series model is a
statistical model based on time series data, which can be used
to predict future trends and seasonal changes, but there are strict
assumptions on data smoothness, autocorrelation., which need
to meet certain preconditions, may not be flexible enough for
nonlinear and complex relationships, prediction The disadvantages
include limited accuracy. In the power system, the commonly used
time series models include the ARIMA model (Zhang et al., 2022),
seasonal ARIMA model Han et al. (2022), exponential smoothing
model (Zheng and Jin, 2022).; regression model: regression model
predicts future trends by establishing the relationship between
load or power price and some related factors, but it may not be
flexible enough for non-linear and complex relationships and has
limited prediction accuracy. In the power system, these factors may
include temperature, humidity, weather, economic indicators, etc.
Commonly used regression models include linear regression (Choo
and Go, 2022), polynomial regression (Jena and Ray, 2023), ridge
regression (Ahmad et al., 2022).; neural network model Abedi and
Kwon (2023): neural network model is a nonlinear model that
predicts future trends by learning historical data, which can handle
large amounts of data and nonlinear relationships and is suitable for
complex prediction tasks, but the training process requires a lot of
computational resources and time. In a power system, the commonly
used neural network models include feedforward neural networks,
recurrent neural networks, long and short-termmemory networks.;
decision tree model (Mostafa et al., 2022): decision tree model
predicts future trends by constructing a tree-like structure, which
can handle nonlinear and interactive relationships, and is suitable for
complex prediction tasks, but there may be overfitting problems for
high-dimensional data and noisy data.The commonly used decision

tree models in power systems include the CART (Classification
and Regression Tree) algorithm, random forest (Estévez-Bén et al.,
2020a).

Based on the advantages and disadvantages of the abovemodels,
this paper proposes a prediction model that combines an attention
mechanism-based convolutional neural network (CNN) (Lu et al.,
2022) and a recurrent gated unit (GRU) (Xiao et al., 2023). First,
the historical data and other predictive indicators are input into
the CNN for convolutional processing to extract their important
features. Then the output results are passed through the GRU
network, which can effectively perform long-term time series
The GRU network can effectively perform long-term time-series
prediction, which is an improved version of the LSTM model, and
then go through the attention mechanism (Li et al., 2022) module
to reasonably assign weights and optimize the model through
autonomous learning, and finally form a CNN-GRU-AM model to
predict the historical load and power price of the power system, and
then develop a reasonable large-scale energy storage optimization
scheme.

The contribution points of this paper are as follows.

• Compared with traditional financial time series and regression
models, the attention mechanism can automatically focus on
historical data that have a decisive impact on the current
prediction results by learning important features in the
historical data. Compared with other models requiring manual
selection and feature extraction, the attention mechanism
can automatically discover important features and improve
prediction accuracy.
• Compared with decision tree models, CNN-GRU models
combine convolutional neural networks and gated recurrent
unit networks, which can handle sequential and spatial data.
This allows the model to consider both the time-series
characteristics of historical load or electricity prices and
their spatial distribution characteristics, thus improving the
prediction accuracy.
• Compared with deep learningmodels, CNN-GRUmodels have
better generalization ability and can be applied to different
electricity systems and scenarios. Compared with other models
that need to be retrained in each scenario, theCNN-GRUmodel
can apply the learned knowledge to new scenarios through
migration learning and other methods, thus improving the
efficiency and effectiveness of the model.

In the rest of this paper, we present recent related work in Section 2.
Section 3 offers our proposed methods: overview, convolutional
neural networks; gated recurrent unit (GRU); attention mechanism.
Section 4 presents the experimental part, details, and comparative
experiments. Section 5 concludes.

2 Related work

Optimizing energy storage systems in smart grids is key to
improving energy efficiency, reducing costs, and ensuring a reliable
energy supply. Researchers have used various techniques to optimize
energy storage systems, including reinforcement learning, LSTM
networks, and multi-objective optimization. These techniques
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offer different advantages and disadvantages but aim to find the
optimal trade-off between competing goals. By leveraging these
technologies, energy providers, consumers, and policymakers can
develop more efficient and effective energy storage systems to
meet the needs of various stakeholders and contribute to a
more sustainable energy future. In the rest of this section, three
works on optimizing energy storage systems, namely, reinforcement
learning, LSTM network, and multi-objective optimization, will be
introduced.

2.1 Reinforcement learning for energy
storage optimization

This work uses reinforcement learning algorithms to make
energy storage systems operate more efficiently and reliably in
smart grids (Cao et al., 2020). In this field of study, researchers have
proposed various optimization methods to improve the efficiency
and reliability of energy storage systems. Reinforcement learning
is an algorithm widely used in machine learning, which trains
agents to make decisions through trial-and-error interactions.
Researchers have recently used reinforcement learning to optimize
energy storage systems in smart grids. For example, Liu et al.
(2020) proposed a reinforcement learning-based algorithm for
optimizing energy storage scheduling in microgrids. Wang and
Hong (2020) used a deep reinforcement learning algorithm
to optimize the operation of energy storage in renewable
energy systems. These studies demonstrate that reinforcement
learning can effectively optimize energy storage systems in smart
grids.

An energy storage scheduling algorithm based on deep
reinforcement learning is at the heart of the research.The algorithm
uses an intelligent agent to learn how to make decisions about
storing and releasing energy for maximum economic efficiency
and reliability. The algorithm’s input includes historical load data,
energy prices, andweather forecasts. Based on these inputs, the agent
learns how to make optimal decisions. During training, the agent
interacts with the environment and continuously adjusts its policy
to maximize cumulative reward. The algorithm takes a value-based
approach, where a value function is used to assess the value of each
state, and based on that value, the decision to store and release energy
is made.

The study evaluates the algorithm’s performance by conducting
simulation experiments in an experimental environment.The results
show that the algorithm can significantly improve the efficiency
and reliability of energy storage systems. Compared with traditional
methods, the algorithm can reduce energy costs and improve
energy usage efficiency. In addition, the algorithm can adapt to
different environments and needs and has high practicability and
adaptability.

2.2 Multi-objective optimization for energy
storage systems

Multi-objective optimization is a powerful technique that
can help find the best compromise between multiple conflicting
goals Terlouw et al. (2019). In the context of smart grid energy

storage systems, multiple objectives often need to be considered
simultaneously, such as maximizing renewable energy, minimizing
energy costs, and ensuring a reliable energy supply. Multi-objective
optimization can be used to find the optimal trade-off between these
objectives, resulting in more efficient and effective energy storage
systems.

Several studies have used multi-objective optimization to
optimize energy storage systems in smart grids. One such
study by Li et al. (2018) proposed a multi-objective optimization
model for energy storage dispatch in microgrids. The model
considers several objectives, such as minimizing energy costs,
maximizing the use of renewable energy, and ensuring a reliable
energy supply. Another study by Yang et al. (2021) Uses a multi-
objective optimization algorithm to design the capacity and
configuration of energy storage systems in community microgrids.
The study considered several goals: minimizing energy costs,
reducing greenhouse gas emissions, and ensuring a reliable
energy supply. These studies demonstrate that multi-objective
optimization can effectively optimize energy storage systems in
smart grids. By considering multiple objectives simultaneously,
multi-objective optimization can help to find more efficient and
effective energy storage systems to meet the needs of various
stakeholders, including energy suppliers, consumers, and the
environment.

2.3 Long short-term memory (LSTM)
networks for energy storage optimization

A Long Short-Term Memory (LSTM) network is a neural
network architecture designed for processing sequential data
(Balakumar et al., 2023). The architecture of an LSTM network is
based on the concept of a recurrent neural network (RNN), capable
of processing sequential data by maintaining a state that is updated
at each time step of the sequence.

Several recent studies have used LSTM networks to optimize
energy storage systems in smart grids. One such study by
Li F. et al. (2021a) Used LSTM-based models to predict building
energy consumption and optimize energy storage dispatch. The
model inputs historical energy consumption data and weather-
related variables and outputs an optimal energy storage dispatch
strategy for buildings. The study results show that the LSTM-based
model can accurately predict energy consumption and optimize
energy storage scheduling, thereby reducing energy costs. Another
study by Zhao et al. (2022) Used LSTM-based models to predict
wind power output and optimize energy storage operations in
wind-solar-battery microgrids. The model takes historical wind
and solar power generation output data and battery state-of-
charge (SOC) data as input, and outputs an optimal battery
charging and discharging strategy. The study found that the
LSTM-based model could accurately predict wind power output
and optimize battery operation, increasing renewable energy
utilization and reducing energy costs. These studies demonstrate
that LSTM networks can effectively predict energy consumption
and optimize energy storage dispatch in smart grids. The ability
of LSTM networks to process time series of data makes them a
powerful tool for energy management and optimization in smart
grids.
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FIGURE 1
Overall flow chart of the model.

3 Methodology

In this section, we will introduce the method proposed in this
paper in detail, first an overview of the method, and then introduce
the CNN network, GRU network and attention mechanism used in
this paper.

3.1 Overview of our network

In this paper, a CNN-GRU model based on the attention
mechanism is proposed to predict the load and power price of the
power system so as to formulate the optimal energy storage strategy
and effectively solve the problems of missing historical data and
complicated operation of previous deep learning models in long
period sequences, while improving the accuracy of the prediction
model, the flow chart of the model is shown in Figure 1.

First, select the appropriate historical data input, then perform
data preprocessing and normalization processing to make the
operation speed of the CNN network faster. Then, the data enters
the CNN network for feature extraction. Since the one-dimensional
CNN network is selected here, it is more suitable For the time
series prediction; after the flattening layer, the data is subjected to
dimensionality reduction processing. After that, the data is subjected
to the GRU layer for feature extraction and enters the attention layer.
Weight distribution is performed through independent learning,
the CNN-GUR structure is optimized, and finally, output predicted
results Feng et al. (2022). The CNN-GRU-AM model consists of
three parts: the CNN module, the GRU module, and the attention
module. Each of the three components plays its advantage to
complete the load and power price prediction of the power system.
The overall structure of the model is shown in Figure 2.

3.2 CNN model

Convolutional Neural Network (CNN) is a neural network
architecture widely used in computer vision tasks. CNN is a feed-
forward neural network that consists of multiple convolutional,
pooling, and fully-connected layers. The main feature of CNN is

the ability to capture local features and spatial structures in images
and to learn more abstract feature representations. This is achieved
using convolutional layers, which convolve the input image with
filters (kernels or feature detectors). The convolution operation can
effectively reduce the number of network parameters and preserve
the local information in the input image. Pooling layers are usually
followed by convolutional layers, which can further reduce the size of
feature maps and keep their essential features. Convolutional neural
networks can be divided into one-dimensional CNN and multi-
dimensional CNN according to dimension. One-dimensional CNN
is mainly used to process time series data, while multi-dimensional
CNN is primarily used to recognize text, image, and video data.
Therefore, this paper uses one-dimensional CNN to process the time
series of historical data of Smart Grid. Its model structure diagram
is shown in Figure 3:

In Figure 3, we have established a network consisting of an
input layer, a 2-layer 1D convolution, a 2-layer 1D max pooling, a
flattening layer, and an output layer for the nonlinear and complex
data characteristics of a one-dimensional time series. Dimensional
CNN network Kattenborn et al. (2021). The convolutional layer is
used to extract temporal features; ReLU is the activation function,
and the highest pooling layer reduces the output dimension of
the convolutional layer to extract the most significant features; the
flattening layer converts the multi-dimensional feature vector into a
one-dimensional feature vector, as Global feature extraction. CNN
can effectively and automatically extract and learn nonlinear features
of one-dimensional time series, which can remove time series
features of different scales by alternately stacking convolutional
layers and top pooling layers.

The formula of convolution is shown in Formula (1):

g (i) =
m

∑
x=1

n

∑
y=1

p

∑
z=1

ax,y,zw
i
x,y,z + bi, i = 1,2,…,q (1)

Where: g(i) is used to represent the i-th feature map, a is
used to represent the input data, i is used to represent the first
convolution kernel, b represents the bias, and x,y,z represents the
three dimensions of the input.

After the convolution operation, the activation Li number is
usually used to realize the nonlinear transformation, and RELU is
used as the activation function in this paper.

y (i) = f (g (i)) =max {0,g (i)} , i = 1,2,…,q (2)

Considering the one-dimensional characteristics of track data,
this paper uses a one-dimensional convolutional neural network to
process one-dimensional data.The convolution formula is shown in
Formula (3):

g (i) =
m

∑
x=1

axw
i
x + b

i, i = 1,2,…,q (3)

The features of the financial time series are extracted in the
form of a sliding window with a step size of l. The elements of all
windows will be fused through the pooling layer to retain the main
features of the time series. Then the output will be put into the
next convolutional layer for further processing—extraction of high-
dimensional features.Thefinal result of theCNNmodule is obtained
by flattening layers and fully connecting layers.
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FIGURE 2
Model architecture diagram.

FIGURE 3
One-dimensional CNN network structure.

3.3 GRU model

Agated Recurrent Unit (GRU) (Li W. et al., 2021b) is a recurrent
neural network (RNN) structure similar to long short-termmemory
(LSTM). Compared with LSTM, GRU has fewer parameters simpler
structure, and the training efficiency of themodel is higher, so it runs
faster on some tasks and is an advanced variant of the LSTMmodel.
GRUs are designed to alleviate the vanishing gradient problem

when training long-term sequences. It has been widely used in
natural language processing (NLP) tasks, such as languagemodeling,
machine translation and text generation, andothermodeling tasks of
sequence data. The structure diagram of GRU is shown in Figure 4.

Comparedwith the three gate structures of the input gate, output
gate, and forget the entrance of the LSTM structure, the GRU
structure only has two gate structures a reset gate and an update gate.
The reset gate controls the influence of the hidden state of the last
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FIGURE 4
GRU structural unit.

FIGURE 5
Attention mechanism flowchart.
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TABLE 1 Smart grid index classification table.

Index Value Code Classification

Index1 Peak-to-valley difference C1 Load

Index2 Load rate C2 Load

Index3 Energy utilization C3 Energy utilization and efficiency

Index4 Power generation efficiency C4 Energy utilization and efficiency

Index5 Electricity market price C5 Electricity market

Index6 Smart grid operational cost C6 Electricity market

Index7 Grid reliability index C7 Grid stability

Index8 Power system response time C8 Grid stability

Index9 Power system controll ability C9 Grid stability

Index10 Power system stability C10 Grid stability

Index11 Renewable energy consumption C11 Emissions

Index12 Emissions C12 Emissions

Index13 Energy security C13 Energy

Index14 Market transparency C14 Energy

Index15 Energy storage efficiency C15 Energy

FIGURE 6
Comparison of inference time of different models. (A) corresponds to Dataset 1 from the EIA dataset, (B) corresponds to Dataset 2 from the EPEX
dataset, (C) corresponds to Dataset 3 from the IEA dataset, and (D) corresponds to Dataset 4 from the CNEE dataset.
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FIGURE 7
Comparison of inference time of different models. (A) corresponds to Dataset 1 from the EIA dataset, (B) corresponds to Dataset 2 from the EPEX
dataset, (C) corresponds to Dataset 3 from the IEA dataset, and (D) corresponds to Dataset 4 from the CNEE dataset.

moment on the input of the current moment, and the update gate
controls the power of the hidden state of the last moment on the
output of the present moment. GRU also uses a candidate hidden
form to compute the hidden state at the current moment.

The formula of the GRU model is as follows:

rt = σ(W rxt +U rht−1) (4)

zt = σ(Wzxt +U zht−1) (5)

h̃t = f (Whxt +Uh (rt ⊙ ht−1)) (6)

ht = zt ⊙ h̃t + (1− zt) ⊙ ht−1 (7)

In the formula: rt is the reset gate; zt is the update
gate; xt is the input information; σ is the sigmoid activation
function; ht−1 is the state of the hidden layer at the previous
moment; σ is the sigmoid activation function; h̃t is the input
xt , and the previous hidden layer; f is the tanh activation
function.

3.4 Attention mechanism

The attention mechanism is a mechanism that simulates the
perception process of human vision or hearing, and its primary

function is to select relevant information from the input data
and assign it to the corresponding outputLi et al. (2023). In
machine learning, attention mechanisms often process sequential
data, such as natural language sentences or time series data.
Attention mechanisms are widely used in natural language
processing, especially machine translation tasks (Guo et al.,
2022). It is considered one of the essential means to improve
the performance of machine translation. At the same time, the
attention mechanism has also been applied in image processing
and speech recognition. Its structure diagram is shown in
Figure 5.

In natural language processing tasks, the attention mechanism
can help the model focus on the part relevant to the current task in
encoding the input. Typically, the input data is in sequences, such
as sentences or paragraphs of text. During encoding, the model
progressively reads each element in the series and generates the
corresponding hidden state. On this basis, the attention mechanism
can help the model pay attention to other factors related to the
current element for better prediction and decision-making.

The formula of the attention mechanism is as follows:

ai =
exp(s(hi,ht))

∑N
i=1

exp(s(hi,ht))
(8)
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FIGURE 8
Accuracy comparison of different models.

O =
N

∑
i=1

aihi (9)

Where: s(hi,ht) is the score of the feature vector. The larger the
score, the greater the attention. ai is the weight value of the i th input
feature in the attention mechanism, which also is the ratio of the
score of the feature vector to the whole.Then all vectors are summed
and averaged to get the final vector o.

This formula can be understood as selecting other elements
related to the current component according to the query
vector in encoding the input sequence and then performing
the weighted average of their value vectors. This weighted
average method can make the model pay more attention to
the information related to the current task while ignoring the
information irrelevant to the study, thereby improving the model’s
performance.

4 Experiment

In this section, we will introduce our laboratory, firstly, the
selection of data sets, followed by the experimental settings and
results analysis and summary.

4.1 Datasets

The U.S. Energy Information Administration (EIA) is an
independent statistical agency of the U.S. government that collects,
analyzes, and publishes data, reports, and analyzes (Gao et al.,
2022) on energy, electricity, and the environment. EIA is one
of the nation’s leading energy intelligence agencies, and its data
and analysis significantly impact the U.S. government, businesses,
and the public. It aims to provide accurate and comprehensive
energy information to support national energy decision-making and
planning and reliable energy information to policymakers, industry,
academia, and the public. EIA is responsible for collecting data
on energy production, consumption, and transportation across the
United States, and performing statistics and analysis on these data,
generating various energy data reports and databases, analyzing
and predicting energy trends: EIA uses the collected energy
data to conduct various analyzes and forecasts, including energy
prices, supply, and demand trends, environmental impacts, etc. EIA
provides the government and the public with information about
future energy trends; supports policy formulation: EIA’s data and
analysis greatly influence the energy policy formulation of the U.S.
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FIGURE 9
Comparison of inference time of different models. (A) corresponds to Dataset 1 from the EIA dataset, (B) corresponds to Dataset 2 from the EPEX
dataset, (C) corresponds to Dataset 3 from the IEA dataset, and (D) corresponds to Dataset 4 from the CNEE dataset.

federal government and state governments and can provide the
government with a key basis for energy decision-making.

The European Power Exchange (EPEX) is one of the largest
power exchanges in Europe, established in 2008 and headquartered
in (Mahilong et al., 2022) in Brandenburg, Germany. EPEX is a
trading platform created by merging power exchanges in several
European countries, aiming to provide more efficient trading and
clearing services for the entire European power market. In addition
to providing trading and clearing services, EPEX is committed
to providing reliable market data and analysis for the European
electricity market. EPEX releases data such as real-time prices
and trading volumes of the electricity market and various market
analysis reports daily, providing an important decision-making
basis for market participants. In short, EPEX is one of Europe’s
largest electricity trading platforms, providing efficient, transparent,
and secure trading and clearing services for the entire European
electricity market and providing market participants with reliable
market data and analysis.

The International Energy Agency (IEA) (Hattori et al., 2022)
aims to promote the rational use of energy, energy security, and
sustainable environmental development and provide support and
advice for formulating and implementing global energy policies.The
main task of the International Energy Agency is to provide member
countries with support and advice on energy policy and technology
and to promote the rational use and sustainable development of

global energy. The International Energy Agency is an independent
international organization dedicated to supporting and advising
member countries on energy policy and technology to promote the
rational use and sustainable development of global energy.Thework
of the International Energy Agency covers many energy fields and
has great influence and importance.

China Electricity Council (Juárez Coronado, 2022) is one of
the core trading platforms of China’s electricity market and
an important part of China’s electricity market reform: market
transparency and competitiveness. CNEE is one of the core trading
platforms of China’s electricity market, undertaking functions such
as electricity trading, market supervision, information release,
and market analysis. The establishment and operation of CNEE
will play an important role in promoting the reform of my
country’s electricity market, promoting the optimal allocation and
utilization of electricity resources, and improving the transparency
and competitiveness of the electricity market.

We selected 15 indicators from these data as the input set for the
model, as shown in Table 1.

Impact of themodel on the intensity of communication between
electricity market participants:

1. The impact of the model on information collection and
analysis: The CNN-GRU model based on the attention mechanism
can better capture and analyze patterns and trends in historical data,
thereby increasing the sensitivity of market participants to market
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FIGURE 10
Comparison of inference time of different models. (A) corresponds to Dataset 1 from the EIA dataset, (B) corresponds to Dataset 2 from the EPEX
dataset, (C) corresponds to Dataset 3 from the IEA dataset, and (D) corresponds to Dataset 4 from the CNEE dataset.

FIGURE 11
Forecast accuracy comparison of different models on different datasets (Dataset1 from US Energy Information Administration (EIA), Dataset2 from
European Power Exchange (EPEX); Dataset3 from International Energy Agency (IEA); Dataset4 from China Electricity Exchange (CNEE)).

changes.This will help facilitate the exchange of information among
market participants, including information on trading strategies and
risk management Górski (2023).

2. The impact of the model on information transmission and
reception: By predicting future energy demand and renewable
energy generation, the CNN-GRU model based on the attention

mechanism can help market participants better plan and coordinate
their trading behavior Zhao et al. (2023). This will help facilitate the
transfer and receipt of information between market participants,
including information on the execution of orders and trades.

3. The impact of technical diversity on information exchange:
Besides the CNN-GRU model based on the attention mechanism,
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other models and technologies can be used to predict information,
such as energy demand and production.These different models and
techniquesmay have different effects on the exchange of information
amongmarket participants.Therefore, this study could compare and
analyze different models and techniques to assess their impact on
information exchange.

4.2 Experimental details

In this paper, to test the performance of our model, we conduct
several sets of experiments to compare the performance of our
model. First, we conduct the inference time and training time
comparison experiments to test the basic performance of our model
and the accuracy of the model to predict the load and price of
the power system, which is an important criterion to test the
performance of the model, for this purpose, we will conduct several
sets of experiments to compare the prediction accuracy of different
models and our model on different data sets, and the prediction
ability of the same data set with different levels of complexity.
For this purpose, we will conduct several experiments to compare
the prediction accuracy of different models and our model on
different data sets and the prediction ability of data of different
complexity in the same data set. Then we also compare the number
of parameters and operations between different models. We also
conduct a comparison between AUCs to test the performance of our
model.

4.3 Experimental results and analysis

In Figure 6, we compare the inference time of LR, CNN-GRU,
KVM, SVM, GRU, Liu et al., Alegria et al. (2013); Rostampour et al.
(2019) and our model for a total of 11 models with the different
numbers of inferences. However, as the number of inferences keeps
increasing, the advantage of our model in terms of computing speed
becomes more and more obvious, which is due to the attention
mechanism that can autonomously learn to assign weights and give
more attention to more important data features, so that the deep
learningmodel has themore computational power to compute these
more important features, thus increasing the inference speed of the
model.

In Figure 7, we compare the training time of LR, CNN-LSTM
Wu et al. (2021), KVM, SVM, GRU Chi and Chu (2021), Liu et al.
(Faraji et al., 2022); Alegria et al. (2013); Rostampour et al. (2019)
models, and our model in one dataset with different complexity
levels, because the structure of GRU is simpler compared to LSTM,
so its operation speed is faster and its training time is also faster. Our
model incorporates an attention mechanism to allocate the number
of operations better, and therefore, its Sunlen time is also better than
the standard GRU model.

In Figure 8, since the data for load and power price forecasting
of power systems are always nonlinear and complex, the prediction
accuracy for complex data is one of the important indicators of credit
risk forecasting models. As shown in the figure, we compare the
prediction accuracy of different models and our model on data sets
with different levels of complexity.

FIGURE 12
Compared with the AUC of LSTM model.

In Figure 9, we compare the magnitude of the operations of
different models. We can see that for the LSTM model (Li et al.,
2023), the operation speed is lower due to the good improvements
made by the GRU model. Still, when comparing the traditional LR
logistic regression model (Zhu et al., 2016), the operations are lower
than ours because the data input to the LRmodel has generally been
preprocessed. Still, the LR logistic regression model cannot perform
nonlinear data prediction, so the performance of ourmodel is better
than the other models from an overall perspective.

For example, process 1 is the operation process of our model.
First, use the CNN network to extract features from historical data,
input the output results into the GRU network, and then introduce
the attention mechanism to improve the model’s performance.

In Figure 10, to further compare the performance of our
model, we also compared the parameters of CNN-GRU (Faraji et al.,
2022), SVM (Yao et al., 2022), KMV (Li et al., 2016), and our
model. The results show that due to the feature extraction of
the CNN module and the unique dual structure of the GRU
module, and the attention mechanism introduced, our model,
compared with the other three models, has a significant reduction
in the number of parameters and improves the performance of the
model.

In Figure 11, to verify the generalizability of our model, we
separately U.S. Energy Information Administration (EIA): the EIA
provides historical load and electricity price data for the U.S.
electricity market; these data are available from the EIA’s website;
European Power Exchange (EPEX): the EPEX provides historical
load and electricity price data for the European electricity market;
International Energy Agency (IEA): IEA provides historical load
and electricity price data for the global electricity market. China
Electricity Exchange (CNEE): CNEE provides historical load and
electricity price data of China’s electricity market. Recall and AUC
comparisons are made on four datasets, and the results show that
our model is more accurate in predicting the load and electricity
price of the power system than the other models in the four different
datasets, showing good applicability to both linear and nonlinear
data.
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FIGURE 13
Inference time comparison of different models. (A) corresponds to Dataset 1 from the EIA dataset, (B) corresponds to Dataset 2 from the EPEX dataset,
(C) corresponds to Dataset 3 from the IEA dataset, and (D) corresponds to Dataset 4 from the CNEE dataset.

TABLE 2 Summary comparison of different models.

Method Accuracy ↑ Recall ↑ Flops(G) ↓ Parameters(M) ↓ AUC ↑ PIS ↓

KMV Li et al. (2016) 0.887 0.776 123.3 134.5 0.876 0.34

SVM Yao et al. (2022) 0.873 0.867 167.3 187.2 0.853 0.14

LR Zhu et al. (2016) 0.932 0.912 114.7 113.6 0.912 0.31

LSTM Li et al. (2023) 0.921 0.892 134.5 123.3 0.891 0.26

CNN-LSTMWu et al. (2021) 0.943 0.921 145.6 137.9 0.911 0.21

GRU Chi and Chu, (2021) 0.952 0.935 117.5 107.3 0.923 0.17

CNN-GRU Faraji et al. (2022) 0.971 0.944 123.7 119.6 0.943 0.24

Liu et al. Liu et al. (2016) 0.931 0.911 113.4 109.1 0.908 0.13

Ale et al. Alegria et al. (2013) 0.871 0.855 163.7 149.6 0.865 0.27

Ros et al. Rostampour et al. (2019) 0.954 0.934 176.7 139.2 0.917 0.29

Ours proposed model 0.983 0.951 112.4 106.3 0.953 0.1

In Figure 12, to further verify the prediction accuracy of our
model, AUC was made between our model and the LSTM model,
and the data in the Diane database was selected as the data. The
results show that the ACU value of our model is better than that
of the LSTMmodel. We can further test the predictive ability of our
model.

In Figure 13, to compare the operational stability of the models,
we compare the population stability index (PSI), an index used
to assess the stability of two samples for different models with
a different numbers of inferences. PSI is often used to assess
the stability of the performance of a risk model over time or
across different data sets. It is usually considered that if the
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Data: EIA, EPEX, IEA, CNEE input: The train D,

the dataset for transfer learning DT, the

parameters θ, Value = b, Query = a

output: The trained CNN-GRU ModelOurs

Random initialization W,b; while The error

rate of the neurat network model on the

vatidation set v no longer decreases do

for epoch in iterationsdo

Query = f (θnow); if Valuenow < Valuei then

θi = θt;

Queryt = Queryt−1; end

end

θnow = Adam (θnow,DT); end

Load the best model with b;

Return the trained model ModelOurs

Algorithm 1. : An algorithmwith caption.

PSI is less than 0.1, it indicates that the difference between the
two samples is acceptable; if the PSI is greater than 0.25, it
indicates that the difference between the two samples is large
and the performance stability of the model may need to be
reassessed. Ourmodelmaintains good stability in a larger number of
inferences.

In Table 2, we summarize the prediction accuracy, parameter
amount, and calculation amount of the eight models mentioned
above so that we can compare the performance of our models more
intuitively.We can show that ourmodels, in these aspects, have good
performance.

5 Discussion and limitations

In this paper, we propose a CNN-GRU model based on an
attention mechanism to investigate the optimization scheme of
large-scale energy storage in a smart grid to effectively predict
the load and power price of the power system and to develop
the optimal energy storage strategy. At the same time, compared
with other prediction models, the problem of missing historical
data is effectively solved, and the model’s operational efficiency
and prediction accuracy are improved. The GRU network is an
excellent variant of LSTM, which can effectively perform long-time
series prediction. The structure of GRU is simpler than the LSTM
network, with an easier training process and faster operation rate.
It thoroughly explores the smart grid’s large-scale energy storage
optimization scheme.

However, our model still has some drawbacks; although the
GRU network is used instead of the LSTM network, the complexity
of the deep learning network still exists, and the computation
speed is more complicated; In contrast, our model combines three
modules, and the number of parameters has increased. In addition,
the problem ofmissing historical data has been improved but has yet
to solve completely. Subsequently, migration learning can be applied
to optimize the model further.

6 Conclusion

With the increasing energy demand and environmental
protection awareness, the smart grid large-scale energy storage
optimization scheme is getting more and more attention. This
schememainly realizes the regulation and optimization of the power
system through energy storage technology and intelligent control
means to improve the reliability, safety, and economy of the power
system. Smart grid large-scale energy storage optimization scheme
can realize the balance of power system load through energy storage
technology, reduce the peak-valley difference of power system,
relieve the pressure of power system, and improve the stability
and reliability of power system; meanwhile, it can also realize the
regulation and optimization of power system through energy storage
technology, reduce the operation cost of power system, and improve
the economy and benefit of power system; then it can also realize the
regulation and optimization of power system through energy storage
technology, reduce the operation cost of power system, and improve
the economy and benefit of power system; then it can also realize
the regulation and optimization of power system through Energy
storage technology can be used to store and utilize renewable energy,
promote the development and application of renewable energy,
reduce energy consumption and carbon emissions, and help protect
the environment and sustainable development; finally, the smart
grid large-scale energy storage optimization program can realize the
regulation and optimization of the power system through intelligent
control means, promote energy transformation and upgrading, and
promote the clean, low-carbon, efficient and intelligent development
of energy. Therefore, the smart grid large-scale energy storage
optimization program has an important significance.

In summary, our work can provide a better large-scale energy
storage optimization scheme for smart grids, thus improving the
reliability, safety, and economy of power systems, promoting the
development of renewable energy, promoting energy transformation
and upgrading, and making an individual contribution to the
sustainable development of human beings.
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