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The L30up reservoir is a strongly heterogeneous edge water reservoir with
obvious provenance direction and channel direction. It is developed by
horizontal wells, and the traditional well pattern adjustment is not suitable for
tapping the remaining oil potential of this type of reservoirs, while vector well
pattern adjustment is one of the important measures to enhance oil recovery. In
this paper, aiming at maximizing the economic net present value, taking the
characteristic parameter matrix of well pattern reconfiguration (well position,
azimuth angle, horizontal section length) as variables, an optimization model of
horizontal well pattern vector adjustment is established. Furthermore, the PSO-
MADS algorithm is proposed to solve the above optimizationmodel. Thus, a vector
well pattern adjustment technology that can realize the distribution matching of
reservoir heterogeneity and remaining oil has been formed. On the basis of the
deployment strategy of vector well pattern in L30up reservoir, according to the
direction of sediment source, reservoir heterogeneity, distribution of remaining
oil, etc., we determined the best vector well pattern adjustment scheme, and
applied the above optimization method to optimize the infill well locations.
Through the optimal deployment of the vector well pattern, the oil recovery
factor after the vector well pattern adjustment is 5.21% percentage points higher
than the original well pattern conditions, which precisely matches the well pattern
parameters and the geological vector parameters, such as sand body distribution,
remaining oil distribution, and edge waters in L30up reservoir.

KEYWORDS

edge water reservoir, vector well pattern, horizontal well, infill well optimization,
enhenced oil recovery

1 Introduction

Well pattern infill an important means of extracting residual oil and enhancing oil
recovery (Han, 2010). Vector well pattern (Xiao and Liu, 2010; Yao, 2011) is a development
adjustment scheme in high water cut period, which aims to match reservoir heterogeneity,
permeability anisotropy and well pattern characteristics for the purpose of achieving
balanced displacement. On the basis of the original injection-production well pattern,
the matching relationship between the well pattern and reservoir parameters is adjusted by
deploying the infill schemes, the flow field distribution is changed, so that the reservoir can
achieve balanced and efficient displacement, so as to improve the recovery efficiency and
development effect.

In recent years, well location optimization has become one of the research hotspots in
reservoir development optimization (Bouzarkouna et al., 2011; Afshari et al., 2015;
Bagherinezhad et al., 2017; Park et al., 2017; Ding et al., 2020; Mirzaei-Paiaman et al.,
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2022; Salehian and Morteza Haghighat Sefat Muradov, 2022). Based
on optimization theory, this method obtains the location of infill
wells by constructing objective functions, restricting constraints and
solving for optimal values (Wang et al., 2016; Hamida et al., 2017;
Semnani et al., 2021). The parameters characterizing the infill well
location are taken as optimization variables, and combined with the
given constraints, the optimization algorithm is used to solve the
optimization problem. In order to obtain the best infill well location,
further achieve the purpose of improving the reservoir development
effect and enhancing oil recovery.

How to design a reasonable well pattern infill scheme suitable for
the target reservoir, including vector well pattern scheme, many
scholars have done a lot of research on the above work. Ariadji et al.
(2014) introduced a fitness function based on reservoir parameters
such as permeability, porosity, oil saturation, reservoir pressure and
thickness, and optimized the infill well location by using a genetic
algorithm. Jesmani et al. (2016a) studied the optimization of infill
well location in oilfield development, and their research showed that
practical constraints should be embedded in the construction of
optimization models. These constraints are the prerequisites for
better use of optimization methods in well location optimization
problems, which can convert actual well location design constraints
into mathematical models. Ding et al. (2016) a well location
optimization model for irregular well patterns based on the
characteristics of “few wells and high production” in deep-water
reservoirs, and used an improved particle swarm optimization
algorithm to solve the problem in combination with numerical
simulation methods, realizing the auto-optimization of well
locations of irregular well patterns. Park et al. (2017) changed the
optimization strategy, and proposed a two-stage optimization
method, which was first based on the preliminary judgment of
dynamic flow characteristics, and then further optimized using a
genetic algorithm. Compared with traditional methods, the main
advantage of this method is that it can combine static reservoir
properties with dynamic parameters such as sweep efficiency, which
improves the calculation efficiency. Ding et al., 2020 proposed a well
location optimization method combining particle swarm
optimization (PSO) with efficient hybrid objective function
(HOF), which used production potential value (PPV) in the early
iterations of well location optimization to obtain potential well
locations, and the traditional objective function cumulative oil
production (COP) is used in subsequent iterations to obtain
reservoir dynamics. Semnani et al. (2021) constructed a
population-based meta-heuristic global optimization
algorithm—teaching and learning optimization algorithm
(TLBO), and on this basis, with the economic net present value
(NPV) as the objective function, the well location optimization of a
certain oil reservoir was carried out. To avoid the interwell
interference problem, she proposes a method of constraining
distances to any number of points in ordinary n-dimensional
space. Nasir et al. (2022) developed and tested a new step-by-
step solution strategy for large-scale optimization problems in
oilfields. In the first stage, well locations are restricted to the
scenario, optimization variables are reduced, and the scenario
type and geometry (e.g., well spacing, orientation) are defined.
Then, the solution obtained in the first stage is used as
initialization variables in the second stage to obtain optimal well

locations. Both stages were optimized using the particle swarm
adaptive direct search (PSO-MADS) algorithm.

The L30up reservoir has complex geological characteristics,
strong reservoir heterogeneity, and is driven by multi-directional
edge water. Horizontal wells are used for production, but the well
pattern is not perfect, which does not match the reservoir geology
and development characteristics, and the synergy between injected
water and edge water is poor, resulting in unbalanced well pattern
reserve control and utilization. The well pattern development effect
is poor, and the recovery rate is low, only 20.9%. It is necessary to
carry out research on well pattern adjustment. However, in the study
of well location optimization in water injection oilfields, the research
object of infill well pattern is limited to vertical wells and there are
few researches on infill well locations of horizontal wells. And well
pattern design has not been carried out for edge water reservoir in
current research. Therefore, according to the direction of sediment
source, reservoir heterogeneity, distribution of remaining oil, etc., we
proposed the deployment strategy of vector well pattern in L30up
reservoir, and taking the well location, azimuth angle and horizontal
section length as optimization variables, a vector well pattern
reconstruction method for horizontal well development is
established in this paper to optimize the infill well locations.

2 Construction of mathematics model

At present, the objective functions commonly used in infill well
optimization mainly include cumulative oil production, recovery
degree, economic net present value, etc (Wang et al., 2016; Hamida
et al., 2017; Semnani et al., 2021). In this paper, the economic net
present value (NPV) is used as the objective function, which can
comprehensively measure the economic factors of reservoir
production in the development process: production revenue,
water injection cost, water treatment cost, and the impact of cost
on development effect. In addition, NPV has been widely used in the
optimization of oil and gas field development as an objective
function (Jesmani et al., 2016a; Naderi and Khamehchi, 2017;
Semnani et al., 2021). The objective function of well location
optimization of horizontal well pattern can be expressed as:

maxf � ∑T
t�1

1

1 + b( )t · ∑Np

p�1
CoQ

t( )
o − ∑Np

p�1
CwQ

t( )
w −∑NI

I�1
CIQ

t( )
I

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
−NinfCdL (1)

Here, T can be expressed as the total production time, year;t is the
current time, year; Co denotes the oil price,USD·m−3;Cw is the sewage
treatment cost, USD·m−3;CI denotes the cost of water injection, USD·m−3;
Cd is the drilling and completion costs dependent on the length of the
horizontal well, USD; Qo is the oil production, m

3·d−1;Qw is the water
production,m3·d−1;QI is thewater injection rate,m

3·d−1;NP andNI refer to
the number of production wells and injection wells, respectively; Ninf is
number of infill wells; L denotes the length of the well, m; b is the interest
rate (10.36% in this case).

The variables of this optimization problem are the
combination of characteristic parameters that characterizes the
location of horizontal wells, and these parameters represent the
location of the infill horizontal well, that is, five variables (xh, yh,
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zh, L, θ) are required. Here, well location coordinates can be
expressed by xh, yh, zh, L represents the well length, and θ is the
azimuth. As shown in Figure 1, it is a schematic diagram of
specific horizontal well location parameters. Only by expressing
the well position of the horizontal well in this way, that can reflect

the structural parameters of the horizontal well such as horizon,
wellbore length and azimuth angle.

In order to obtain infill well locations within a feasible range,
constraints need to be considered in the optimization process,
including infill range constraints, wellbore length constraints,
azimuth constraints, and minimum well spacing constraints.

2.1 Infill constraint range

In this paper, constraints are introduced into the
optimization of horizontal well locations, and the location of
horizontal wells cannot exceed the feasible infill region. xmax,
ymax, zmax and xmin, ymin, zmin represent the upper and lower
limits of the position constraints in the three directions
respectively. The constraints on the coordinates of starting
point of horizontal wells can be expressed as follows:

x min ≤ xh ≤ x max

y min ≤yh ≤y max

z min ≤ zh ≤ z max

(2)

FIGURE 1
Schematic diagram of horizontal well location optimization
parameters.

FIGURE 2
L30up reservoir zoning. (A) Sand body configuration distribution. (B) Reservoir structure distribution. (C) Reserve abundance distribution. (D)
Partition diagram.
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Similarly, the coordinates of the end point of horizontal wells
should also be within the feasible region. Therefore, the following
conditions should be satisfied:

x min ≤xt ≤x max

y min ≤yt ≤y max

z min ≤ zt ≤ z max

(3)

2.2 Well length constraint

On the other hand, there are some restrictions on the length of
the well. Lmin and Lmax denote the minimum and maximum length
of horizontal wells, which is a linear constraint and can be
expressed as:

L min ≤ L≤L max (4)

2.3 Azimuth constraint

Since the optimized infill well is a horizontal well, its azimuth
should be within the feasible range. θmin can be expressed as the

minimum azimuth angle, and θmax is the maximum azimuth angle.
It can be expressed as:

θ min ≤ θ ≤ θ max (5)

2.4 Minimum well spacing constraints

When the well spacing is too small, it will cause interference
between wells. In order to avoid this situation, the influence of
well spacing should be considered when optimizing the location
of horizontal wells. In this case, i and j denote two wells, and M
and N can be expressed as a point in well i and well j, respectively.
Then, the distance between M and N can be expressed as Di,j.
Therefore, the minimum well spacing constraint can be
expressed as:

Di,j ≥D min, i, j ∈ N i ≠ j( ) (6)

Then, with the NPV as the objective function, the well pattern
parameters (well position, azimuth, horizontal length) as
optimization variables, combined with the above constraints, a
mathematical model for optimizing horizontal well location was
established to realize the precise design of infill well location. It can

TABLE 1 Deployment of vector horizontal well pattern in L30up reservoir.

Well area Existing problem Deployment strategy

Central well area ① Imperfection of injection-production well pattern and imbalanced
displacement between wells lead to enrichment of remaining oil

Reconstruct injection-production well pattern and transfer to well L17/
L18 to improve the injection-production correspondence

② Insufficient local formation energy

Western edge
water area

① Thicker oil layer with better physical properties, but low well network
density and low degree of reserve utilization

Combined with sand body spreading, water intrusion direction, remaining
distribution, vector encryption optimization, increase the degree of well
control, and effective use of side water energy

② Uneven replacement of side water and local residual oil enrichment

Eastern thin and
poor area

① Thin oil layer, strong non-homogeneity, imperfect injection and
production well network, remaining oil is mainly extracted but not
injected

Combined with sand body spreading and remaining distribution, vector
encryption optimization, oil well transfer, perfect injection and extraction
correspondence, replenish formation energy

② Low abundance of reserves and insufficient natural energy

TABLE 2 Vector well pattern adjustment scheme of L30up reservoir.

Scheme Design

Foundation pattern No adjustment, simulated on the basis of the original well network until October 2040

Scheme one 3 oil wells in the marginal water area, L18 in the central well area to be transferred, and 1 water well in the thin differential area

Scheme two 3 oil wells in the marginal water area, L17 in the central well area to inject, and 1 water well in the thin differential area

Scheme three 3 oil wells in the border water area, L18 in the central well area to be transferred, 1 oil well in the thin differential area, L12 to be transferred

Scheme four 3 oil wells in the border water area, L17 in the central well area to be transferred, 1 oil well in the thin differential area, L12 to be transferred

Scheme five 2 oil wells and 1 water well in the border water area, L18 transfer in the central well area, and 1 water well in the thin differential area

Scheme six 2 oil wells and 1 water well in the border water area, L17 transfer in the central well area, and 1 water well in the thin differential area

Scheme seven 2 oil wells and 1 water well in the border water area, L18 in the central well area to be transferred, 1 oil well in the thin differential area, L12 to be
transferred

Scheme eight 2 oil wells and 1 water well in the marginal water area, L17 in the central well area to be transferred to injection, 1 oil well in the thin differential
area, L12 to be transferred
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be seen that the constraints of this optimization problem are very
complex. In order to improve the solution speed and accuracy of the
optimization algorithm, different processing methods should be

adopted for different constraints. The following mainly
introduces the constraint condition processing methods adopted
in this paper.

FIGURE 3
Schematic diagram of vectorwell pattern adjustment scheme. (A) Schemeone. (B) Scheme two. (C) Scheme three. (D) Scheme four. (E) Scheme five.
(F) Scheme six. (G) Scheme seven. (H) Scheme eight.
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Due to many types of constraints in the optimization solution,
the optimization model is difficult to solve and to find a feasible
solution. Therefore, linear constraints need to be preprocessed in the
optimization problem, including the constraints of the starting point
coordinates of the optimized horizontal well infill well position, the
constraints of the wellbore length, and the constraints of the azimuth
range. For the linear constraints, this paper adopts the truncation
method to deal with them, so as to improve the automatic
optimization ability. The specific processing steps of the
truncation method are shown in Formula (7), and the solution
that violates the constraint conditions is “dragged” into the feasible
area, so that the infeasible solution is transformed into a feasible
solution (Nwankwor et al., 2013; Chen and Reynolds, 2018).

xi �
xmin i if xi ≤xmin i

xmax i if xi ≥ xmax i

xi if xmin i ≤xi ≤ xmax i

⎧⎪⎨⎪⎩ (7)

Where, xmaxi is the maximum value of the ith parameter;xmini is
the minimum value of the ith parameter.

On the other hand, if the expression of the variables are
nonlinear, these constraints are called nonlinear constraints,
including constraints for optimizing the start-end coordinates
of horizontal wells and the constraints for minimum well
spacing. The following methods are mainly used to deal with

the problem of nonlinear constraints. Among them, the
adaptive penalty function method (Michalewicz, 1995) does
not need to set the value of penalty factor in advance, but
dynamically sets the penalty function factor according to the
proportion of infeasible solutions during the search process,
and thus more feasible solutions can be generated. The specific
steps are as follows: the penalty factor is adjusted by making full
use of the feedback value provided by the infeasible solutions
during the search process in the penalty process. When there are
more infeasible solutions in the search process, the penalty
factor increases with the number of infeasible solutions;
when there are fewer infeasible solutions in the search
process, the penalty factor then decreases (Ben Hadj-Alouane
and Bean, 1997; Li et al., 2009; Cai, 2015). The objective
function expression of the adaptive penalty function method
is as follows:

eval X( ) � f X( ) − 10αadaPun ∑Ncon

con�1
fcon X( ) (8)

Where, αada is an integer from 0 to 10; Pun is the ratio of
infeasible solutions to all solutions.

In summary, the adaptive penalty method has certain
advantages over other methods in that it can continuously
adjust its own penalty strength in the search process, which
increases the flexibility of handling constraints, therefore
generating more feasible solutions and increasing the chance
of convergence to the optimal solution. Due to the complexity of
the constraints and solution process of horizontal well pattern
optimization, the adaptive penalty method is chosen to handle
the nonlinear constraints in order to accelerate the search speed
and obtain the optimal solution. Therefore, the objective
function of well location optimization of horizontal well
pattern can be expressed as:

eval X( ) � NPV X( ) − 10αadaPun ∑Ncon

con�1
fcon X( ) (9)

TABLE 3 Infill well coordinates of vector well pattern adjustment scheme in
L30up reservoir.

Well name Well location

Heel end coordinates Toe end coordinates

L25 (86,63,1) (89,53,3)

L26 (96,75,1) (100,62,4)

L27 (103,83,2) (105,97,4)

L28 (185,44,3) (197,40,5)

TABLE 4 Comparison of development indicators under different vector well pattern adjustment.

Scheme Development indicators

Cumulative oil
production/104 m3

Cumulative oil increase/
104 m3

Oil increase
range/%

Recovery
efficiency/%

Enhanced oil
recovery/%

Basic well
pattern

922.89 — — 36.46 —

Scheme one 986.58 63.69 6.90 39.64 3.18

Scheme two 983.44 60.55 6.56 39.55 3.09

Scheme three 1,007.22 84.33 9.14 40.51 4.05

Scheme four 998.02 75.13 8.14 40.20 3.74

Scheme five 951.43 28.54 3.09 38.40 1.94

Scheme six 949.39 26.50 2.87 38.34 1.88

Scheme seven 975.32 52.43 5.68 39.33 2.87

Scheme eight 959.65 36.76 3.98 38.77 2.31
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3 Solution of mathematical model

3.1 Characteristic analysis of optimization
problem

After a period of waterflood development, the reservoir physical
properties such as permeability and porosity, and fluid properties
such as oil saturation usually show heterogeneity.Within the feasible
encryption range, reservoir development can vary depending on the
well placement. Therefore, the optimization of horizontal well
placement with vector well pattern is a complex optimization
problem, which is associated with a variety of factors, such as

reservoir heterogeneity, residual oil distribution, production
dynamic parameters, etc.

3.1.1 Multiple optimization variables
According to the established mathematical model of horizontal

well location optimization with vector well pattern encryption, it can
be seen that optimizing a horizontal well involves 5 optimization
variables. The number of wells that need to be optimized varies
depending on the size of the reservoir, from a few wells to hundreds
of wells in a real reservoir, and the number of optimization variables
will increase accordingly. The dimensionality of optimization
problem will increase with the increase of the number of

FIGURE 4
Recovery degree curve under different vector well pattern adjustment schemes.

FIGURE 5
Remaining oil distribution of basic and vector well pattern adjustment scheme three. (A) Basic well pattern. (B) Vector pattern adjustment scheme
three.
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optimization variables, which leads to the difficulty of solving the
problem.

3.1.2 Nonlinearity of optimization problem
In the vector optimization problem of horizontal well pattern,

different parameters such as oil saturation, injection-production
well spacing and displacement pressure gradient under different
infill well locations lead to different reservoir development effects,
thus affecting the economic benefits generated during reservoir
development. The economic benefits and optimization variables
show a complex and highly nonlinear relationship, so it is difficult to
obtain derivative information.

3.1.3 Many constraints of optimization problem
The established horizontal well vector adjustment optimization

model corresponds to different constraints. The constraints of infill
well location optimization include infill range constraint, well length
constraint, azimuth constraint and minimum well distance
constraint. These constraints include both linear and nonlinear
constraints, and the above complex constraints need to be
addressed in the solution to optimize feasible infill well parameters.

3.2 Analysis of solving algorithm
characteristics

In view of the above analysis on the well location optimization
problem of horizontal well vector pattern encryption, different types
of intelligent optimization algorithms need to be optimized first in
order to efficiently and accurately solve the optimization
mathematical model. According to whether the optimization
algorithm needs the gradient information of the objective
function in the process of automatic optimization, it can be
classified into gradient-free optimization algorithm and gradient
optimization algorithm (Bukshtynov et al., 2015). Horizontal well
location optimization problemwith vector well pattern encryption is
characterized by many optimization variables, many constraints and
nonlinear optimization problems. In the process of objective

function calculation, it is often difficult to derive or even non-
derivable. The gradient optimization algorithm needs to use the
derivative information of the objective function about the
optimization variable in the optimization process, so it is not
suitable for solving the optimization problem in this paper. The
gradient-free optimization algorithm does not need the derivative
information of the objective function, but only needs to calculate the
value of the objective function NPV (Kolda et al., 2003; Sarma and
Chen, 2008). Therefore, the gradient-free optimization algorithm is
adopted to solve the problem.

Gradient-free optimization algorithm can be divided into local
optimization algorithm and global optimization algorithm
according to different optimization strategies. The search scope
of the local optimization algorithm is around the selected initial
solution to obtain the optimal solution of the objective function, so
the local optimization has strong ability and high precision.
However, the local search is performed. If it falls into the local
extreme point, the optimization will stop. The optimization effect
depends on the selection of the initial solution and cannot cover the
global scope. Local optimization algorithms include mesh adaptive
direct search algorithm (MADS), generalized scheme search method
(GPS), etc. (Torczon, 1997; Liu, 2018)

Global optimization algorithm is a global optimization in the
feasible domain, which can effectively avoid falling into the problem
of local optimum, and then search the whole solution space, but can
only find the general location of the global optimal solution with
relatively low accuracy. Global optimization algorithms are mainly
divided into the following types: genetic algorithm (GA), particle
swarm optimization algorithm (PSO), differential evolution
algorithm (DE), adaptive covariance matrix evolution algorithm
(CMA-ES), etc. (Iruthayarajan and Baskar, 2010; Onwunalu and
Durlofsky, 2010; Lyons and Nasrabadi, 2013; Yildiz, 2013).

In recent years, with the continuous in-depth study of various
optimization algorithms, a variety of hybrid optimization algorithms
have been derived, that is, by combining different types of
optimization algorithms to complement each other’s advantages,
so that global and local search capabilities can be taken into account.

The above analysis of the characteristics of optimization
algorithms can be integrated to obtain better search performance
by constructing a hybrid optimization algorithm that takes into
account global and local search capabilities. PSO-MADS is a typical
hybrid optimization algorithm that couples PSO with MADS, which
belongs to a global-local stochastic search algorithm (Nasir et al.,
2022). That is, on the basis of PSO for global search optimization,
MADS is embedded for local search optimization.

The PSO-MADS algorithm starts with an initial particle swarm,
including one or more custom initial values, and then applies PSO
for iterations. If the global optimal position improves, the PSO

FIGURE 6
Recovery degree curve before and after infill well location
optimization in L30up reservoir.

TABLE 5 Relevant economic parameters setting.

Economic parameters Numerical value

Water injection cost/(USD·m−3) 24

Water treatment cost/(USD·m−3) 29

Oil price/(USD·m−3) 314.5

Drilling cost per meter/USD 8,700
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TABLE 6 Coordinate comparison before and after infilling in L30up reservoir.

Contrast Well name Heel end coordinates Toe end coordinates

Vector design well location

L25 (86,63,1) (89,53,3)

L26 (96,75,1) (100,62,4)

L27 (103,83,2) (105,97,4)

L28 (185,44,3) (197,40,5)

Optimize infill well location

L25 (85,66,3) (90,54,3)

L26 (94,73,2) (98,60,3)

L27 (105,69,3) (106,85,4)

L28 (174,55,4) (186,46,4)

TABLE 7 Comparison of development indicators before and after infill well location optimization.

Development indicators Vector well pattern adjustment scheme three Infill well location optimization Value added

Recovery efficiency/% 40.51 41.67 1.16

Cumulative oil Production/104 m3 1,007.22 1,027.86 20.64

NPV/million USD 2,329 2,423 94

FIGURE 7
Distribution of remaining oil saturation before and after infill well location optimization. (A) Vector well pattern adjustment scheme three. (B) Infill
well location optimization.

TABLE 8 Coordinate comparison before and after infill well location optimization in L30up reservoir.

Schemes Development indicators

Cumulative oil production/104 m3 Recovery efficiency/% Enhanced oil recovery/%

Basic well pattern 922.89 36.46 —

Vector well pattern adjustment scheme three 1,007.22 40.51 4.05

Infill well location optimization 1,027.86 41.67 5.21
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search step is designated as successful, which means that a new
global optimal position is generated whose objective function f is
superior to the previous global optimal position, and the PSO
continues to run. When the search step is unsuccessful (no
improvement is provided), the MADS polling step is performed,
centered on the best location of the cluster and then polling around
the best solution found by PSO. As long as the polling step is
successful, polling continues, that is, generating better feasible points
about the objective function f. Run the MADS polling step until an
unsuccessful iteration occurs, at which point the mesh size
parameter decreases and the hybrid algorithm returns the PSO
search. The PSO search continues around the best solution
produced by the current MADS, repeating the above steps. This
alternation between PSO and MADS continues until an optimal
solution is found and terminated (Isebor et al., 2014; De Brito and
Durlofsky, 2021).

4 Field application

The L30up reservoir has typical zoning characteristics in terms
of source direction, tectonic orientation, and reserve abundance
distribution. As shown in Figure 2A, the sand body configuration of
the reservoir can be roughly divided into two directions: the west is
mainly a northeast to southwest source direction, while the central
and eastern are mainly a north to south source direction. According
to the structural distribution of the reservoir, as shown in Figure 2B,
the western structure is low in the west and high in the east; the
central part is low in the north, high in the middle and low in the
south; and the eastern part is low in the north and high in the south.
According to the distribution of remaining oil reserves abundance,
as shown in Figure 2C, it can be seen that the remaining oil reserves
abundance is high in the central part, followed by the western part
and poor in the eastern part. Therefore, considering source
direction, structural strike and reservoir abundance distribution,
L30up reservoir is divided into three typical areas, as shown in
Figure 2D, namely, the central well area, the western edge water area
and the eastern thin difference area.

According to the characteristics and existing problems of L30up
reservoir regions, vector well pattern deployment strategies are
proposed, as shown in Table 1.

Based on reservoir engineering method, the reasonable well
pattern density of horizontal wells in each region of L30up
reservoir is calculated. The density of western edge water area is
0.38 wells per square kilometer, and three horizontal wells should be
inserted; The central well area is 1.07 wells per square kilometer
without encryption; The eastern thin difference zone is 0.61 wells per
square kilometer, and one horizontal well should be encrypted.
Combined with the vector well pattern deployment strategy, three
horizontal wells are finally determined to be inserted in the tidal
control overflow bank in the western edge water area, on both sides
of the bay deposition between river channels, along the source
direction. The strike of the horizontal section of the infill wells
are almost perpendicular to the inflow direction of the edge water, so
as to effectively utilize the edge water energy. For the central well
area, L17 or L18 should be transferred into injection well to improve
the injection and recovery correspondence, replenish the regional
formation energy and effectively use the remaining oil in the original

non-mainstream line area. In the eastern thin differential area, one
horizontal well should be encrypted in the vertical source direction
to form an injection and recovery correspondence with the
surrounding wells, while considering that the line between the
encrypted well and L12 is in the direction of the source and the
physical properties between the well are better, the distance between
the wells can be appropriately enlarged when deploying the
encrypted wells. Therefore, the following eight vector well pattern
adjustment schemes are designed comprehensively, as shown in
Table 2. Figure 3 shows the deployment of each solution. Table 3 lists
the coordinates of the encrypted well locations.

Using numerical simulation software, predict the development
indicators of the eight vector well network adjustment schemes
mentioned above. The predicted termination conditions are that the
daily oil production of a single well is less than 10 m3·d−1, or the
comprehensive water content is greater than 98%, and the
maximum development period is set to October 2040.

As shown in Table 4 and Figure 4, the predicted development
indicators and recovery degree change curves for L30up reservoir
under different vector well pattern adjustment schemes are
presented. It can be seen that compared to the basic well pattern
(without adjustment, simulated on the basis of the original well
pattern until October 2040), the development effect of L30up
reservoir has been significantly improved after vector well pattern
adjustment. Among them, the vector well pattern adjustment
scheme can improve oil recovery by 4.05% and increase oil
production by 9.14% compared to the basic well pattern, with
the best development effect. Therefore, the vector well pattern
adjustment scheme three will be used as the basis for the
subsequent optimization of L30up reservoir, which is to add
three production wells in the western edge water area, transfer
L18 well in the central well area to injection, and add one production
well and transfer L12 well in the eastern thin and poor area, as shown
in Figure 3C. The vector well pattern adjustment scheme three
determines the primary position, injection production well type of
the infill horizontal well, and injection production well type
conversion measures of the existing wells in L30up reservoir. In
the future, only the primary position of the infill horizontal well
needs to be optimized to achieve precise design of the infill well
position and further improve the reservoir development effect.

As shown in Figure 5, the remaining oil saturation of the whole
L30up reservoir is compared respectively under the unadjusted basic
well pattern and vector pattern adjustment scheme three. It can be
seen that after infilling production wells L25, L26, and L27 in the
western edge water area, the remaining oil has been significantly
utilized. After the transfer of well L18, the remaining oil in the
central well area is obviously utilized. After the infill production well
L28 and the transfer of well L12 in the eastern thin poor area, the
corresponding relationship between injection and production is
formed, and the remaining oil is obviously used.

Based on the geological and development characteristics of
L30up reservoir and on the basis of the vector well pattern
adjustment scheme three, the infill well location optimization
method of horizontal well vector pattern is used to optimize the
infill well location of L30up reservoir. It can realize the precise
determination of the infill well location. The initial optimization
solution is the vector design well location in the vector well pattern
adjustment scheme three. PSO-MADS is adopted as the solving

Frontiers in Energy Research frontiersin.org10

Deng 10.3389/fenrg.2023.1226328

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1226328


algorithm. The population number is set as 50 and the iteration
number is 200. Perform 10 independent optimizations.

As shown in Table 5, the economic parameters related to L30up
reservoir are set, including water injection cost, water treatment cost,
oil price, and drilling cost per meter. According to the
10 optimization results, the optimization results of maximizing
the economic net present value NPV are taken as the optimal
infill well location of L30up reservoir, as shown in Table 6,
which are the coordinates of infill well location before and after
optimization. From Figure 6 and Table 7, it can be seen that
compared to the vector well pattern adjustment scheme three,
the infill well location optimization can further improve the
matching degree between the infill wells and the reservoir
development characteristics, increase the recovery rate by 1.16
percentage points, and significantly improve the economic benefits.

Figure 7 shows the distribution of remaining oil saturation
before and after the optimization of infill well location in L30up
reservoir by October 2040. As can be seen from the figure, the
optimization of horizontal vector well pattern infill well
location can further improve the development effect of
L30up reservoir. It can also realize the optimal matching
between well pattern and remaining oil distribution, sand
body characteristics, edge water, etc., and effectively utilize
the remaining oil in the block.

It can be seen from Table 8 that compared with the unadjusted
basic well pattern, further optimizing the infill well location based on
the vector well pattern adjustment scheme three can increase the
ultimate oil recovery rate by 5.21% and effectively improve the
reservoir development effect.

5 Conclusion

(1) Taking the maximization of economic net present value NPV
as the objective function and well pattern characteristic
parameter matrix (well location, azimuth angle, horizontal
section length) as optimization variables, the vector well
pattern optimization model of horizontal well was
established, and the PSO-MADS algorithm is used to solve
the optimized mathematical model.

(2) According to the vector characteristics of provenance direction,
structural trend, channel distribution, edge water displacement
direction, etc., combined with regional vector well pattern
densification and injection-production well type conversion, a
vector well pattern deployment strategy for L30up reservoir was
proposed. On this basis, eight vector well pattern adjustment
schemes were constructed. Through the comparison of the
development effect predictions of different schemes, the
vector well pattern adjustment scheme 3 was selected as the
best vector well pattern deployment scheme for L30up reservoir.
Compared with the basic well pattern, the optimum can increase
the recovery rate by 4.05%.

(3) Based on the vector well pattern adjustment scheme 3, the
precise position of infill wells in the scheme is optimized by
using the established optimization method. The results show
that, compared with the vector well pattern adjustment scheme
3, the precise optimization of the infill well position can further
increase the recovery rate by 1.16%, and the economic net
present value can increase by 94 million US dollars. This
optimization method further improves the matching degree
between the adjusted horizontal well pattern and the
geological vector parameter distribution, so as to achieve a
better reservoir development effect.
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