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Introduction: The crucial transition toward carbon neutrality is developing and
adopting low-carbon buildings and communities to achieve the recycling and
reuse of resources and to minimize the damage to the natural environment by
humans. Energy saving for residential buildings is essential for enhancing cost-
effectiveness and redundant energy drain. Considering the increasing attention to
energy conservation and the accessibility of sustainable energy sources, common
energy-saving solutions expose inherent inadequacies limiting their effectiveness.
The ineffectual use of traditional energy sources can result in waste, greater
operating costs, and excessive energy consumption in residential structures.

Methods: Hence, a Multi-Objective Energy-Saving Optimization Method
(MOESOM) has been proposed to optimize energy use and conservation in
residential buildings in southern Anhui, China. The proposed approach
examines lower operational costs and carbon emissions by using green energy
sources and encouraging effective energy consumption habits. The suggested
Multi-Objective Energy-Saving Optimization Method technique offers insight into
energy saving by utilizing green energy sources and confining energy uses. The
multi-objective turns around energy saving and resource usage for decreasing
operational costs and averting carbon emissions. Thus, the suggested technique is
verified utilizing the Osprey Optimization Algorithm (OOA); the detailed goal is
recognized utilizing the multiple objectives described. Based on the progress of
low-carbon emissions and energy saving, the number of iterations for augmenting
Osprey agents is identified. This agent-based optimization is executed if the novel
augmented agent fulfills any of the trailing progression. The emission control level
and energy-saving factor are assessed considering the variance between new and
old agent progression. This encourages the various objectives to be fulfilled under
similar criteria balancing their outcomes.

Results and discussion: The output from different Osprey agents is induced for
consecutive objectives and optimization factors. Then, the system ensures 8.97%
energy savings and 8.04% high objectives compared to the other methods.
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1 Introduction

Residential structures are now more needed than ever for energy
efficiency and conservation measures. The residential building’s
shiftable load utilization at peak hours was managed using the
load-shifting technique as a multi-objective optimization
challenge (Ebrahimi and Abedini, 2022) that reduces peak load,
energy losses, and expenses. The potential for energy savings and the
viability of implementing active energy efficiency mechanisms
(Mujeebu and Bano, 2022) on a detached residence in a warm,
humid region were shown with the reduction in the energy
performance index of conventional standards. Important energy-
influencing elements in a conventional design were determined by
green technologies (renovation) (Teng et al., 2021) and also to
improve the energy-saving capabilities of residential buildings.
One passive improvement technique for energy conservation
used by (Ebrahimi-Moghadam et al., 2020) was light shelves
that improved the indoor temperature of residential building
occupants.

Low-carbon emission is an important feature used for energy
saving in residential buildings (Liu et al., 2022). Low-carbon
emissions have occurred using resources such as wind and solar
power. Solar power is widely used in residential buildings, which
emit low carbon into the environment (Luo et al., 2022).

Life cycle assessment was a useful method for assessing the impact
of various factors and ensuring that carbon emission targets (Yang et al.,
2021) are achieved from each of the five phases comprising
manufacturing, distribution, building, operation, and demolishing
stages. Low-carbon emissions increase the efficiency and viability of
a wider range of energy-saving strategies. Energy-saving methods that
expand the useful range of buildings also lower the greenhouse gas
emissions (GHG) ratio. High-carbon emissions are mostly caused by
population density, urbanization (Anser et al., 2020), and per capita
Gross Domestic Product (GDP). The bottom-up method in (Zhang
et al., 2022) permits municipalities to evaluate the environmental
impact of the existing stock of urban buildings and urban planning
initiatives, supporting the sustainable growth of cities.

An optimization algorithm is used in residential buildings to
control the carbon emission and energy consumption level (Iqbal
et al., 2020). The optimization algorithm identifies the exact tasks
and produces relevant renewable resources to perform the task
(Nikkhah et al., 2021). A controller technique is used to detect the
control capability of energy management systems. A stochastic
optimization model (Antoniadou-Plytaria et al., 2022) based on
scenarios that can be used to decide the amount of power and
flexibility should be distributed throughout a residential microgrid
equipped with stationary battery systems and solar panels. The
optimization model also minimizes the energy consumption ratio in
residential buildings. Based on a second-order temperature network
approach (Wang et al., 2022), an optimal precooling approach is
suggested that accounts for the thermal state of the residence,
authorized capacity for cooling, the environment, and energy rate
structure. The optimization model increases the building’s energy
efficiency (EE) level, which enhances the management systems’
significance range (Sheng et al., 2021). Multi-objective optimization
is used for carbon emission control in residential buildings. The main
aim of the optimization model is to provide beneficial resources to
perform tasks in buildings and to calculate the decline in annual

particular energy demand (Salata et al., 2020), the cost of building
and installing new infrastructure, the cost of running energy annually,
and the decline in greenhouse gas emissions. A cutting-edge algorithm
for energy optimization is used for an existing commercial structure.
The goal of this optimization is to lower energy use and improve the
energy efficiency of the structure (Pirmohamadi et al., 2021). The
optimization models minimize the energy consumption level in the
computation process, which is used as an energy-saving technique. The
multi-objective optimization model improves the feasibility range of
residential buildings (Shen et al., 2022; Xue et al., 2022).

Contributions

1) Designing and discussing a multi-objective optimization method
for energy saving in residential buildings and controlling carbon
emissions in view of energy distribution.

2) Incorporating modifications in the conventional Osprey
optimization for independent progression and difference
estimation using agent augmentation.

3) Exploiting a dedicated data source for analyzing the eventual
analysis of the modified optimization towards its objective
satisfaction rate.

4) Accomplishing a comparative analysis for proving the proposed
method’s efficiency compared to the existing methods.

2 Experiment

2.1 Related work

Huang et al. (Huang et al., 2020) developed a hybrid optimization
approach for residential energy management systems. The main aim of
the approach is to solve the non-convex mixed-integer non-linear
problems (H-MINLP) in management systems. MINLP consumes
more energy ratio, which causes severe damage to the management
systems. The developed approach increases the feasibility and
functionality range of the systems.

Habib et al. (Hab et al., 2020) proposed a combined heat and
power (CHP) unit for optimization in residential buildings. An
artificial bee colony (ABC) algorithm is used here to identify the heat
loads that are presented in the buildings. A cost–benefit analysis
technique is also used in the system, which analyzes the beneficial
level of energy consumption process. The CHP unit enhances the
efficiency level of residential buildings.

Foroozandeh et al. (Foroozandeh et al., 2022) designed a goal
programming (GP) approach for the energy management process in
smart buildings. The designed GP approach predicts the exact necessity
level of electricity, which reduces the complexity of the energy scheduling
process. TheGP approach also predicts the energy computational cost that
produces optimal information for further processes. The designed GP
approach minimizes the energy consumption level in smart buildings.

Nizami et al. (Nizami et al., 2019) introduced a multi-agent-
based Transactive Energy Management Framework (TEMF) for
residential buildings. The actual goal of the framework is to
identify the optimization and grid overloading ratio of the
buildings. The multi-agent architecture provides necessary
services to the users, reducing the inconvenience level in
performing tasks. The introduced framework increases the
flexibility and effectiveness level of residential buildings.
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Rezaei and Dagdougui (Rezaei and Dagdougui, 2020) proposed an
efficient real-time optimization approach for residential buildings. The
proposed approach uses a heating, ventilation, and air conditioning
(HVAC) system that produces optimal control measures for the users.
The proposed approach increases the accuracy in decision-making,
which reduces the energy consumption level in computation. The
proposed optimization approach improves the efficiency and
performance range in multitasking.

Iturriaga et al. (Iturriaga et al.) developed a mixer-integer linear
programming (MILP) optimization method for residential buildings in
urban areas. The main aim of the method is to analyze the energy
consumption ratio in buildings.MILP calculates the zero-energy district
(ZED), which is presented in urban areas. The ZED produces relevant
information for energy-saving measures. The developedMINPmethod
enhances the significance and feasibility range of residential buildings.

Haider et al. (Haider et al., 2022) designed a new approach for
multi-objective cost-peak optimization in smart buildings. The designed
approach is mostly used for a multi-criteria decision-making process. It
is also used to identify smart buildings’ peak energy consumption levels.
The exact consumption ratio and task capacity are detected using an
optimization scheme. The designed approach improves the overall
performance and successful ratio in smart buildings. Table 1
summarizes the references from (Zhu et al., 2021) to (Du et al., 2022).

2.2 Problem definition

Energy-saving optimization methods (Hab et al., 2020; Rezaei and
Dagdougui, 2020; Rezaei and Dagdougui, 2020; Haider et al., 2022) are
designed to improve the state of analysis and precise decisions for
multiple constraints. The constraints are identified using the existing
drawbacks identified from the previous outcomes. In the constraint
mitigation process, multi-objective optimization is impeded in any

spiking complex process. Therefore, constraint modification and
optimization for differential problems are to be jointly addressed to
prevent chained downfalls. This feature is best suited for energy saving
and carbon control across different objectives for constraint mitigation.
This feature is adapted in the proposed method for balancing energy
saving and carbon emission control.

2.3 Multi-objective energy saving
optimization method for residential
buildings

To enhance the remuneration of residential buildings and to
eliminate the gratuitous energy impoverishment, energy saving is
essential for the process. This energy saving can be enhanced by
using the lower amount of carbon emissions power, which helps with
the future optimization procedures in determining the objectives. The
ideal energy-preserving methods are executed from the low-carbon-
emitting origins and renewable energy origins. Contemplating these
characteristics in this article, a Multi-Objective Energy-Saving
Optimization Method (MOESOM) is introduced. This optimization
method helps in the usage of less energy by fulfilling the requirements
of the residential buildings with prompt needs. In this process, the
Osprey Optimization algorithm is used for the progression
identification operation. This is the meta-heuristic algorithm, which
is widely used in the solvation of the optimization process. Here, the
Osprey agents are helping in the optimization process, which aids in
the adaption of the circumstances by producing effective outcomes in
all kinds of problems and situations in residential buildings’ energy-
saving processes. From the residential buildings, energy savings and
low-carbon emissions are extracted for the optimization process. This
method executes the perceptions into the energy-saving operation by
using green energy resources and then circumscribing energy

TABLE 1 Summary of references from (Zhu et al., 2021) to (Du et al., 2022).

Author Title Feature Advantage Results

Zhu et al. (Zhu et al.,
2021)

A rough interval-Copula stochastic
planning (RI-CSP) model for multi-
energy compulsory system (MECS)

The developed model is used for
residential buildings, which identifies
the resource for the scheduling process

RI-CSPminimizes the cost and time
while performing a task

Decreases the energy
consumption level in
buildings

Iqbal and Kim (Iqbal
and Kim, 2022)

An Internet of Things (IoT) task
management-based optimization
method for energy consumption in
residential buildings

The main aim is to predict the exact
optimization problems, which are
presented in management systems

Solve issues that occurred during
the management process

Provide proper task
management to the
users

Bagheri-Esfeh et al.
(Bagheri-Esfeh et al.,
2020)

A new multi-objective optimization
model for residential buildings

An artificial neural network (ANN)
algorithm is used in the model, which
identifies the important factors for
further processes

It provides effective cooling
schemes and policies to the users

Improves the
performance range of
buildings

Tian et al. (Tian et al.,
2020)

An optimization evaluation method for
nearly zero-energy buildings

The proposed method evaluates the
exact air conditioning range of the
buildings

Solar energy features and patterns
are used in the model, producing
optimal resources for the buildings

Reduces the energy
consumption in the
computation process

Li and Rodriguez (Li
and Rodriguez, 2021)

Optimization method using sustainable
resources (SER) for residential
buildings

The actual heat ratio and heat pumps,
which are located in the buildings, are
identified

Minimizes the latency in the
optimization process

Improves the flexibility
and sustainability ratio
of buildings

Tang et al. (Tang et al.,
2020)

Energy-saving action for residential
buildings

The actual goal is to save energy in the
optimization process

Increases the accuracy in multi-
objective criteria

Maximizes the efficiency
level of systems

Du et al. (Du et al.,
2022)

An energy efficiency intelligent
regulation strategy using model
predictive control (MPC)

MPC identifies the exact availability of
the resources

Provides efficient services to the
customers

Reduces energy
consumption in
residential buildings
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implementations. Now, the optimization process takes place with the
help of Osprey agents. The vital objective of the optimization algorithm
is determined by using the multiple objectives defined. The processes
included in the proposed method are illustrated in Figure 1.

The progression and the difference are determined by using the
Osprey agents in the optimization procedure, and then the
objectives are identified. Based on the progression detection
outcome of energy saving identified by the Osprey agents and
low-carbon emission, the total number of repetitions for
enlarging the Osprey agents is resolved. This progression checks
whether there is consistency during the energy-saving procedure
with renewable energy resources. Then, it verifies, depending on the
progression, whether the objectives are satisfying the energy carbon
and energy-saving operations. The difference is determined if there
is a lack of progress during the energy-saving process, and then,
based on the progression results, the agents are augmented for
prompt progression for the determination of the objectives. The
number of decreased progression results in the same number of
differences during the optimization process. Based on the
progression, the objectives are determined, and based on the
different agents, the augmentation process takes place. It also
checks whether the newly added agents help in the progression
process for the estimation of the objectives. This Osprey agent-based
optimization is accomplished if any of the lagging progression is
satisfied by the newly added agent. Contemplating the difference
between new and old agent progression, the carbon emission control

level and energy-saving factors are calculated. This entire process
helps in determining the different objectives that satisfy the given
criteria with the prompt progression level and energy-saving factors.

2.4 Data source introduction

The data from (Kaggle, 2023) are explored in this article for
validating the energy-saving and carbon emission control factors.
The data used for validation are represented in Figure 2.

The power is utilized, as is the energy drain from the outcome
and saving. In this consideration, the unnecessary drain is
optimized for energy saving and efficient utilization. The
carbon emission is geared up from the final consumed for
power generation that includes wastage and DF, as presented
in the above data source. The OOA is allocated using the B ID
for augmenting progression and reducing the differences. Such
reductions are used for objective satisfaction with low-carbon
emission recommendations (Figure 2).

2.5 Energy-saving optimization

The energy-saving resources are extracted from the residential
buildings for the optimization process. Renewable resources are used
for the elimination of unwanted energy loss and high-carbon

FIGURE 1
Processes in the proposed method.

FIGURE 2
Data representation from the Source.
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emissions. It is necessary to save energy to protect the surroundings
from the highly polluted carbon during the construction of
residential buildings. Energy is also saved by using low-carbon
powers, which help to keep the environment wholesome during
residential building development. The process of energy saving from
residential buildings is explained by Eq. 1:
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(1)

Where A is the operation of the energy saving in the
residential buildings, b is the aid of the renewable sources, i is
the outcome of the energy-saving procedure, and j is the
enhancement of the lucrativeness of the residential buildings.
Therefore, this energy-saving process mainly helps in eliminating
unnecessary energy loss in residential buildings. This energy
saving also helps in the enhancement of the worth of the
building by enhancing energy preservation. The energy saving
from the residential buildings is extracted along with the low-
carbon emission powers, which are utilized in energy
preservation operations. Based on this, the optimization
process takes place by determining the objectives and the
agent augmentation procedures. The process of avoiding the
energy drain during the energy-saving process for the future
optimization process is explained by Eq. 2:
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(2)

Where Z is the elimination of the unnecessary energy drains in
the procedures, and X is the development of the building by energy
saving. Now, the low-carbon emissions are contemplated from the
residential buildings for the purpose of helping the Osprey agents in
the optimization algorithm. Based on Eq. 2, the energy drain
estimation and saving development from the explored data are
presented in Figure 3.

The observed data are split based on b′s outcome and j based
on the procedure pursued. The fluctuations and unnecessary
energy drain/wastage are considered in this analysis for
rectifying the defects. The peaks in power utilization are
observed due to Zn <Zi∀Xn, such that X is required. The low-
carbon emissions are determined when renewable resources are
used in the energy-saving process (Figure 3). Those are the
sources that emit lesser power to the environment without
harming the surroundings. The process of executing the low-
carbon emissions from the energy-saving process is explained by
Eq. 3:
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(3)

Along with the energy saving, low-carbon emissions are derived
from the residential buildings to identify the progression and the
difference by using the Osprey agents in the optimization algorithm.
Where C is the low-carbon emission sources, d is the usage of low-
carbon emission sources in the energy-saving procedures. The useful
energy-saving approaches are enhanced by the low-carbon
emissions and the energy resources that are used in the energy-
saving process. The multi-objective gyrates closely to the energy-
saving and sources implementation for decreasing the costs of the
utilization and countering the high-carbon emissions. The process
of enhancing the energy-saving approach from the low-carbon
emissions is explained by Eq. 4:

AC2
i,j � aij

dbj + U ⊙ bj − dbj( )
t

i � 1, 2, . . . , n

j � 1, 2 . . . , n, t � 1, 2, .., T

AC2
i,j �

aC1
i,j , bj ≤ aC1

i,j ≤ cbj ;

bj, aC1
i,j <Ci,j;

Zbj, aC1
i,j >Zbj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Tij �

T1,1 / T1,j / T1,n

..

.
1 ..

.
1 ..

.

Ti,1

..

.

Tn,1

/

1

/

Ti,j

..

.

Tn,j

/

1

/

Ti,n

..

.

Tn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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Where U is the enhancements of the energy-saving methods,
and T is the implementation of the resources. Based on Eqs. 3 and
(4), the average C and its associated d are illustrated in Figure 4.

The C and d for the varying energy demands are explored in the
above Figure 4. Based on the available ACu

i,j and Tij, the enhancements
are pursued, for which theZ is pursued. The need for agent deployment
relies on the C and d, pursued over different intervals and building
demands. The explored outcomes in Figure 3 and Figure 4 are discussed
after the optimization process discussed below.

2.6 Agent-based optimization

Now, the Osprey agents are helpful in the optimization process
where the progression and the difference are determined. These
Osprey agents are also used in the estimation of the wholesome low-
carbon emission and the energy-saving process for the optimization
algorithm. They help in the identification of the prompt objectives
for the process of energy preservation. Due to the estimation of the
energy saving and the low-carbon emission process, the
optimization process takes place effectively, which aids in the

objective determination operation. The outcome of the
optimization in calculating the progression helps in augmenting
the new agents for the satisfaction of the given conventionalities. The
multiple objectives that are found are also helpful in making the
optimization procedure efficacious for energy saving in the
residential building operation. The process of Osprey agents in
the optimization process is explained by Eq. 5:

aC1
i,j ← aij + uij ⊙ Zij − Iij.aij( )

PC1 � An n ∈ 1, 2, . . . , N{ }ΔZn <Zi}| ∪ Xn{ }{

aC1
i,j ←

aC2
i,j , bj ≤ aC2

i,j ≤ ubj ;

bj, aC1
i,j < bj;

Ubj, aC2
i,j >Ubj

⎧⎪⎪⎨⎪⎪⎩
Ai ← AC2

i,j , ZC2
1 <Zi ;

Ai else
{

aC1
i,j ←

aC1
i,j , bj ≤ aC1

i,j ≤ ubj ;

bj, aC1
i,j < bj;

Ubj, aC1
i,j >Ubj

⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Where P is the operation of the Osprey agents in the
optimization algorithm procedures. These Osprey agents help in

FIGURE 3
Energy drain and saving development.

FIGURE 4
Average C and d.
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the determination of the efficiency of the energy-saving method
in residential buildings. The outcome of this optimization
operation helps in the detection of the lagging of the
progression. The usage of the Osprey agents in the
optimization process is explained by Eq. 6:

M �
M1

M2

..

.

Mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
m1,1 m1,2 / m1,n

m2,1 m2,2 / m2,n

..

.

mn,1

/
mn,2

/
/

..

.

mn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ai,j � bi,j + xn° ubj − bj( ), 1≤ i≤ n; 1≤ j≤ n
a1 � AC

i � 1, 2, . . . , n ;m � 1, 2, . . . , n − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

Where M is the optimization algorithm procedure. Now,
depending on the energy saving and the low-carbon emission,
the progression and difference in the progression are estimated.

The progression must be either in the energy-saving or low-
carbon emission process. Here, it checks whether the
progression is present in the energy-saving process or the
low-carbon emission resource identification process. The
Osprey optimization flow for the progression estimation is
presented in Figure 5.

The optimization process allocates P for Z-generating intervals,
such that the energy-saving condition X � j is analyzed before M.
Therefore, if K is observed between successive Z intervals, then
termination occurs. Contrarily, if the condition fails, then new P is
augmented until X � j is satisfied. This condition is updated for
αi,j � bi,j + x°n provided J≤ n is obtained (Figure 5). Along with the
progression, the difference in the progression is also determined for
the identification of the objectives for the energy-saving process.
The Osprey agents help in the consistency of the progression during
the energy-saving process without any lags and time issues. Based
on the outcome of the energy saving and the low-carbon emissions,
the progression and then the difference are estimated
simultaneously. The process of identifying the progression is
explained by Eq. 7:

FIGURE 5
Osprey optimization flow for progression estimation.

FIGURE 6
Z and X after φ(A).
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MC
i � Mi + u bj − IAi( ), C ui( )<C Ai( )

MC
i � Mi + u bj − Ai( ), C ui( )≥C Ai( )

⎧⎨⎩ , I � 0, 1[ ],M � 0, 1, 2{ }
Ki � MC

i , U AC
i( )≤C Ai( ),

Ki � Mi, U AC
i( )≤C Ai( ){

MC
i � Ai + d 2U − 1( )Ai

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7)

Where K is the progression in the process. The progression
also helps in the determination of the difference between them,
and it takes further steps to enhance the progression. The
efficaciousness of the Osprey agents is determined in the
progression estimation process, and thus, it is explained by
Eq. 8:

φ A( ) � a0 + a1M + a2M
2

φ Ai( ) � a0 + a1Mi + a2M2
i

φ Ai+1( ) � a0 + a1Mi+1 + a2M2
i+1

φ Ai+2( ) � a0 + a1Mi+2 + a2M2
i+2

⎧⎪⎨⎪⎩
a0 � φ Ai( )
a1 � φ Ai+1( )
a2 � φ Ai+2( )

⎧⎪⎨⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

Where φ is represented a the outcome of the progression in
the energy-saving process of the residential buildings. Now, the
difference in the progression is determined based on the results
of the energy-saving operation and the low-carbon emission
resources. Here, the difference occurs when there is a reduction
of the progression in the process. Figure 6 presents the Z and X
following the operation time after the conditional OOA
process.

The conditional validation pursued by the OOA augments
agents for reducing Z wastage. Hence, it is eliminated using
varying time intervals for improving the saving feasibility. In
this process, the optimization condition for αM and ψ(Ai) are
concurrent such that any of the operation times include
conditional satisfaction. Therefore, X that is improved is
pursued for the rest of the intervals such that Z is improved
(Figure 6). The total amount of difference indicates the total
reduction of the progression in the process. The new Osprey
agents are added in the difference solvation process for the
reduction of the lags in the progression. The process of
determining the difference in the progression is explained by
Eqs. 9, 10:

L* � 1
2
×

A2
i+1 − A2

i+2( )C Ai( ) + A2
i+1 − A2

i( ) ∪ Ai+1( ) + A2
i − A2

i+1( )C Ai+2( )
Ai+1 − Ai+2( )C Ai( ) + Ai+2 − Ai( )C Ai+1( ) + Ai − Ai+1( )C Ai+2( )

Li �

Li1 Li2 / Lin

Lin1 Lin2 / Linn

..

.

Lij1

..

.

Lij2

1

/

..

.

Lijn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Li � L*, U A*( )<U Li( )
Li � Li, U A*( )≥U Li( )

⎧⎨⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

L̃i � LB + UB − Ai

Li � ∑
n�1

LB + UB

2
, LB + UB −Mi[ ]

Li � ∑
n�1

LB + UB

2
, Ai[ ]

�A � A1, A2, A3, A4[ ] � Ta, Tb, Tc, Td[ ]

Z �A( ) � 1
2
− a1a2
a3a4

( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Where L is the difference in the progression. Now, the objectives
are determined from the progression. The Osprey optimization
process for difference identification is illustrated in Figure 7.

Different from the P∀X, the L detection and improvement are
performed using the remaining P. That is, the U(A)<U(L) failure
andU(A)<C(A) failures increase the chance of increasing P. If P is
increased, then the chance for new M is high, provided that M is
optimal. Therefore, X is achievable only if Z is satisfied. Therefore,
the OOA as presented in Figure 5 pursues the above operation until
L � 0 is obtained (Figure 7).

2.7 Objective verification

The agent checks whether the objectives satisfy the energy
carbon and the energy-saving procedures based on the
progression. These objectives also help in the reduction of the
differences that occurred in the progression by enhancing energy
saving in residential buildings. The process of obtaining the
objectives based on the progression is explained by Eqs. 11, 12:

FIGURE 7
Optimization process flow illustration for difference identification.
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Vi t + 1( ) � Ci t( ) ± Li t( )
2

∑
n�1

1
φ

( ), Ci t( ) � 1, 2, . . . , n, i � 1, 2, . . . , n

Ci t( ) � φCbi t( ) + 1 − φ( )Cm t( )

φ � C1U1

C1U1 + C2U2

C1, C2 � 0, 1{ } ∈ An

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

Fi n( ) � Z t( ) − aCi t( )[ ] + Ci t( ) + aCi t( )[ ] − Ci t( ) − aCi t( )[ ]{ } x n( )
n � 1, 2, . . . n( )

Fi n( ) � Z t( ) − U ai x( )( ) + Z t( ) − C mi x( )( )
φ Ai( ) + φ Mij( ) − φ Mi( ) + φ Aij( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(12)

Where V is the objectives obtained based on the progression,
and F is the verification operation of whether it satisfies the
procedure. Now, if the difference occurs in the process, then the
agent augmentation process takes place. Here, the new agents are
added for the reduction of the progression difference. Moreover,
it checks whether the new agents are helpful in the progression of
the energy-saving process shown in Eq. 13:

Li t + 1( ) � 2γ t( ) m − Ai t( )| |
m � ∑

n�1
CUi

n

γ t( ) � γij +
T − t( ) γi − γj( )

T

Ai t + 1( ) � Ci t( ) + γ t( ) m − Ai t( )| |∑
n�1

1
n

A n + 1( ) � φm n( ) 1 − A n( )[ ]

x n( ) ∈(0, 10π � x n( ) � m n( ))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

By contemplating the difference between the new agent and old
agents’ progression, the emission control level and energy-saving
characteristics are evaluated. The process of agent augmentation is
explained by the equation given above, where π is the agent
augmentation procedure. This optimization algorithm helps in
the enhancement of the energy-saving technique by eliminating
unwanted energy loss. This approach also reduces the difference in
the progression and then adds the new agents for the prompt
energy-saving process with the low-carbon emission powers in

FIGURE 8
Condition satisfaction.

FIGURE 9
Satisfaction (%) for operation time analysis.
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the residential buildings. The objective verification is validated using
Figures 8–10 for the two conditions: energy-saving and carbon
control. In the three figures, the failure, successive achievement,
and ratio of improvement are analyzed, respectively.

The conjoined points in the above representation are identified
by satisfyingVi(t + 1) for i � 1, 2, ..n. In this satisfaction process, the
Ci(t) is analyzed based on C1, C2 ∈ 0, 1{ }. Therefore, the points
below the conjoint (θ) positions satisfy the efficiency against energy-
saving and carbon emission control (Figure 8). Based on this
satisfaction (%), the successive achievements for varying
operation intervals are analyzed in Figure 9.

The expected (from the data source) and the optimized
successive intervals are presented in Figure 9. The condition X �
j and U(A)<U(L) (or) U(A)<C(A) need not be satisfied at the
same interval. Therefore, the operation time is induced with either
U(A) and Z improvements. This is validated for providing better
improvements across different operating intervals. Finally, the
multi-objective improvement between the carbon control and
energy-saving operation interval is presented in Figure 10.

The improvement in achieving Figure 9 and Figure 8 validations
across 24-h time (operation) and weekdays is presented in Figure 10.
The cumulative value of the buildings considered for 7 days of a
week is analyzed. In the varying operation time, the successive
intervals are by assigning different agents for K such that M is
stabilized. The above representation is consolidated based on the
utilization and peak demand for different days. This relies on the
consumption based on people density, device utilization, and surges
observed (Figure 10).

3 Results and discussion

In this section, a few considered metrics of energy saving,
objective attainment, progression estimation, control level, and
optimization complexity are used for comparative analysis. The
energy demand (100-1400 kWh) and the number of residential
buildings (20–260) varied in this optimization verification
process. The methods TEMF (Nizami et al., 2019), GFROA

FIGURE 10
Improvement (%) for operation time analysis.

FIGURE 11
Energy-saving analysis.
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(Li and Rodriguez, 2021), and H-MINLP (Huang et al., 2020) from
related works are used in this comparison. Experimental research
has been performed when the system processes new data on varying
energy demand levels with varying residential structures, as
mentioned above. The research demonstrated the effectiveness of
the data and produced useful findings.

Energy saving is efficacious in this method due to the use of an
Osprey optimization algorithm with the Osprey agents. The energy
saving and the low-carbon emission powers are extracted from the
residential buildings for further optimization procedure. Renewable
resources help save energy by reducing the unnecessary energy
drain, and this also enhances the cost-effectiveness of the process.
The Osprey agents in the optimization process help in the estimation
of the energy saving and low-carbon emission in the residential
building. Based on the energy-saving and low-carbon emission
procedures, the progression and the difference are determined for
the determination of the objectives and the agent augmentation
process. Energy saving plays a vital role in estimating the

progression and the difference in it. Furthermore, it aids in
reducing the progression lags by adding new agents by enhancing
the energy-saving process. The Osprey agents then determine the
efficaciousness of the entire procedure after inducing the effective
agents on behalf of the lagged progression (Figure 11).

The attainment of the objectives is efficacious from the results of
the progression in the optimization process. Depending on the
energy saving and the low-carbon emissions, the progression and
the difference are determined for the estimation of the objectives.
This objective checks whether it satisfies the energy carbon emission
and energy-saving process, which is based on the determined
progression. The difference in the progression is also identified
along with the progression. To reduce the difference, new Osprey
agents are added, and then the efficiency of the progression and
energy-saving method is enhanced. It checks whether the newly
added agents help in the progression, and then it is added whenever
the progression is reduced during the energy-saving operation. The
objectives help in the prompt saving of energy in residential

FIGURE 12
Objective attainment analysis.

FIGURE 13
Progression estimation analysis.
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buildings and enhance the low-carbon emission powers by
eliminating the unnecessary energy drain during the procedure.
By this, the objectives based on the progression obtained from the
energy saving and the low-carbon emission are efficacious
(Figure 12).

The estimation of the progression is better in this process by
using the Osprey optimization algorithm. Depending on the energy
saving and the low-carbon emission, the progression and the
difference in the progression are estimated. The progression must
be either in the energy-saving or low-carbon emission process. Here,
it checks whether the progression is present in the energy-saving
process or the low-carbon emission resource identification process.
Along with the progression, the difference in the progression is also
determined for the identification of the objectives for the energy-
saving process. The difference in the progression is also enhanced by
using the agent augmentation process. The progression lags are
solved by adding the prompt newOsprey agents for the optimization
process. This optimization process occurs with the help of the

determined multiple objectives. The energy-saving and the low-
carbon emission power detection processes help in the assumption
of the progression level and to reduce the complexity of the multiple
objective optimization operation (Figure 13).

The control level is effective in this method by contemplating the
progression and difference of it in the optimization procedure. The
energy saving and low carbon are estimated from the residential
buildings for the further optimization process. Based on the
progression detection outcome of energy saving identified by the
Osprey agents and low-carbon emission, the total number of
repetitions for enlarging the Osprey agents is resolved. This
progression checks whether there is consistency during the energy-
saving procedure with renewable energy resources. The objectives are
satisfying the energy carbon emission powers, which depends on the
progression obtained. The level of the progression lag control is effective
by using themultiple objectives in theOsprey optimization progress. The
differences are reduced by adding the new agents of the Osprey, which
enhances the energy-saving process by eliminating the unwanted energy

FIGURE 14
Control level analysis.

FIGURE 15
Optimization complexity.
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drains. By this, the control level is made efficacious by considering the
results of progression and the difference in determination operations
(Figure 14).

The complexity of the optimization is lesser in this process with the
help ofOsprey agents in the objective-based optimization algorithm. The
outcomes of the energy-saving and then the low-carbon emission
process are contemplated in the optimization process, which is
determined through the Osprey agents. The multi-objective gyrates
closely to the energy-saving and sources implementation for
decreasing the costs of the utilization and countering the high-carbon
emissions. These Osprey agents help in the identification of the prompt
objectives for the process of energy preservation. Due to the estimation of
the energy-saving and the low-carbon emission process, the optimization
process takes place effectively, which aids in the objective determination
operation. The outcome of the optimization in calculating the
progression helps in augmenting the new agents for the satisfaction
of the given conventionalities. Depending on the effective results of the
progression and the agent augmentation process, the complexity of the
optimization is lessened, and the energy-saving process is enhanced
(Figure 15).

4 Conclusion

• The MOESOM is a solution to the challenges linked with the
ineffective use of traditional energy sources, energy waste, greater
operating costs, and extreme energy use in residential buildings.

• To aid environmental sustainability goals and economic
viability, MOESOM utilizes green energy sources and
endorses energy-efficient behaviors.

• The method uses a multi-objective framework concentrating
on energy saving and efficient resource utilization, pointing to
lower operational costs and decreased carbon emissions using
optimization methods.

• By determining and modifying targets following
predetermined criteria with the prompt progression level
and energy-saving factors, the Osprey Optimization
Algorithm (OOA) proves the effectiveness of MOESOM.

• To complete energy-saving and emission-controlling goals,
MOESOM utilizes agent augmentation that is encouraged by
progress thresholds and guarantees continual enhancement.

• By inspecting differences in agent progression, MOESOM
computes emissions reduction levels and energy efficiency
factors, resulting in an integrated method for attaining objectives.

• Regarding effective energy management, financial feasibility,
and smaller environmental influences in residential structures,
MOESOM appears to be a practical solution.

• Compared to competing methods, MOESOM’s real-world
results demonstrate a significant 8.97% enhancement in
energy consumption and an 8.04% rise in substantial
objective accomplishment.

• In future studies, iterative multi-objective optimization should
be improved with flexible recurring conditions, especially for
changing energy requirements and handling scenarios,
including peak energy demands and distribution difficulties.
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Nomenclature

MOESOM Multi-Objective Energy-Saving Optimization Method

OOA Osprey Optimization Algorithm

GHG GDP Greenhouse Gas Emission Gross Domestic Product

EE Energy Efficiency

H-MINLP Hybrid Mixed Integer Non-Linear Problems

CHP ABC HVAC MILP ZED Combined Heat and Power Artificial Bee Colony Heating, Ventilation, and Air Conditioning Mixed Integer Linear Programming Zero
Energy District

GP TEMF GFROA Goal Programming Transactive Energy Management Framework Grass Fibrous Root Optimization algorithm
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