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Accurately quantitative evaluation of the response capability of electric vehicle
aggregator (EVA), i.e., the adjustable range of power, is the premise and basis of
its participation in the demand response (DR). In response to the current EVA’s
response capability evaluation, ignoring the autonomy of EV decision-making
behavior may lead to overly idealized evaluation results, as well as the problem
of evaluating only from a single time scale. To this end, this paper proposes
a response capability evaluation model of EVA based on evolutionary game
and response anticipation. Based on the physical constraints of EVs and their
willingness to discharge, response capability evaluation models are constructed
for individual EVs of different response types. Considering the autonomy of
decision-making behavior of EVs, an evolutionary game model with multi-
strategy sets of EVs is constructed. Based on the idea of response anticipation, a
regulation strategy is proposed for EVA to achieve the dynamic update of EVA’s
response capability. The proposed model is verified to be able to accurately
evaluate the EVA’s response capability through simulation examples, and the EVA
response capability evaluation is extended from a single time scale to multiple
time scales. The evaluation results can be used as the basis for EVA to participate
in the electricity market bidding.

KEYWORDS

electric vehicle, electric vehicle aggregator, evolutionary game, response anticipation,
response capability evaluation

1 Introduction

Due to the advantages of energy saving and zero emission, the market share of EVs is
growing rapidly with the support of relevant policies. According to the Global EV Outlook
2021 report published by the International Energy Agency, the number of EVs worldwide
has reached about 10 million in 2020 and is expected to soar to 145 million by 2030 (IEA,
2021). In addition, demand response (DR) has received increasing attention from researchers
as a means of using customer-side resources to relieve pressure on the system supply-
demand balance (Shariatzadeh et al., 2015). Therefore, EVs are a highly promising resource
for flexible regulation to be exploited.
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However, the capacity of an individual EV is small and
decentralized in the system, which cannot be directly deployed by
the system (Xu et al., 2023). EVA, as an emerging market entity
between the electricity market and EVs, can integrate EVs in
a region into an aggregator with large adjustable capacity and
simplicity control. With the development of artificial intelligence
(Cheng and Yu, 2019a) and energy internet (Cheng and Yu,
2019b), EVA can respond to system dispatch or participate in the
electricity market, while providing a variety of ancillary services
to the system, such as peak shaving and valley filling, frequency
regulation, spinning reserve (Han et al., 2019). There have been
many studies related toDRmanagement applications and aggregator
participation in electricity markets. A profit-maximization-based
pricing optimization model for DR management with customer
behavior learning in the context of smart grids was presented (Meng
and Zeng, 2016). A game theory-based approach to obtain the
optimal bidding strategy for DR aggregators in the electricitymarket
was proposed (Abapour et al., 2019a). A game-theoretic approach
to the optimal bidding strategy for DR aggregators in deregulated
energy markets was provided (Abapour et al., 2019b). A bilevel
game-theoretic model for multiple strategic retailers participating
in both wholesale and local electricity markets while considering
customers’ switching behaviors was proposed (Hong et al., 2023).

Aggregators need to evaluate their response capability in
advance before participating in the electricity market. Response
capability of the EVA is the adjustable range of power that can be
regulated up (charge or stop discharging) or down (stop charging
or discharging) from the baseline power. Accurately quantitative
evaluation of EVA’s response capability is the prerequisite basis for its
participation in DR. Overestimation of response capability carries
the risk of under-response, which may endanger system safety,
underestimation of response capability will waste EV’s DR potential
and cause economic loss.

A number of studies have been conducted around the response
capability evaluation of EVAs. The aggregated response capability
of EVs in parking lot charging stations using queuing theory was
evaluated (Chukwu and Mahajan, 2014). (Zhang and Kezunovic,
2016) evaluated the response capability of EV clusters based on
Markov process. A robust virtual battery model-based method
for evaluating the response capability of large-scale plug-in EVs
was proposed (Hu et al., 2021). The response capability of a
cluster of parked EVs was considered to be proportional to the
number of connected EVs (Han et al., 2011). A recursive idea-
based model for evaluating the temporal response capability of EV
switching station was developed (Liu et al., 2017). (Lam et al., 2016)
evaluated the aggregated response capability of EV clusters using
a queuing network model. An EV response capability calculation
method was proposed to evaluate the response capability of an
individual EV and EV clusters under different charging strategies,
respectively (Wu et al., 2018). An aggregation model was developed
to evaluate the response capability of large-scale plug-in EV clusters
(Zhang et al., 2017). (Zhang et al., 2019; Deng et al., 2020) extended
the EVA’s response capability evaluation model from a single time
scale to multiple time scales. The response capability of EVA
in the next time period is dynamically updated according to
the response of EVs in the previous time period. The charging-
discharging strategies of EVs in the response capability evaluation
model constructed in the above literature were entirely determined

by the EVA. However, in realistic scenarios, EVA and EV users
are different interest entities with different optimization goals in
their respective decision-making processes. When evaluating the
actual response capability of EVA, ignoring the autonomy of EV
decision-making behavior may lead to overly idealized evaluation
results.

Under the DR mechanism, the charging-discharging incentive
price issued by the EVA to EVs is influenced by the total response
volume of the EVs, and the incentive price decreases as the
response volume increases. In response to EVA incentives, there
is a game relationship between EVs. Each EV is a stakeholder and
the economic benefit is influenced by the charging-discharging
strategies of other EVs. The traditional game approach makes
the dual assumptions of “complete rationality” and “complete
information” for the participants, which is obviously not in
line with the actual decision-making scenario of EV users, who
cannot respond to the information changes quickly and optimally.
Therefore, the evolutionary game based on “bounded rationality”
and “limited information” can more reasonably characterize
the game behavior of EV users in actual decision-making
scenarios.

Evolutionary game theory has yielded many achievements
in solving power system problems. Based on the framework
of evolutionary game theory, an in-depth study of the long-
term bidding equilibrium characteristics of homogeneous and
heterogeneous power generation-side markets was provided
(Cheng et al., 2022). (Cheng et al., 2021) provided an in-depth
study of the behavioral decision problem in demand-side
response management from the perspective of multiple population
evolutionary game dynamics. An evolutionary game model of
renewable energy generation and transmission from the perspective
of bounded rationality and multi-agents game to analyze the
necessity and effectiveness of strengthening relevant government
regulation was established (Fang et al., 2018). (Cheng et al., 2020a)
focused on the general N-population multi-strategy evolutionary
games, and used them to investigate the generation-side long-
term bidding issues in electricity market. A hierarchical extension
coordinated controller was proposed, which considered the
bounded rationality of the control system to address traditional
stability control interference on driving speed and driver operation
(Zheng et al., 2023). Considering the formation mechanism of
greenwashing behaviors and collusion in EV certification processes,
a tripartite evolutionary game model based on strategic interactions
among manufacturers, certification authorities, and governments
was constructed (Liu et al., 2023).

However, there are few studies in the existing literature that use
evolutionary game theory to analyze the decision behavior of EV
users in real-world scenarios and evaluate response capability of
EVAon this basis (Cai et al., 2023). Evaluated the response capability
of EVA based on a multi-strategy set evolutionary game model for
EVs. The response behavior of EV users to incentives was analyzed
using evolutionary game theory, and a method to evaluate response
capability of EVs in grid emergencies was proposed (Wu et al.,
2021). However, the differential response capability of different types
of EVs was not considered and the response capability of EVs
was only evaluated from a single time scale, ignoring the impact
of EVs responding to system dispatch commands on response
capability.
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To address the shortcomings of existing studies, this paper
proposes a response capability evaluation model of EVA based on
evolutionary game and response anticipation, with the following
main contributions. 1) EVs are subdivided into inelastic EVs,
unidirectional EVs and bidirectional EVs according to the
physical constraints of EVs and whether they have the willingness
to discharge. Considering the differential response capability
of different types of EVs, the response capability evaluation
methods of different types of EVs are given. 2) EV users,
as highly autonomous individuals, can adjust their charging-
discharging strategies according to their own economic benefits.
An evolutionary game model with multi-strategy sets of EVs
is constructed based on which the response capability of EVs
is evaluated. 3) Based on the idea of response anticipation, the
influence of EVA response system scheduling instructions on
response capability is considered.The response capability evaluation
model of EVA is extended from a single time scale to multiple
time scales to realize the response capability dynamic update of
EVA.

The rest of this paper is structured as follows. Section 2 describes
the framework for EVA to participate in the electricity market.
The methodology for evaluating the response capability of different
response types of EVs is given in Section 3. The evolutionary game
model is developed in Section 4. Section 5 proposes a multi-time
scale response capability evaluation method for EVA. Case studies
are conducted in Section 6. Section 7 highlights the conclusions and
future work.

2 Electricity market framework

The framework for EVA to participate in the electricity
market as an emerging market entity between the ISO and EVs
is shown in Figure 1. EVA collects EV information and issues
control instructions through smart charging piles, issues charging-
discharging incentive prices for the DR period according to the
scheduling instruction, and evaluates the aggregated response
capability of EVs during the DR period. EVA bids in the
electricity market with other interest entities based on the response
capability evaluation results. ISO is responsible for the operation
and clearing settlement of the electricity market, issues DR
time periods and scheduling instructions, and declares electricity
price intervals. Based on the bidding capacity and offering
price of each interest entity, the winning capacity and winning
price of each entity are determined with the goal of economic
optimality.

The focus of this paper is how to quantitatively evaluate the
response capability of EVA, which is related to the charging-
discharging strategies of EVs. EV users have great autonomy, and
can be informed of the economic benefits of their participation
in DR through smart charging piles or mobile apps, and change
the charging-discharging strategies autonomously. However,
EV users are a group of limited rationality, their grasp of
other EV users’ information and knowledge of the game
environment are limited. They tend to estimate the economic
benefits under different strategies based on empirical memory,
and their decision-making behavior has a certain degree of
randomness.

3 Individual EV model

EV users can determine their own charging and discharging
modes. The EVs are subdivided into three categories as follows:

1) Inflexible EV: Continuous charging at rated power during parked
period still does not achieve the desired energy.

2) Unidirectional EV: The charging power can be adjusted during
grid connection period, but it cannot be fed backwards to the
EVA, i.e., it cannot be in the state of discharge.

3) Bidirectional EV:The power can be fed back to EVA in the process
of grid connection, i.e., the power can flow in both directions, and
the charging and discharging power can be flexibly adjusted in the
adjustable interval.

The set composed of three types of EVs is denoted as D0, D1,
andD2 respectively. In the actual scenario, the EVs are connected to
the grid to determine the set they belong to. EV users can determine
it independently by interacting with EVA through smart terminals,
and EVA applies differentiated billing or incentives for different
response types of EV users. In the following, the three types of EVs
are modeled separately.

3.1 Inflexible EV

If the EV satisfies the constraints of Eq. 1, the EV belongs to the
setD0, at which time the EV is regarded as an inflexible load anddoes
not have response capability, and its power and energy are calculated
as Eqs 2, 3.
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3.2 Unidirectional EV

If the EV satisfies the constraints of Eq. 4 and the user selects the
unidirectional charging mode, the EV belongs to the setD1 with the
constraints of power and energy as in Eqs 5–8.
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where ei(t−Δt) is the energy of the EV at time (t−Δt).
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FIGURE 1
The framework for EVA to participate in the electricity market.

3.3 Bidirectional EV

If the EV satisfies the constraints of Eq. 4 and Ssi > S
min
i , the user

selects the bidirectional charging-dischargingmode, the EV belongs
to D2. The constraints in the charging mode are the same as those
of the unidirectional EV, i.e., Eqs 5, 6. In the discharging mode,
the power and energy of the EV need to satisfy the constraints as
Eqs 9–11.
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where Smin
i is the minimum threshold of SOC to prevent the

EV from over-discharging. It is worth noting that to ensure
that the EV can reach the expected power when off-grid, the
minimum power value allowed to be discharged to at time t is
QiS

e
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c
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c
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d
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The power and energy constraints to be satisfied by the
bidirectional EV are as follows:
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(12)
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4 Evolutionary game model

4.1 Evolutionary game modeling

In an open electricity sales market environment, each EV
arranges the charging-discharging power for each time period with
its own optimization target. The total charging and discharging
power of all EVs under EVA’s jurisdiction during the DR time
period will directly determine EVA’s bidding power and energy
offer in the electricity market, which in turn affects the winning
power and winning price, and thus affects the charging-discharging
incentive price issued by EVA to EVs. Therefore, how EVs choose
their respective charging-discharging strategies can be viewed as
a game problem. Classical game theory is based on the following
three assumptions: 1) the participants are perfectly rational, 2)
the participants have perfect information, 3) the structure and
environment of the game are given in advance (Cheng et al.,
2020b). The strong assumptions of classical game theory make it
difficult to be applied to the actual EV decision-making scenarios,
and evolutionary games based on the assumptions of “bounded
rationality” and “limited information” can provide better solutions.
The “bounded rationality” and “limited information” refer to the
fact that EV users have incomplete knowledge and information,
and have limited knowledge of other EV users’ decision-making
information and game environment, so the decision-making
behavior is somewhat random.

The travel characteristics of EVs are highly stochastic, and the
travel characteristics of EVs include EV on-grid/off-grid moment,
SOC at on-grid/off-grid, and expected SOC at off-grid moment.
EVs with the same travel characteristics have the same charging
demand, and the charging-discharging strategies will converge
under the same incentives. EVs with the same travel characteristics
are considered as an EV population, and their internal charging-
discharging strategies are selected based on evolutionary games.

In this paper, each EV is abstracted as an EV population with the
same appearance characteristics, and its internal evolutionary game
process is modeled. N number of strategies are randomly generated
by the EV under the constraints, and the strategy set is the set of
charging-discharging power vectors for each time period within the
scheduling time period. The strategy set generated by the i-th EV
population is denoted as φi, and the expression is as follows:

{
{
{

φi = {S
1
i ,⋯S

n
i ,⋯,S

N
i }

Sni = {p
n
i,1,⋯p

n
i,k⋯,p

n
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(13)

where Sni is the n-th strategy generated by the i-th EV population. pni,k
is the charging-discharging power of the k-th time period in the n-
th strategy, positive value represents EV charging and negative value
represents EV discharging.

The optimization objective of each EV is to minimize the total
charging cost by participating in DR while satisfying its own travel
needs. The optimization objective of an EV can be represented by
a payment function that includes the charging cost, the discharge
compensation and the additional cost of battery degradation due to
participation in DR. The mathematical expression of the payment
function is as follows:
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K

∑
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(pni,kci,kΔT+

a
100

χi,k
Qi

Cd) (14)

χi,k =max(ei,k−1 − ei,k,0) (15)

where ci,k is the EV charging-discharging incentive price during k-th
period, the price of DR time period is issued by EVA, and the price
of non-DR time period is the grid time-of-use price. a is the linear
relationship coefficient between battery life and cycle number. Cd is
the battery replacement cost. χi,k is the cycle charging-discharging
capacity during the k-th time period.

The dispatch of EVs must first meet their charging demand and
ensure that the energy of EVs off-grid should reach the expected
energy set by users, with the following corresponding constraints:

QiS
e
i ≤ QiS

d
i ≤ QiS

max
i (16)

Each EV population has the same constraint to generate the
strategy set because of the consistent travel behavior, andN number
of strategies are randomly generated under the constraint. Since
the EV control strategy in the set D0 is unique, the strategy set is
generated only for the EV populations in the set D1 and D2.

4.2 Dynamic evolution equations

In the evolutionary game process, each EV chooses a charging-
discharging strategy independently, and the population state
indicates the proportion of EVs in the population choosing each
strategy. xni (t) denotes the proportion of the number of individuals
in the EV population choosing strategy Sni to the total number, and
the constraints to be satisfied are as follows:

{{{
{{{
{

0 ≤ xni ≤ 1
N

∑
n=1

xni = 1
(17)

The evolutionary gamemodel transforms the payoff functionUn
i

into an adaptation function fni that represents the distribution of the
strategies chosen by individual in the population and the current
individual strategy (Weibull, 2015). The mathematical expression is
as follows:

fni = x
n
i U

n
i (18)

It is unlikely that the dynamic evolutionary process of EV
selection of charging-discharging strategies will be completed in a
single pass. When there is an opportunity to modify the strategy, EV
will compare the expected return of selecting the current strategy
with the expected return of selecting other strategies andwill modify
the selected strategy with conditional transformation probability ρ
(Weibull, 2015). The EV population charging-discharging strategy
will be continuously modified to make the adaptation function
optimal and finally equilibrated to evolve a stable strategy. The
differential equation for the dynamic evolution of EV population
state is as follows:

∂xni
∂k
=

N

∑
m=1

xmi ρ
m,n
i − x

n
i

N

∑
m=1

ρn,mi (19)

where ρm,ni and ρn,mi are the conditional transition probability
of EV from strategy m to strategy n and from strategy n to
strategym, respectively, denoting the proportion of EV transitioned
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FIGURE 2
The flow chart of the evolutionarily stable strategy solution.

from other strategies to strategies n and from strategy n to other
strategies, as determined by the revision protocol of the selected
strategy.

The corresponding dynamic evolutionary differential equations
will differ depending on the form of the chosen revision protocol.
Logit protocol is commonly used in evolutionary game model that
simulate EV decision because they take into account the individual
preferences and bounded rationality of decision makers (Cai et al.,
2023).The expression for the conditional probability when using the
Logit revision protocol is as follows:

ρm,ni =
exp[ fni σ

−1]
N

∑
m=1

exp[ fmi σ
−1]

(20)

Bringing Eq. 20 into Eq. 19 gives the dynamic evolution
equation of the EV population as

∂xni
∂k
= ρm,ni − x

n
i =

exp[ fni σ
−1]

N

∑
m=1

exp[ fmi σ
−1]

− xni (21)

The dynamic evolution equation depicts the game process in
the actual decision-making scenario of EV users. When ∂xni /∂k = 0,
the evolutionary game of strategies chosen by all individuals in the
population will reach equilibrium, at which the economic benefit of
the EV population is maximized.

4.3 Evolutionarily stable strategy solving

The dynamic evolution equation of Eq. 21 is discretized and the
expression is as follows:

xni (θ+ 1) = x
n
i (θ) + λ{ρ

m,n
i − x

n
i (θ)} (22)

The flow chart of the evolutionarily stable strategy solution is
shown in Figure 2.

The evolutionarily stable strategy solving steps are as follows:

1) EVA issues the charging-discharging prices for the DR time
period.

2) EV population randomly generates N strategies under the
constraints
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3) EV population randomly generates the initial each strategy
selection ratio x(0).

4) Calculate the payment function Un
i of EV under each strategy

according to Eq. 14.
5) Calculate the adaptation function fni of EV under each strategy by

Eq. 18.
6) Calculate the conditional transformation probability ρm,ni of the

selected strategy by Eq. 20.
7) Calculate the EV population state xni (θ).
8) Determine whether ∂xni /∂k = 0 is valid. If not, θ = θ+ 1, repeat

Step 5)∼ Step 7), and update the EV population state according
to the dynamic evolution Eq. 22.

9) Until ∂xni /∂k = 0, output the evolutionarily stable strategy of the
EV population and the evolutionary state of each strategy.

5 Response capability evaluation of
EVA

5.1 Response capability of an individual EV

By discretizing the time axis during the DR time period and
assuming that the EV power is constant in periodΔT.The upper and
lower bounds of the response capability of an individual EV during
time period k can be calculated according to Eqs 23, 24.

pmax
i,k =min[p+i,k, (e

+
i,k+1 − ei,k)/ΔT]/η

c
i (23)

pmin
i,k =max[p−i,k, (e

−
i,k+1 − ei,k)/ΔT]η

d
i (24)

where pmax
i,k and pmin

i,k are the upper and lower bounds of the response
capability of the i-th EV during time period k.

Then the equation for the response capability of an individual
EV is as follows:

pui,k =
{
{
{

pi,k, i ∈ D1

pi,k − p
min
i,k , i ∈ D2

(25)

pdi,k = p
max
i,k − pi,k (26)

where pui,k and pdi,k are the regulation up capability and regulation
down capability of the i-th EV during time period k. pi,k is the
operating power of the EV during time period k.

The response capacity of unidirectional/bidirectional EV during
grid-connected hours is shown schematically in Figure 3.

5.2 Response capability of EVA

The formula for the response capability before participation in
DR obtained by EVA aggregation is as follows:

Puk = ∑
i∈D1

pui,k + ∑
i∈D2

pui,k (27)

Pdk = ∑
i∈D1

pdi,k + ∑
i∈D2

pdi,k (28)

where Puk and Pdk are the regulation up capability and regulation
down capability of EVA during time period k.

FIGURE 3
Schematic diagram of EV’s response capability. (A) Unidirectional EV.
(B) Bidirectional EV.

EVA issues the DR time window information in advance, and
based on the evolutionary game model, when all EVs adopt the
evolutionarily stable strategy, the upper and lower spare capacities
that EVA can provide under a given DR time window can be
evaluated by Eqs 27, 28.

5.3 Dynamic update of EVA’s response
capability

EVA participation in DR will cause changes in its own response
capability. When EVA responds to the scheduling control command
PSk of ISO during time period k, the charging-discharging state and
SOC of the controlled EV will change accordingly, which will have
an impact on the intra-day response capability of EVA during time
period (k+ 1). Therefore, it is necessary to dynamically update the
EVA’ response capability to ensure the availability of EVA’ response
capability evaluation results during the continuous DR period.

To address this issue, this paper further proposes an evaluation
model based on the idea of response anticipation to dynamically
evaluate the response capability of EVA. The variation of EVA’s
response capability is closely related to its scheduling strategy. In
this paper, we propose a regulation strategy considering RTM and
SOC indexes. The priority queue is generated by combining the
RTM and SOC of each EV, and the response is obtained by taking
into account the scheduling instruction and user travel demand on
the basis of merit participation, and finally the dynamic evaluation
results of EVA’s response capability of participating in DR are
obtained.

1) RTM indicator: indicates the difference between the remaining
parked time and the necessary charging time during the EV grid
connection period. The mathematical definition is as follows:

RTMi = t
d
i − t−
(SOCe

i − SOCi)Qi

ηci p
c
i

(29)

where RTMi is the RTM of the i-th EV. The larger the value means
the less urgent the EV charging demand is, the greater the regulation
flexibility, and vice versa, the less the regulation flexibility.

2) SOC indicator: in addition to RTM indicator, SOC indicator
also affects the generation of EV response priority queue. An
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FIGURE 4
Response capability evaluation flow chart of EVA.

EV with a larger SOC has limited rechargeable capacity but
has a larger discharge capacity, so its regulation down response
capability is smaller and its regulation up response capability is
larger. Conversely, the EVwith smaller SOChave larger regulation
down response capability and smaller regulation up response
capability. When EVA responds to ISO regulation instruction,
it first generates EV response priority queue with RTM as the
primary reference indicator in descending order, and if RTM
is equal, EV response queue is then sorted with SOC as the
secondary reference indicator. Specifically, if PSk > 0, the EVA
needs to provide regulation down capacity, then the EV with the
larger RTM is regulated first, and if the RTM is equal, then the EV
with the smaller SOC is dispatched first. Conversely, if PSk < 0, the

EVAneeds to provide regulation up capacity, then the EVwith the
larger RTM is regulated first, and if the RTM is equal, then the EV
with the larger SOC is dispatched first.

5.4 Response capability evaluation
framework of EVA

The response capability evaluation flow chart of EVA is shown
in Figure 4, with the following steps:

1) ISO issues DR time period [t1, t2] according to the scheduling
requirements.
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2) EVA issues charging-discharging prices during DR time period,
and EVA adopts differentiated billing or incentives for EV users
of different response types.

3) Input EVs’ travel characteristics, battery information parameters,
unidirectional/bidirectional EVs generatingN number of random
strategies under response constraints.

4) Output the evolutionarily stable strategy for each EV according to
the solution method introduced in Section 4.3.

5) Based on the response capability evaluation of individual EVs,
response capability of EVA is obtained by aggregation. EVA
participates in the electricity market bidding based on the
result of response capability evaluation, and finally determines
the winning capacity and winning price by gaming with other
interested entities in the market. EVA issues the charging-
discharging price during DR time period to EVs based on the
winning price to motivate EV users to participate in DR.

6) EVA responds to the scheduling instruction PSk of ISO at the time
period k. Based on the response anticipation idea, the response
priority queue is generated based on the RTM and SOC of EVs.

7) Filter i number of EVs dispatched in the response by condition,
calculate the aggregated response capability of EVA, determine
whether the relative error between the response instruction and
the scheduling target instruction satisfies less than a constant ε,
i.e., |PSk − P

R
k |/P

S
k ≤ ε. Continue to Step 8 if satisfied, or increase

the response EVs recursively by the response priority queue if not
satisfied, and i = i+ 1.

8) Update the status information of the EVs according to the
regulation of the EVA, including the charging-discharging states
and SOC values, and update the response capability of the EVA at
time kT.

9) Determine by t ≥ t2 whether the DR time period is over, if the
response is over then exit the cycle, if not then return to Step 6,
and t = t1 +Δt, k = k+ 1. Evaluate the variation in the EVA’s own
response capability in the next time period due to the response to
ISO’s scheduling instructions.

6 Case studies

6.1 Parameter setting

The number of EVsNi under the jurisdiction of EVA is assumed
to be 1,000, and all EV battery parameters are set to be the same to
simplify the model.The on-grid moments, off-grid moments, initial
SOC at on-grid moments, and expected SOC at off-grid moments of
EVs are mutually independent random variables whose probability
distributions are obtained by function fitting based on real data of
private car travel behavior and obey a normal distribution N(μ,σ2),
where μ and σ are respectively expected value and standard deviation
(Zheng et al., 2020). The main parameters in this paper are shown
in Table 1. The charging and discharging power provided by the
charging piles is set into seven levels: 7, −5, −3, 0, 3, 5, and 7 kW,
with EV charging as positive and EV discharging as negative. The
peak-to-valley electricity price in a region is shown in Table 2, and
the DR time period as well as the charging-discharging price range
issued by EVA is shown in Table 3.

TABLE 1 Main parameters.

Parameter Value Parameter Value

Ni 1,000 Qi 35 kWh

pci 7 kW pdi −7 kW

Smax
i 1 Smin

i 0.2

ηci 0.9 ηdi 0.9

tsi N(19.5,1.5 2) tdi N(7.5,0.952)

Ssi N(0.2,0.5 2) Sei N(0.9,0.1 2)

a 0.0156 Cd 58,000 ¥

ΔT 1 h σ 0.02

TABLE 2 The peak-valley time-of-use electricity price.

Time period Time period division Time-of-use price
(¥/kWh)

12:00–13:00, 23:00–7:00 Valley period 0.465

7:00–8:00, 11:00–12:00 Usual period 0.787

13:00–15:00, 21:00–23:00

8:00–11:00, 15:00–21:00 Peak period 1.182

6.2 Analysis of the results of evolutionarily
stable strategy

The focus of this paper is to evaluate the response capability
of the EVA. It is assumed that after the EVA participates in the
electricity market bid bidding, the incentive price issued for EVs
during the DR time period based on the winning price is as
follows: ¥0.4/kWh for unidirectional EV charging; ¥0.3/kWh for
bidirectional EV charging and ¥1.5/kWh for discharging. In this
paper, private cars have a long parked time, so the percentage
of inelastic EVs is small. It is reasonable to assume that all
EVs governed by EVA are unidirectional EVs or bidirectional
EVs.

The 1,000 EVs are abstracted into 1,000 EV populations with the
same travel characteristics, and the evolutionarily stable strategies
of the 1,000 EVs are solved separately based on the evolutionary
game model constructed in Section 4. For EVs with different
response types, the set of 2,000 groups of charging-discharging
power strategies and the initial selection ratio x(0) for each strategy
are randomly generated for each EV population separately under
the constraints given in Section 3. Both the unidirectional EV and
bidirectional EV percentages are set to 0.5, and the iteration step λ is
0.01. A certain unidirectional EV1 and bidirectional EV2 belonging
to EVA are chosen as an example to show the evolutionary state
change trend of their 2,000 groups of charging-discharging power
strategies set, respectively, as shown in Figure 4. The evolutionary
change curves of the average payment cost of the unidirectional
EV1 and bidirectional EV2 populations are shown in Figure 5, and
the travel behavior and evolutionarily stable strategies are shown in
Table 4.
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TABLE 3 Demand response period and electricity price range.

Time period Response mode Response period Time-of-use price(¥/kWh)

Peak shaving Discharging response 19:00–21:00 1.35–1.85

Valley filling Charging response 23:00–3:00 Unidirectional EV: 0.35–0.45

Bidirectional EV: 0.25–0.35

FIGURE 5
Strategy evolutionary state curve of EVs. (A) Strategy evolutionary state
curve of EV1. (B) Strategy evolutionary state curve of EV2.

As can be seen from Figure 5, in the process of evolutionary
game, the selection probability of only one set of strategy for each
EV increases and gradually converges to 1, while the selection
probability of other strategy sets gradually converges to 0. The
strategy with the selection probability gradually converges to 1 is
the evolutionarily stable strategy that EV finally chooses under the
changing game environment. As shown in Figure 6 and Table 4, the
average payment cost of EV population decreases with the increase
of the number of iterations as the evolutionary game proceeds, and
reaches stability at the game equilibrium, when the average payment
cost of EV1 and EV2 populations are ¥15.8 and ¥7.2 respectively,
indicating that EV will modify its own charging and discharging
strategy with the goal of optimal utility function.

FIGURE 6
The average payment cost evolutionary curve of EVs.

The payment cost for 1,000 EVs with their respective
evolutionarily stable strategies is shown in Figure 7. As can be
seen from Figure 7, the payment cost of bidirectional EVs is lower
compared to unidirectional EVs due to the lower incentive price
of charging for bidirectional EVs and the discharge compensation
when discharging. In addition, compared to the disordered charging
strategy (EVs are charged to the expected power at rated powerwhen
they are connected to the grid), the charging cost of EVs with the
evolutionarily stable strategy are all significantly lower, and there
will even be some bidirectional EVs with positive benefits due to
their participation in DR.

6.3 Response capability of EVA

The response capability of EVA is its adjustable range of power
based on the baseline power. For display convenience, the regulation
down response capability of the following result analysis is shown
as positive and the regulation up response capability is shown as
negative.

6.3.1 Comparison of methods
Most of the current EVA response capability evaluationmethods

treat EVs as directly controlled loads, ignoring the autonomy of
EV users’ decision-making behavior. However, in realistic scenarios,
EVA and EV users are different interest entities with different

TABLE 4 EV1 and EV2 travel behaviors and evolutionarily stable strategies.

NO. tsi tdi Ssi Evolutionarily stable strategy charging-discharging power for each time period/kW Cost/¥

1,345 19:57 6:29 0.17 5;0;0;0;5;0;0;0;0;0;0; 0;0;0;0;0;0;0;0;7;0;0;3;5 15.8

1,732 20:15 6:23 0.31 5;7;0;-3;0;7;0;0;0;0;0;0; 0;0;0;0;0;0;0;-3;0;0;3;5 7.2
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FIGURE 7
Charging cost comparison of EVs.

FIGURE 8
Comparison of response capability under different evaluation
methods.

optimization goals in their respective decision-making processes.
When evaluating the actual response capability of EVA, ignoring
the autonomy of EV decision-making behavior may lead to overly
idealized evaluation results.

The response capabilities of EVA based on different evaluation
methods are compared below.

Proposed method: use evolutionary game theory to analyze the
decision behavior of EV users in real-world scenarios and evaluate
response capability of EVA on this basis.

Comparison method: EVs is considered as directly controlled
loads, i.e., the method adopted by (Wu et al., 2018; Xu et al., 2023).

The response capability of EVA under different evaluation
methods is shown in Figure 8.

As can be seen from Figure 8, the EVA response capability
obtained by the comparison method is significantly larger, which

is due to the over-idealization of the evaluation results caused by
treating EV as a fully controllable load when evaluating the response
capability of EVA. In the actual scenario, EVA does not necessarily
have full control of EVs, therefore, the response capability of EVA
obtained by the comparison method is not in line with the actual
situation, and EVA may suffer large losses when bidding in the
electricity market based on this evaluation results.

6.3.2 DR time period
In the actual scenario, ISO issues DR periods beforehand, EVA

needs to evaluate the response capability under a given time period.
To compare EVA’s response capability under different time periods,
the following three scenarios are set:

Scenario 1 (scenario in this paper): peak shaving period:
19:00–21:00, valley filling period: 23:00–3:00.

Scenario 2: peak shaving period: 19:00–22:00, valley filling
period: 23:00–3:00.

Scenario 3: peak shaving period: 19:00–23:00, valley filling
period: 23:00–3:00.

The comparative analysis of EVA’s response capability under
different DR time periods is shown in Figure 9. From Figure 9,
it can be seen that EVA has greater regulation down response
capacity during peak shaving hours and greater regulation up
response capacity during valley filling hours, which is due to
the autonomy of EV decision-making considered when evaluating
response capability of EVA. EV users will choose to discharge at
high prices and charge at low prices for their own economic benefits,
more EVs are in discharge state during peak shaving hours and the
baseline power is negative, so EVs will have a greater regulation
up response capability, while the opposite is observed during valley
filling hours. In addition, it can be seen from Figure 9 that the
response capability of EVA under different time periods differs if
the actual scenario needs to extend the peak shaving DR period,
because the number of EVs connected under different time periods
is different from their charging-discharging states and SOCs. EVA
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FIGURE 9
Comparison of response capability under different time periods.

FIGURE 10
Comparison of response capability under different incentive prices.

only needs to issue DR time periods and incentive prices to evaluate
the response capability of EVA under different given DR time
periods based on the model built in this paper.

6.3.3 Charging-discharging incentive price
The charging-discharging incentive price affects the EVA’s

response capability during the DR period. In order to compare
the EVA’s response capability under different incentive prices, the
following 2 scenarios are set:

Scenario 1 (scenario in this paper): the charging price is
¥0.4/kWh for unidirectional EV, the charging price is ¥0.3/kWh and
the discharging price is ¥1.5/kWh for bidirectional EV.

Scenario 2: the charging price is ¥0.35/kWh for unidirectional
EV, the charging price is ¥0.25/kWh and the discharging price is
¥1.8/kWh for bidirectional EV.

The comparative analysis of the response capability of EVA
under different incentive prices is shown in Figure 10. From
Figure 10, it can be seen that EVA has larger regulation down
response capability in peak shaving hours and larger regulation up
response capability in valley filling hours under scenario 2 compared

FIGURE 11
Comparison of response capability under different types of EV
percentage.

FIGURE 12
Dynamic update of EVA’s response capability.

to scenario 1. This is due to the lower incentive charging price
and higher incentive discharging price given in Scenario 2. The
baseline power of EVA shows a more obvious buying low and
selling high characteristics during peak shaving and valley filling
hours, and the different baseline power of EVA in DR hours leads
to different response capability of EVA. However, the difference
of EVA’s response capability in the two scenarios is not large.
EVA should reasonably set the charging-discharging incentive price
according to the scheduling requirements in order to avoid blindly
increasing the incentive price to affect its own revenue.

6.3.4 Percentage of unidirectional/bidirectional
EVs

To compare the response capability of EVA under different types
of EV percentages, the following three scenarios are set:

Scenario 1: bidirectional EV percentage of 100%.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1225327
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Xu et al. 10.3389/fenrg.2023.1225327

Scenario 2 (scenario in this paper): unidirectional EV and
bidirectional EV percentage of 50% each.

Scenario 3: unidirectional EV percentage of 100%.
The comparative analysis of EVA’s response capability under

different types of EV percentage is shown in Figure 11. From
Figure 11, it can be seen that with the increase of bidirectional EV
percentage, the regulation up response capability of EVA increases
significantly. Therefore, in the system with shortage of regulation
up response capability, corresponding incentives can be developed
to mobilize the EV users’ discharge enthusiasm and increase the
bidirectional EV percentage.

6.3.5 Dynamic update of EVA’s response
capability

The dynamic update of EVA’s response capability in response
to ISO scheduling instructions is shown in Figure 12. As can be
seen from Figure 12, EVA can accurately track the scheduling target
instructions issued by ISO and realize the dynamic update of EVA’s
response capability. It is worth noting that due to the short DR
response period, EVA participation in DR will not reach its own
capacity boundary, so the change of response capability boundary
is not obvious and EVA can play the role of providing short time
power support for the system.

7 Conclusion

In this paper, a response capability evaluation model of EVA
based on the idea of evolutionary game and response anticipation
is proposed, and the validity of the model is verified by simulation,
and the main conclusions obtained are as follows:

(1) Considering EV users as highly autonomous individuals
with “bounded rationality” and “limited information”, an
evolutionary game model with multi-strategy sets of EVs is
constructed. On this basis, the response capability of EVs
before participating in DR is evaluated, avoiding the over-
idealized results of EVA’s response capability evaluation caused
by ignoring the autonomy of EV decision-making behavior.

(2) EVA’s response capability is affected by the DR time period
window, charging-discharging incentive price and the
percentage of different types of EVs to different degrees. Based
on the model built in this paper, EVA’s response capability
can be accurately evaluated under different scenarios, and the
evaluation results can be used as the basis for EVA to participate
in electricity market bidding.

(3) A regulation strategy is proposed for EVA to generate EV
response priority queue according to RTM and SOC indexes.
Based on the idea of response anticipation, the response
capability of EVA is dynamically updated after participating in
DR, and the simulation results show that EVA can accurately

track the scheduling target instructions issued by ISO and can
play the role of providing short-time power support for the
power system.

The focus of the follow-up research is to study the optimization
strategy of EVA to participate in the electricity market based on the
proposed response capability evaluation model, in order to achieve
win-win and coordinated development among ISO, EVA and EV
users.
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Nomenclature

Abbreviations

EV Electric vehicle

EVA Electric vehicle aggregator

DR Demand response

RC Response capability

ISO Independent system operator

SOC State of charge

RTM Response time margin

Sets and Indices

t Index of timeslot

i Index of EV user

n Index of charging strategy of EV

k Index of time period

φi Strategy set of EV i

Sni Strategy n of EV i

Parameters

tsi /t
d
i On-grid/off-grid moments of EV

pci Rated charging power of EV

pdi Rated discharging power of EV

Qi Rated capacity of EV

Sei Expected SOC when EV is off-grid

Ssi Initial SOC when EV is on-grid

Sdi SOC when EV is off-grid

ηci /η
d
i Charging/Discharging efficiency

p+i (t) Upper bounds of power of EV at time t

p−i (t) Lower bounds of power of EV at time t

e+i (t) Upper bounds of energy of EV at time t

e−i (t) Lower bounds of energy of EV at time t

Δt A time interval

Smax
i Maximum value of SOC of EV

Smin
i Minimum value of SOC of EV

N Number of strategies of EV

ci,k Incentive price of EV i during period k

ΔT An evaluation time period

a Linear relationship coefficient

Cd Battery replacement cost

χi,k Cycle capacity during period k

σ Noise level

θ Number of iterations

λ Iteration step

(Continued on the following page)
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pmax
i,k Upper bounds of the RC of EV i during period k

pmin
i,k Lower bounds of the RC of EV i during period k

Variables

pi(t) Power of the EV at time t

ei(t) Energy of the EV at time t

pi,k Operating power of EV during period k

Un
i Payment function

xni (t) Proportion of the number of EVs for selecting strategy Sni

fni Adaptation function

ρm,ni Conditional transition probability of EV from strategym to strategy n

ρn,mi Conditional transition probability of EV from strategy n to strategym

pui,k/p
d
i,k Regulation up/down capability of EV i during period k

Puk/P
d
k Regulation up/down capability of EVA during period k
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