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The nucleate subcooled boiling is an efficient heat transfer form and plays an
important role inmany cooling applications. The size and distribution of bubbles in
subcooled boiling have considerable influence on boiling heat transfer. In this
paper, subcooled flow boiling experiment is carried out to investigate the
nucleation point density and detachment frequency of bubbles under different
system pressure, and the test section is full transparent. Since the whole body of
the test section is composed of transparent materials, it can be observed from
different directions to obtain high quality images. A bubble tracking algorithm has
been developed, which can effectively determine the diameter and position of
detached bubbles, thereby inferring the nucleation point density and detachment
frequency of bubbles. Besides, the distinctive properties of bubble nucleation
within narrow rectangular channel are verified by comparing bubble detachment
diameters with existed models. Finally, models for bubble nucleation point and
detachment frequency under different operating conditions were proposed and
verified through experimental results.
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1 Introduction

Nucleate subcooled boiling, as a highly efficient heat transfer method, has a wide range of
applications in nuclear reactors, power electronics, aerospace, cryogenic refrigeration,
chemical industry and many other broad fields. For example, in conventional nuclear
reactors, subcooled boiling is required in part of the coolant channel of the pressurized water
reactor to increase the coolant outlet temperature and thus improve the heat transfer
capacity of the reactor. The mechanism of subcooled boiling is extremely complex. Many
scholars have tried to develop different models to explain the relationship between the
kinetic behavior of vapor bubbles and boiling heat transfer.

Compared with conventional flow paths, narrow rectangular channel have advantages
such as compact structure, high heat transfer per unit volume, high density of heat flow in the
flow path, and good safety, so the narrow rectangular channel is widely applied in high
performance plate heat transfer elements related to the boiling heat transfer field in nuclear
reactors. The narrow rectangular channel has a limiting effect on the vapor bubbles. Not only
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the flow characteristics, bubble growth process and detachment
behavior of subcooled boiling in narrow rectangular channel are
significantly different from those of conventional channels, but also
the disturbance phenomenon and instability caused by bubble
behavior can affect the boiling heat transfer efficiency and the
safe operation of the circulating system. Secondly, the effects of
the mass flow rate and pressure in the narrow rectangular channel
on the vapor bubbles are not clear. Therefore, it is crucial to study
the vapor bubble evolution behavior in subcooled flow boiling in
narrow rectangular channel for better design of nuclear reactor
structures.

The research on pool boiling by Rohsenow (Rohsenow, 2022)
and Chen (Chen, 1966) in the past half century has laid the
foundation for the study of subcooled flow boiling. Nowadays, a
large number of experimental and theoretical studies on flow boiling
have been carried out. The nucleation point density and the bubble
detachment frequency are important characteristic parameters that
determine the heat carried away, when the bubble rises and detaches
from the heated surface (Basu et al., 2002). Currently, the
measurement of nucleation sites in subcooled boiling is mainly
done by determining the number of vapor bubble formation
locations on the boiling wall from images captured by high-speed
cameras. The nucleation site density of the vapor bubbles is obtained
by dividing the number of locations by the area on which the high-
speed camera is focused. In the high-speed camera measurement
technique, it is difficult to determine the nucleation point location
from just one photograph. A corresponding video recording is
required to determine the nucleation point location. In most of
the literature, the nucleation point density is obtained using manual
counting calculations (Del Valle and Kenning, 1985; Basu et al.,
2002). Recently, Ooi et al. (Ooi et al., 2018) studied the wall
nucleation properties based on a high-speed video camera and
gained new insight into the nucleation point density and vapor
bubble detachment frequency. Kim et al. (Kim et al., 2018)
investigated the effect of nucleation point location on the vapor
bubble behavior using a high-speed video camera.

In previous studies, relationships between vapor bubble
nucleation point density and wall heat flux density qw, and
wall superheat ΔTw were proposed (Basu et al., 2002).
Gaertner and Westwater (Gaertner, 1959) reported a
relationship between nucleation point density and wall heat
flux with a correlation of Na-qn w. In studies by Sultan and
Judd (Sultan and Judd, 1978), Rallis and Jawurek (Rallis and
Jawurek, 1964) and Gaertner (Gaertner, 1965) reported similar
relationships. Lemmert and Chawla (Lemmert and Chawla, 1974)
found a functional dependence between the density of active
nucleation sites and wall superheat with a correlation of Na-ΔTn
w. Previous studies on vapor bubble detachment frequency have
focused on pool boiling (Cole, 1960; Zuber, 1963; Ivey, 1967; Kim
et al., 2006). It is usually correlated with the vapor bubble
detachment diameter, and there have been some studies on
vapor bubble detachment frequency for subcooled boiling. Situ
et al. (Situ et al., 2008) developed a dimensionless vapor bubble
detachment frequency for subcooled flow boiling by performing a
dimensionless analysis of the available data. Brooks and Hibiki
(Brooks and Hibiki, 2015) developed a mathematical formulation
of the vapor bubble detachment frequency based on the available
experimental values.

In general, most studies on nucleation point density and vapor
bubble detachment frequency have focused on pool boiling. To better
understand the effects of wall superheat, flow rate, subcooling and
system pressure on nucleation point density and vapor bubble
detachment frequency in plate fuel elements of nuclear power
systems, an experiment was conducted to closely observe the vapor
bubble behavior of subcooled flow boiling in a narrow rectangular
channel.

Since the initial experimental data for vapor bubble behavior
analysis are video recordings, the use of manual processing of
experimental videos has the disadvantages of inefficient analysis,
insufficient accuracy, and low error tolerance. In order to solve the
problems of manual processing, the development of a corresponding
vapor bubble tracking algorithm has significant advantages in terms of
efficient and accurate analysis of vapor bubble evolution behavior,
improved error tolerance, and good visualization, as well as promoting
the improvement of automation in this field. Besides, by adjusting some
parameters in the algorithm, it is more convenient to effectively fit the
video images under different working conditions. Therefore, the use of
vapor bubble tracking algorithm has an important role in the study of
the evolutionary behavior of vapor bubbles in narrow rectangular
channel with subcooled flow boiling.

With the rapid development of optical and computer technologies,
the application of digital image analysis to detect vapor bubbles in
various scenes has gradually become a research hotspot in this field. The
vapor bubble tracking algorithm in this paper will also be designed and
developed based on the image analysis method. The image analysis
method has the advantage of being non-intrusive and transient, as long
as a suitable vapor bubble image acquisition device is used to capture
and process the captured vapor bubble images, the presence or absence
of vapor bubbles in the scene can be determined based on the grayscale,
shape, and texture distribution of the image, and the related
characteristic parameters of the vapor bubbles can be obtained (Shi,
2020), andmanymethods have been proposed by domestic and foreign
scholars. In 2005, Zhang et al. (Zhang, 2005) used local smoothing and
thresholding to remove noise from the vapor bubble images, and then
used grayscale center discrimination to detect the vapor bubbles in the
images. 2011, Shao et al. (Shao, 2011) used inverse color, low-pass
filtering, and reduced the grayscale level to pre-process the vapor bubble
images, and then used the watershed algorithm based onmorphological
theory to segment the vapor bubble images, and better extracted the
vapor bubbles from the air-doped water flow images. In 2015, Yang
(Yang, 2015) proposed to use image subtraction andmedian filtering to
obtain vapor bubbles in gas-liquid two-phase flow experiments, and use
the improved watershed algorithm to segment the sticky bubbles. 2018,
Du (Du, 2018) proposed a two-dimensional wavelet transform-based
edge detection algorithm and applied it to three-phase fluidized bed
vapor bubble detection, and the algorithm obtained good detection
results in both clear and turbid water conditions. In 2019, Qin et al.
(Qin, 2019) proposed an improved watershed algorithm for
segmentation of vapor bubble cluster images, which can segment
adherent bubbles to a certain extent, but the problem of difficult
segmentation still exists for bubbles with high overlap and severe
adherence; in the same year, Zhang et al. (Zhang, 2019) proposed a
method for underwater vapor bubble image recognition based on
Zemike moments and gray scale calculation, which extracts the
vapor bubbles from The method extracts and discriminates the
feature information of the target from both shape and grayscale, and
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can distinguish the vapor bubbles from the solid suspended particles in
water, which improves the vapor bubble recognition accuracy with high
accuracy and applicability.

In summary, there are relatively few studies on the vapor bubble
behavior of subcooled flow boiling in a narrow rectangular channel,
and more sophisticated image analysis and processing methods are
available, so it is necessary to carry out a vapor bubble tracking
algorithm to realize the study of the vapor bubble evolution behavior
in a narrow rectangular channel. In this paper, we study the vapor
bubble dynamics by conducting subcooling boiling experiments on a
vertical narrow rectangular section. We use a high-speed camera to
photograph the vapor bubble evolution behavior from the bottom of
the bubble (i.e., facing the transparent narrow rectangular channel),
and then use a vapor bubble tracking algorithm to automatically
identify the vapor bubbles and extract the feature parameters to
quantitatively discuss the evolution of the maximum diameter of
boiling vapor bubbles in the narrow rectangular flow channel.

2 Experimental setup and image
capture methods

2.1 Experimental setup

This experiment uses a closed-loop experimental setup for
subcooled boiling flow experiments. The schematic layout of the
facility is shown in Figure 1. A centrifugal pump was used to drive

the circulation of deionized water in the facility, and the flow rate
was measured with an orifice flow meter.

Error after calibration of flow meter is ±1.53% of the reading
with a maximum range of 2000 kg-(m2 -s)−1. The liquid subcooling
is controlled by a preheater located upstream of the test section. The
water temperature at the inlet and outlet of the test section was
measured using t-type thermocouples with an accuracy of ±1°C. The
system pressure was measured using a pressure transducer with an
accuracy span of 25 kPa ± 0.067%.

Since the polycarbonate resin material has excellent
processability and heat resistance, PC (polycarbonate resin) was
chosen as the substrate material for the test section. A rectangular
flow channel of size 300 mm × 20 mm × 2 mm was formed between
the optical liquid glass and the substrate, and Figure 2 shows the flow
channel test cross-section. The sapphire glass coated with ITO
(Indium Tin Oxide) conductive film was used as a heating panel
and a visual observation window to observe the interaction between
the vapor bubbles from the bottom of the vapor bubble.

The experimental body is equipped with three thermal sensors
for detecting the temperature at the inlet, midsection and outlet in
the narrow rectangular channel. The heat dissipation test was
carried out by heat balance experiment.

The high-speed camera records the process of sliding vapor
bubble agglomeration with an efficiency of 10,000 fps/sec. The lens
was positioned perpendicular to the viewing window to minimize
the effect of light refraction. An adjustable 150 W light source was
used to illuminate the back side of the test section. The resolution of

FIGURE 1
Experimental setup diagram.
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the camera is 384 × 680 pixels, as shown in Figure 3 (Figure 3 is a
screenshot of one of the frames of the video taken by the high-speed
camera under a particular operating condition). In Figure 3, the long
black rectangles on the left and right sides are the boundaries of the
narrow rectangular channel, and the vapor bubbles generated in this
part are not generated by the boiling of the supercooled flow, but by
the lower temperature of the wall, so that the effective observation

area is about 80% of the shooting area, i.e., 308 × 680 pixels in size
(the invalid area is marked by the red border). The typical shooting
time is 3.6 s for the same file storage capacity. The camera and lens
settings were calibrated to display a resolution of 0.0209 mm/pixel.
Ensure that the overall width of the runner is within the visible range
of the image when shooting.

The errors associated with the calculated parameters were
estimated using error propagation methods. These errors are
listed in Table 1.

The image information was captured by a high-speed camera. A
summary of the experimental conditions is shown in Table 2. The
behavioral characteristics of boiling vapor bubble agglomeration
under different mass flow rate, heat flow density and inlet subcooling
conditions were investigated.

2.2 Image processing methods

The flow of the tracking algorithm for the analytical processing
of the vapor bubbles is shown in Figure 4 below:

FIGURE 2
Flow channel test cross section.

FIGURE 3
High-speed camera footage.

TABLE 1 Measurement estimation error.

Parameters Error (+/−)

Temperature 0.5K

Voltage 0.02%

Current 0.167%

Heat flux 0.78%

Mass flow rate 1.53%

Vapor Bubble Location 0.0209 mm

Vapor Bubble Diameter 2.6%
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The original experimental data for this study are video files
captured by a high-speed camera, and the developed vapor
bubble tracking algorithm will also be applied to the video
files. The video is essentially a continuous picture, and thus
the algorithm will be based on the analysis and processing of
a single picture for the video file.

2.2.1 Analysis and processing of a single image
The high-speed camera recording image is shown in Figure 5

(Figure 5 is an intercept of a frame of the video image), and it can be
seen that Figure 5 consists of only black, white, and gray, which has a
very distinct degree of shades of gray. Figure 5 is a typical grayscale
image, which is then binarized.

2.2.1.1 Binarization processing
Figure 5 (left) is shown as a grayscale diagram, with the dark part

being the vapor bubble or the edge of the bubble and the light part
being the fluid or the central part of the bubble, which is binarized
without affecting the analysis of the study of the evolutionary
behavior of the vapor bubble. Figure 5 (left) is shown in Figure 5
(right) after binarization.

The principle of the binarization process using MATLAB is that
each pixel point in the image is converted into a corresponding value
according to its gray value. In this case, Figure 5 (left), which is a
grayscale image, is saved on a nonlinear scale of 8 bits, with
256 shades of gray, and each pixel is assigned a value in equal
percentages according to its grayscale value. Each pixel is assigned a
value in equal percentages according to its grayscale value, with a
value of 1 for complete black, 0 for complete white, and 0.01 to
0.99 for the rest of the grayscale values. After getting the gray value of
each pixel, a threshold L (0 ≤ L ≤ 1) is set to replace the gray value of
all pixels with a value greater than L with 1, i.e., black, and the gray
value of all pixels with a value less than L with 0, i.e., white. By
appropriately adjusting the size of the threshold L, Figure 5 (left) can
be transformed into a binarized image with only black and white
colors (Figure 5 (right)).

2.2.1.2 Image binary filtering process
Filtering of images removes the interference of non-essential

“noise”. As an image processing algorithm, “median filtering” is
based on the principle that each pixel point in the image is first
numerized, and then each pixel point in the image is processed and
output. The process is to change the pixel value of each original pixel
point to the median of the pixel values in the m×n neighborhood of
the pixel point corresponding to the original image location
contained in the original pixel point. In other words, the pixel
values are changed to the median values in the range of m × n
around each pixel point. In this experiment, the image is binarized,
containing only “0″ and “1″ values, so the median filtered image is
still binarized. In order to remove the “noise” accurately, the median
filtering iteration can be performed.

By setting the corresponding m and n values through themedian
filtering process, the impurities containing a small number of pixels
in the image can be removed. Figure 6 shows the binarized image
after multiple median filtering processes.

As shown in Figure 6, shows the comparison of the binarized
part of the image before and after the median filtering process.
Figure 7 (left) shows the binarized image with the median filtering
process, and Figure 7 (right) shows the binarized image after the
median filtering process, and the most obvious difference between
the left and right images is marked in red circles. It can be seen that
the number of impurities with small pixel content in the binarized
image is significantly reduced after the median filtering process.

2.2.1.3 Morphological open arithmetic
In Figure 6, it can be seen that after the median filtering process,

there are still some impurities with a small number of pixels, but if
the median filtering process is continued, it is necessary to increase
the values of m and n, which could potentially remove the vapor
bubbles with a small area all together. In order to avoid removing
small vapor bubbles, as well as to remove impurities efficiently, a
morphological open operation is performed on the image.

TABLE 2 Test working conditions.

Parameters (unit) Numerical value

Pressure (MPa) 0.1–0.7

Heat flux (kW/m2) 50–300

Mass flux (kg/(m2 -s)) 100–1,500

Inlet subcooling degree (°C) 5–50

FIGURE 4
Flowchart.
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After the morphological open operation, the unclosed vapor
bubbles can be connected to further remove the noise in the image to
obtain Figure 8. Figure 8 shows the image comparison. Figure 9 (left)
shows the binarized image without morphological open operation,
and Figure 9 (right) shows the binarized image after morphological
open operation processing, and the most obvious part of the
difference between the left and right images is marked by red
circles. It can be seen that the number of impurities with small
pixel content in the binarized image is further reduced after the
morphological on operation processing.

After the binarization process, median filtering and
morphological opening operation, the binarized image of the
vapor bubble can be clearly and accurately identified.

2.2.2 Processing of video files
In this study, the processing of video files is firstly split into

frame by frame image files, and then the preliminary processing of
video files is achieved by using the motion relationship between each
frame of the moving target (i.e., vapor bubble) and using the single
picture processing method, after grayscale processing, binarization
processing, binary median filtering and morphological open
operation for two adjacent frames.

This study investigates the vapor bubble evolution behavior of
subcooled flow boiling in a narrow rectangular channel. The main
object of analysis is the vapor bubble nucleation point density and
the vapor bubble detachment frequency, both of which are dynamic
parameters and thus require processing of the video file. Firstly, the
video file is split into frame by frame image files, and then the

FIGURE 5
Original image and binarized image.

FIGURE 6
Median filtered image.
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motion relationship between each frame of the moving target
(i.e., the vapor bubble) is used for the initial processing of the
video file byusing a single image processing method, after grayscale
and binarization processing, binary median filtering, and
morphological open operation processing of the two adjacent
frames.

In this study, the interframe difference method is chosen to
analyze the vapor bubble nucleation point density and vapor bubble
detachment frequency, and the SURF algorithm is combined to

further improve the accuracy. The interframe difference method and
the SURF algorithm will be introduced in the next section with the
specific results of the code.

2.2.2.1 Inter-frame differential method
Since the experimental raw video does not have a complex

optical ratio environment, the inter-frame differencing method can
be used for the analysis and processing of video files. The advantage
of the inter-frame differencing method is that it is good for encoding
moving objects and can achieve motion detection of multiple
moving targets, which is especially suitable for this subject where
there may be 40 to 60 vapor bubble nucleation points in one working
condition. The principle of the interframe difference method is
shown in Figure 10. The specific application steps of the interframe
difference method are:

(1) Video frame acquisition: decompose the video into individual
frames for frame-by-frame processing.

(2) Frame difference calculation: two adjacent frames (current
frame and previous frame) are selected and their pixels are
compared point by point. The difference between each pixel in
the two frames is calculated, which can be done here by
calculating the absolute difference between the pixel values or
the square of the difference. The result is a difference image,
which represents the difference in pixels between the two
frames.

(3) Thresholding: In order to filter out important difference regions
between two frames, the difference image needs to be
thresholded. By setting a suitable threshold value, the pixels
below the threshold in the difference image are set to 0 or other
values that do not interfere with the subsequent study (set to 0 in
this subject), and the pixels above the threshold are retained.

(4) Moving target extraction: After thresholding, the remaining
non-zero pixel regions usually indicate moving objects or
regions.

Specifically to combine this topic, the difference calculation in
the principle of inter-frame difference method (Figure 10) will first
go through a single image processing method, i.e., grayscale
processing, binarization processing, binary median filtering and

FIGURE 7
Comparison before and after median filtering.

FIGURE 8
Image after morphological opening operation.
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morphological open operation. Then the thresholding process is
performed, and the selected threshold is the value that falls within
this interval after certain screening to remove unnecessary vapor
bubbles after the difference processing of the two adjacent frames.
This value, specifically in the original image, is the difference
between the size and position of the vapor bubbles in the two
adjacent frames. Based on the size of the difference, the nucleation
point of the vapor bubble can be determined, and then the density
and detachment frequency of the nucleation point of the vapor
bubble can be determined in the whole video file. In the process of
using the inter-frame difference method, the annotation of the
original video file can be realized, which makes the visualization
better. For example, Figure 11A, is the binarized image of a video file
after differencing the first two frames, and Figure 11B is the
annotation of the difference value in the binarized image after
differencing in the latter frame.

However, the vapor bubbles generated at the nucleation point of
the vapor bubble boiling in the supercooled flow within the narrow
rectangular channel may not have a significant change in
morphology and position for the first few frames of their
generation. As shown in Figure 11B, some very obvious vapor
bubbles are not labeled, and some narrow rectangular boundary
vapor bubbles that do not need to be studied are labeled again. This
requires adjusting the matrix size of the differential study to

minimize the effect of narrow rectangular channel boundaries. As
for the vapor bubbles that are not marked out, this indicates that the
vapor bubble nucleation points will not be identified accurately in
time by using the inter-frame difference method only. Therefore, in
this study, it is necessary to combine other techniques and
algorithms in addition to the inter-frame difference method to
improve the accuracy and performance.

2.2.2.2 SURF algorithm
SURF (Speeded-Up Robust Features) algorithm is an algorithm

used in the field of computer vision for image feature extraction and
matching. It can be used in MATLAB to process image data and
extract stable feature points. The combination of SURF algorithm
and inter-frame difference method is beneficial to the accuracy of
vapor bubble nucleation point recognition. The specific main
application steps and specific principles of SURF algorithm are as
follows:

(1) Scale space construction: The SURF algorithm detects feature
points by constructing the scale space of an image, using a series
of filters at a series of scales.

(2) Key point detection: The SURF algorithm extracts key points by
detecting feature points in the image. Local maxima or minima
are found in different scale spaces, and these extreme points are

FIGURE 9
Comparison of morphology before and after opening operations.

FIGURE 10
Inter-frame differential method schematic.
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usually considered as key points, and the SURF algorithm uses
the second-order partial derivative matrix to locate these key
points.

(3) Direction assignment: To enhance the determinism of feature
points, the SURF algorithm calculates the principal direction for
each key point. This is usually done using a histogram of
gradient directions calculated for the region surrounding the
image.

(4) Feature description: A method based on image integration
image is used toaccelerate the computation of feature
descriptors in the neighborhood of key points according to
their scales and principal directions.

(5) Feature matching: For a given two images, the distance between
theircorresponding feature descriptors is first calculated. Then
the best feature match needs to be determined by choosing an
appropriate threshold to determine whether the distance
between the feature descriptors indicates a reliable match.

As shown in Figure 12, it is the image after processing two
consecutive frames using the SURF algorithm. As can be seen
from the figure, for two consecutive frames, the SURF algorithm
can effectively and accurately identify the feature points in the
image.

2.3 Image parameter extraction and data
validation

In this project, the vapor bubble tracking algorithm analyzes the
evolutionary behavior of vapor bubbles, i.e., the nucleation point
density and detachment frequency of vapor bubbles, by first

determining the diameters and relative positions of all the vapor
bubbles. After determining the density of vapor nucleation points,
all nucleation points are monitored and the number of vapor
bubbles generated in the video length interval is counted to
obtain the detachment frequency of vapor bubbles in the
experimental video. Therefore, determining the number of
nucleation points is the key to determine the density of vapor
bubble nucleation points and the detachment frequency.

FIGURE 11
(A) Image map after differencing; (B) markers in the original image.

FIGURE 12
SURF algorithm to process and label two consecutive frames.
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Before the development of the corresponding bubble tracking
algorithm, the identification of the bubble nucleation points was
done manually. Two software programs, PCC 3.4 and Image-Pro
Plus 6.0, were used for the manual identification, and firstly, the
working condition data captured by the high-speed camera was
re-presented using PCC 3.4 software, as shown in Figure 13.
Because in the original visualization data, each condition was
recorded for 3.6 s. In the actual processing, only the first 9,000 fps
of visualization data, i.e. 0.9 s, was needed. PCC 3.4 was used to
process the original visualization data display, and each
condition was changed to a 0.9 s AVI file. Next, a “scale” was
created using Image-Pro Plus 6.0 software for calibration. The
high-speed camera recorded an image with a pixel width of
384 pixel, while the image has black walls on both sides, and
the actual flow path width is 2 mm, which corresponds to a
calibrated pixel width of 340 pixel as shown in Figure 14.

After all the conditions were stored in AVI format at 0.9 s and
the “scale” was obtained, the video files corresponding to the
studied conditions were then played in Image-Pro Plus 6.0 and
marked accordingly. The obtained results are shown in Figure 15
(left). The visualization data was processed using the vapor
bubble tracking algorithm and the results obtained are shown
in Figure 15 (right). In Figure 15 (right), it can be seen that the
algorithm marks the identified nucleation points, and all the red
circles in the figure are the nucleation points present in the 0.9 s
visualization data for that segment. Once the nucleation points
are located, labeling can be achieved for each nucleation point. By
counting the number of nucleation points and dividing by the
observed area, the density of vapor bubble nucleation points is
obtained. By monitoring each nucleation point, the number of

vapor bubbles generated at each nucleation point is counted and
divided by the count time to obtain the frequency of vapor bubble
detachment at that nucleation point.

In order to verify the accuracy of the vapor bubble tracking
algorithm identification, we selected 10 experiments under different
working conditions, and the number of nucleation points under
these 10 different working conditions, the algorithm identification
and manual identification were performed, and the two were
compared, and the relative errors of the two were based on the
manual identification results. The results are shown in Table 3.

The number of vapor bubble nucleation points identified by the
two approaches is shown in Figure 16 (left), and the errors are shown
in Figure 16 (right). The relative errors of the 2 approaches can be
controlled within 10%, with an average value of 4.56%. This
indicates that the identification accuracy of the vapor bubble
tracking algorithm is good and can be used for the study of the
evolutionary behavior of vapor bubbles in a narrow rectangular
channel with subcooled flow boiling. It can also be seen from
Figure 16 (left) that the overall number of nucleation points
identified manually is higher than that identified by the
algorithm, mainly because algorithmic identification always has a
certain degree of omission, while manual identification does not
produce such errors. This also illustrates the effectiveness and high
error tolerance of algorithmic recognition.

3 Experimental data analysis

The data analysis of this experiment at is divided into two
parts, the effect of different experimental conditions on the

FIGURE 13
PCC 3.4 for visual data processing.
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density of the nucleation point of the vapor bubble and the effect
on the detachment frequency of the vapor bubble. The variables
of the experimental conditions in this study include subcooling,
mass flow rate and heating density, and the variation of the
evolutionary behavior of the vapor bubble will be investigated by
combining these three variables. The experimental data are
obtained by the vapor bubble tracking algorithm and then put
into Origin 2018, and the data are organized by Origin 2018.

3.1 Factors influencing the density of the
nucleation point of the vapor bubble

In this experiment, we studied a flow channel area of
7.144 mm2. If the unit of nucleation point density is set to
“pcs/mm2 ″, only a few values are obtained after the analysis
of the vapor bubble tracking algorithm, which is too small and
not intuitive enough. In order to ensure the intuitiveness of the
plot, the unit of the nucleation point density of the vapor bubble
is set to “pcs/cm2 ".

The effect of the heating density on the nucleation point
density of the vapor bubble is analyzed by varying the heating
density while keeping the mass flow rate and the inlet subcooling

constant. As shown in Figure 17 (left), the variation of bubble
nucleation point density with heating density is shown for a
constant mass flow rate and subcooling at a pressure of p =
0.1 MPa. It can be seen from Figure 17 (left) that the vapor bubble
nucleation point density increases with the increase of heating
density. This is mainly because as the heating density increases,
the temperature of the wall in direct contact with the liquid will
also increase, and the superheated wall in turn provides a heat
source for vapor bubble growth. This allows more nucleation
points on the superheated wall to reach the conditions for
vaporization, resulting in vapor bubbles. The sensitivity of the
vapor bubble nucleation point density to the heating density is
high, and when the heating density changes rapidly, the vapor
bubble nucleation point density also changes with a large trend.
When the heating density changes from about 160 kW/m2 to
240 kW/m2, the vapor bubble nucleation point density will
change from about 200 nucleation points/cm2 to about
800 nucleation points/cm2, which is a 4-fold change.

The influence of the vapor bubble nucleation point density
was investigated by varying the subcooling degree while keeping
the mass flow rate and heating density constant. As shown in
Figure 17 (middle), the variation of bubble nucleation point
density with subcooling degree is plotted for a constant mass
flow rate and heating density at a pressure p = 0.1 MPa. It can be
seen from Figure 17 (middle) that the bubble nucleation point
density increases with the increase of the mainstream subcooling
degree. This is due to the fact that the larger the mainstream
subcooling degree, the larger the average temperature of the fluid
in the experimental body, and the smaller the heat transfer
coefficient of the fluid to the wall, resulting in a rise in the
wall temperature. This causes the number of vapor bubble
nucleation points to rise, so the change in mainstream water
temperature also changes the density of vapor bubble nucleation
points by affecting the wall superheat. The sensitivity of vapor
bubble nucleation point density to subcooling degree is low,
when the subcooling degree changes, the vapor bubble
nucleation point density has a certain change.

As shown in Figure 17 (right), the variation of the vapor
bubble nucleation point density with mass flow rate is plotted for
the operating conditions of pressure p = 0.1 MPa, constant
heating density and subcooling degree. From Figure 17
(right), we can see that the vapor bubble nucleation point
density decreases with the increase of mass flow rate. This is
due to the fact that when the mass flow rate is higher, the heat
transfer coefficient increases, the wall superheat decreases, and
the wall cavities do not reach the vaporization conditions, so the
number of bubble nucleation points decreases. Moreover, the
mass flow rate has a small effect on the density of vapor bubble
nucleation points, which is mainly changed by affecting the wall
superheat.

In summary, the heating density has the most significant effect
on the bubble nucleation point density, mainly because it directly
changes the temperature of the wall in contact with the fluid, which
leads to the change of the bubble nucleation point density, while the
mass flow rate and the mainstream subcooling have a smaller effect
on the bubble nucleation point density, mainly because of its effect
on the wall superheat, which indirectly changes the bubble
nucleation point density. Among them, heating density and

FIGURE 14
Distance calibration in Image-Pro Plus 6.0.
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mainstream subcooling are positively correlated to the bubble
nucleation point density, and the larger the value of these two
parameters, the larger the bubble nucleation point density; mass flow

rate is negatively correlated to the bubble nucleation point density,
and the larger the mass flow rate, the smaller the bubble nucleation
point density.

FIGURE 15
Marking of nucleated points by artificial recognition.

TABLE 3 Number of manual recognition and algorithm recognition and relative error.

Condition No. Algorithm identification (pcs) Manual identification (pcs) Relative error (%)

1 37 40 7.50

2 32 33 3.03

3 33 35 5.71

4 39 41 4.88

5 46 49 6.12

6 38 40 5.00

7 40 40 0.00

8 35 36 2.78

9 33 35 5.71

10 39 41 4.88

Average value 37.2 39 4.56
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3.2 Factors influencing the bubble
detachment frequency

In this experiment, the high-speed camera was recorded at
10,000 fps, and we studied the vapor bubble detachment
frequency in 9,000 fps, i.e., the vapor bubble detachment
frequency in 0.9 s. In this 0.9 s, most of the nucleation sites have
only 1 to 5 bubbles, and the detachment frequencies range from
1.11/s to 5.56/s. The lower detachment frequencies make it difficult
to summarize the heat transfer characteristics in supercooled
boiling. Therefore, in the study of the bubble detachment
frequency, it is necessary to focus on the relationship between
the nucleation point with higher bubble detachment frequency
and the experimental conditions. Among the experimental
conditions, the maximum number of bubble nucleation points
was 67 and the minimum number was 9. The eight high vapor
bubble detachment frequency points, common to all the
experimental conditions, were selected and averaged to study
their variation under different experimental conditions.

As shown in Figure 18 (left), the variation of vapor bubble
detachment frequency with heating density for a constant mass flow
rate and subcooling degree at a pressure p = 0.1 MPa. It can be seen
from Figure 18 (left) that the bubble detachment frequency increases
with the increase of heating density. This is mainly because the
heating density increases, the temperature of the wall in direct
contact with the liquid increases, and the superheated wall
provides a heat source for bubble growth, which promotes
bubble generation and thus increases the number of detached
bubbles. The frequency of vapor bubble detachment varies more
significantly with the heating density.

As shown in Figure 18 (middle), the variation of bubble
detachment frequency with subcooling degree for a constant
heating density and mass flow rate at a pressure p = 0.1 MPa is
plotted. From Figure 18 (middle), it can be seen that the bubble
detachment frequency increases with the increase of inlet
subcooling. The reason for this is that the increase in
mainstream subcooling eventually leads to an increase in wall
temperature, which results in faster bubble growth.

FIGURE 16
Comparison of manual recognition and algorithm recognition.

FIGURE 17
Variation of bubble nucleation point density with various parameters.
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As shown in Figure 18 (right), the variation of bubble
detachment frequency with mass flow rate is plotted for a
constant heating density and subcooling at a pressure p =
0.1 MPa. From Figure 18 (right), we can see that the bubble
detachment frequency decreases with the increase of the mass
flow rate. On the one hand, this is due to the fact that when the
mass flow rate is larger, the heat transfer coefficient increases and the
wall superheat decreases, which makes the bubble growth slow; on
the other hand, it is because the bubble is subjected to stronger
traction as the mass flow rate increases, so the bubble may detach
before it has fully grown to its maximum diameter, resulting in a
decrease in the number of bubble detachments.

In summary, has a significant effect on the bubble breakaway
frequency because it directly changes the temperature of the wall in
contact with the fluid, which leads to a change in the bubble
breakaway frequency, while the mass flow rate and the
mainstream subcooling have a certain effect on the bubble
breakaway frequency because of their effect on the wall
superheat, which indirectly changes the bubble breakaway
frequency. The higher the value of these two parameters, the
higher the bubble breakout frequency; the higher the mass flow
rate, the lower the bubble breakout frequency.

4 Empirical relational establishment

Based on the analysis and processing of the experimental results,
we derived the basic influencing factors of vapor bubble nucleation
point density and vapor bubble detachment frequency. By
combining the previous studies with the relevant parameters of
this experiment, the corresponding empirical relationship equation
is proposed and established in this study.

4.1 Empirical equation for the density of the
nucleation point of the vapor bubble

It is clear that the vapor bubble nucleation point density Na is
positively related to the subcooling degree ΔT and the heating
density q, and negatively related to the mass flow rate G.

Numerous other covariates are involved in setting up the
experimental study of this subject. Based on the results of the
reference to the previous studies, the derived quantitative
legalized relations, combined with the covariates involved in this
experiment, are as in Equation 1:

Na �
ΔTρgq
σTwGDl

(1)

Where: Dl - Narrow rectangular channel feature size.
Tw - Wall surface temperature.
σ - Surface tension of saturated liquid.
ρg - Density of the gas.
Referring to the existing research model, it is presumed that the

empirical relationship equation should be in exponential form.
Therefore, Equation 1 is dimensionless, so that its constant
coefficient is m and exponential coefficient is n, and Equation 2
is obtained:

NaD
2
l � m

ΔTρgq
σTwG

Dl( )n

(2)

According to the experimental conditions, it is known that the
characteristic sizeDl of the narrow rectangular channel is 0.00364 m,
the wall temperature Tw is taken as 140°C, the surface tension σ of
the saturated liquid is 0.072 N/m, and the gas density ρg is 1.12 kg/
m2. Substituting the data into Eq. (2) and taking the logarithm, the
resulting data are fitted by substitution to obtain Figure 19. From
Figure 19, it can be seen that the data of the vapor bubble nucleation
point density The data are roughly linearly distributed and thus a
linear fit is used, where the correlation of the linear fit R2 = 0.65.
Based on the slope and intercept values of the linear fit curve, m =
74.245 and n = 1.673 in Eq. (2) can be obtained. By substituting the
values of m and n into Eq. (2), the empirical relationship for the
vapor bubble nucleation point density (3) is obtained as follows.

Na � 1
D2

l

74.245
ΔTρgq
σTwG

Dl( )1.673

(3)

Equation 3 was next validated. Using the experimental values as
horizontal coordinates and the model predictions for the
corresponding conditions as vertical coordinates, the image is

FIGURE 18
Variation of bubble detachment frequency with various parameters.
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plotted as shown in Figure 20. The two pink lines in Figure 20 are
the ±30% error values. From the figure, it can be seen that all values
basically lie between the two pink ±30% error lines, and the
empirical relationship formula predicts well.

4.2 Empirical relation of bubble detachment
frequency

The bubble detachment frequency 1/f is positively related to the
subcooling degree ΔT and the heating density q, and negatively
related to the mass flow rate G. Numerous other covariates were
involved in setting up the experimental study of this topic. Based on
the results of the reference to the previous studies, the derived

quantitative legalized relations, combinedwith the covariates
involved in this experiment, are as in Equation 4:

1
f
� ΔTq2
σhfgTwG

(4)

Where: hfg - latent heat of vaporization.
Tw - Wall surface temperature.
σ - Surface tension of saturated liquid.
ρg - Density of the gas.
Referring to the existing research model, it is presumed that the

empirical relationship equation should be in exponential form.
Therefore, Equation 5 is dimensionless, so that its constant
coefficient is m and exponential coefficient is n, and Equation 5
is obtained:

1
f

Dl

h0.5fg
� m

DlΔTq2
σh1.5fgTwG

⎛⎝ ⎞⎠n

(5)

According to the experimental conditions, the characteristic
size Dl of the narrow rectangular channel is 0.00364 m, the wall
temperature Tw is taken as 140°C, the surface tension σ of the
saturated liquid is 0.072 N/m, the gas density ρg is 1.12 kg/m2,
and the latent heat of vaporization hfg is 2,257 kJ/kg. The data are
substituted into Equation 5 and taken as logarithm, and the
resulting data are fitted by substitution to obtain Figure 21 shows
that the data of vapor bubble detachment frequency are roughly
linearly distributed, and thus a linear fit is used, where the
correlation of the linear fit R2 = 058. Based on the slope and
intercept values of the linear fit curve, m = 0.398 and n = 0.815 in
Eq. 5 can be obtained. By substituting the values of m and n into
Eq. 5, the empirical relationship for the density of vapor bubble
nucleation points (6) is obtained as follows:

1
f
� h0.5fg

Dl
0.39768

DlΔTq2
σh1.5fgTwG

⎛⎝ ⎞⎠0.815

(6)

FIGURE 19
Fitting image of vapor bubble nucleation point density data.

FIGURE 20
Validation of experimental values against empirical relational
predictions.

FIGURE 21
Fitting image of vapor bubble detachment frequency data.
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Equation 6 was next validated. Using the experimental values
as horizontal coordinates and the model predicted values under
the corresponding conditions as vertical coordinates, the image is
plotted as shown in Figure 22. The two pink lines in Figure 22 are
the ±30% error values. From the figure, it can be seen that all
values basically lie between the two pink ±30% error lines, and
the empirical relationship formula predicts well.

5 Conclusion

(1) The heating density and mainstream subcooling have a
positive correlation with the density and detachment
frequency of bubble nucleation points. The larger the
values of these two parameters, the higher the density and
detachment frequency of bubble nucleation points; There is a
negative correlation between mass flow rate and bubble
nucleation point density. The higher the mass flow rate,
the smaller the bubble nucleation point density and
detachment frequency. The heating density has the most

significant impact on the two parameters because it
directly changes the temperature of the wall in contact
with the fluid; The influence of mass flow rate and
mainstream subcooling on the two parameters is relatively
small, mainly due to their indirect effect on wall superheat.

(2) In addition to the relationship between the experimental
parameters and the bubble evolution behavior, based on the
existing research model and the experimental data obtained, the
Empirical relationship between the bubble nucleation point
density and the bubble separation frequency was fitted. The
two Empirical relationship are in good agreement with the
experimental values, and the error can be controlled
within ± 30%
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