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To achieve high-precision and high-stability detection of wind speed and
direction in complex environments, this research proposes a dual closed-loop
control scanning technique for the wind sensor system based on the acoustic
resonance principle. This technique has been found to significantly enhance the
system’s performance indicators. The acoustic resonance method used on wind
sensors allows for the simultaneous modulation of frequency and intensity of
signals generated by the transducer, resulting in linear scanning of the ultrasonic
transducer. Frequency modulation resolves the issue of a resonance frequency
shift caused by environmental factors like pressure and temperature, while
intensity modulation addresses transducer performance degradation over time
and can significantly improve the signal-to-noise ratio. However, when
confronted with issues such as wind shear, the rapid change in the ambient
pressure of the wind sensor may lead to the failure of the frequency modulation,
followed by the change in the rate of wind shear, resulting in significant errors in
wind speed detection. Therefore, the dual closed-loop control method is used to
combine the frequency scanning modes—the slow and long scanning and the
short and fast scanning. The slow and long scanning is used to solve the resonance
frequency shift caused by various slow external changes and achieve frequency
following, while the short and fast scanning resolves the resonance frequency shift
resulting from rapid changes in wind shear and achieves rapid frequency
following. Experimental results demonstrate that the scanning method
employing dual closed-loop control can accurately measure wind speed and
direction. The wind speed measurement range is 0–50m/s, with a measurement
accuracy of ±0.3 m/s (≤15 m/s)/±4% (>15 m/s), while the wind direction
measurement range is 0°–360°, with a measurement accuracy of ±3°. After
improvements, the system has high accuracy and stability and strong anti-
interference ability and is less affected by environmental changes in complex
environments.
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1 Introduction

Wind, the movement of air, is one of the most ubiquitous
natural phenomena in the world. Wind speed, typically expressed
in meters per second (m/s), measures the relative motion of flowing
air with respect to a fixed point on the Earth’s surface. Accurate wind
speed measurements are crucial in various fields, including
meteorology, military operations, maritime navigation, aviation,
wind power generation, railway bridge design, and urban and
forest firefighting. In meteorology, continuous monitoring of
wind speed and direction is necessary for weather stations to
guide travelers and issue timely disaster warnings. In military
applications, wind speed and direction adjustments are crucial
for activities such as firing artillery and sniper shooting to
improve accuracy. During maritime navigation, ships must adjust
their speed and direction in response to real-time wind speed to
ensure the safety of people, cargos, and ships (Bruus et al., 2011; Xie
et al., 2014; Yin et al., 2017; Assouar et al., 2018; Yin et al., 2019; Hu
et al., 2022). In aviation and aerospace, understanding the impact of
wind force on aircraft during takeoff, landing, and flight is critical for
safe operations. In firefighting, having the knowledge of wind speed
and direction is essential for the development of rescue plans and the
protection of firefighters’ safety. In short, wind speed detection is
crucial in various fields, with an urgent practical demand in daily
production and life. Wind speed detection devices can be classified
into mechanical, thermosensitive, ultrasonic, and optical types.
Among them, ultrasonic wind sensors are popular due to their
stability and reliability, as they lack rotating components.
Techniques such as time difference, phase difference, and
Doppler methods are used to measure wind speed and direction
in the field of ultrasonic wind detection. Recent research has focused
on enhancing detection accuracy and ensuring system stability and
anti-interference capabilities (Huang et al., 2009; Chen and Huang,
2015; Zhu and Semperlotti, 2016; Leng et al., 2019; Li et al., 2020; Xia
et al., 2022). However, environmental temperature interference,
sudden wind speed changes, and ultrasonic transducer
performance can significantly affect detection accuracy in
practical detection processes (Nguyen et al., 2020; Van et al., 2021).

2 Principles of wind sensor system
detection

2.1 Principle of acoustic resonance-based
ultrasonic wind detection

One of the fundamental approaches for measuring wind speed
and direction is through the time difference-based ultrasonic
detection method. Traditionally, there are two main models of
this method: opposite and reflectional.

The basic principle of sound resonance is based on the
interference between sound waves. When sound waves
encounter a specific height within panels with no edges, they
undergo repeated reflection and superposition, resulting in a
stable state that greatly enhances the sound signal. Each wind
sensor comprises three transducer units positioned in an
equilateral triangle configuration. The net phase difference of
each transmit/receive transducer pair reveals the airflow pattern

along the axis where the transducer pair is located.
Consequently, the detection data obtained from the three
transducer units enable the determination of the vector
components of airflow along each side of the triangle (Thorp
et al., 2001; Leng et al., 2020).

In this research, the acoustic resonance-based ultrasonic phase-shift
method is employed, as shown in Figure 1. As shown in the figure, when
wind blows in the direction indicated, a greater wind speed results in a
larger shift of the ultrasonic wave, whereas a smaller wind speed causes a
smaller shift. These linear differences in ultrasonic beam shifting affect
the time and phase of the ultrasonic waves received by the transducers
(Airoldi and Ruzzene, 2011; Chen et al., 2013; Wen et al., 2016). By
measuring the time or phase shift received by the transducers and
analyzing the data, the corresponding wind speed and direction
information can be determined.

2.2 Principle of closed-loop control
modulation

To ensure that the wind sensor operates at its optimal resonance,
closed-loop control modulation is required based on the principles
of wind detection and the selection of resonant wavelength, where
different resonance frequencies correspond to different
temperatures and pressures.

In order to drive the ultrasonic transducer for frequency
scanning, a closed-loop control method of frequency scanning is
adopted, as shown in Figure 2, by combining the Lorentz line shape
of the ultrasonic transducer at the central wavelength. In this figure,
λ1 refers to the frequency spectrum line that can generate an
acoustic resonance at a specific temperature and pressure (Li
et al., 2013; Tang et al., 2014; Cummer et al., 2016).
λ2 represents the scanning frequency of the ultrasonic transducer
corresponding to λ1, and λ0 is the center frequency corresponding
to the strongest resonance. The ultrasonic transducer driving voltage
is scanned to achieve the frequency scanning corresponding to λ2,
which covers the frequency spectrum line corresponding to λ1 so as
to achieve acoustic resonance.

To cope with resonance shifting problems, a frequency
modulation signal is used as the ultrasonic transducer driving
voltage. This causes a change in the sound velocity of the
transducer at different temperatures and pressures, leading to a
variation in the wavelength (Yang M et al., 2017). Additionally, the
frequency drift of the transducer is considered when calculating the
wavelength, resulting in the following formula:

λ � λ0 + kT × λT × T + kp × λp × P.

Here, λ0 represents the starting wavelength of the transducer. kT
and kp are the typical coefficients under different temperature and
humidity conditions, respectively. λT and λp represent the
wavelength drift values under different temperature and humidity
conditions, respectively. T and P represent the temperature and
pressure values in different environments, respectively. By selecting
a reasonable wavelength modulation range λm which fully covers the
wavelengths that can form resonance under different temperatures
and pressures, the wavelength-modulated curve of the sound signal
emitted by the ultrasonic transducer can be obtained, as shown in
Figure 3.
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2.3 Theoretical comparison and analysis of
single and dual closed-loop control tests

The single closed-loop control method involves performing
wavelength and frequency scanning across the entire temperature
range. The frequency scanning range is from 30 kHz to 40 kHz, with
a forward step of 100 Hz per scan. The scanning cycle is long, and
after each scan is completed, the corresponding resonant frequency
is re-calculated. The process is shown in Figure 4.

In each cycle, resonance can only occur at specific frequency points
due to different temperatures and pressures (Song et al., 2014;Wu et al.,
2016; Long et al., 2018; Chen et al., 2019). The frequency points of each

cycle will vary. As shown in the aforementioned figure, the resonance
frequency point is fa in cycle 1, fb in cycle 2, and fc in cycle 3. The
frequency point will shift in each cycle due to varying temperature and
pressure conditions.

In practical applications, temperature changes slowly, and the single
closed-loop control approach with full-range scanning can adapt to these
changes. However, high wind speeds can cause rapid changes in pressure,
which leads to a quick shift in the resonance frequency point during
detection. To address this issue, a dual closed-loop control method is
proposed (Liu et al., 2000; Li et al., 2013; Zhang et al., 2016). The method
involves full-range scanning at the beginning to confirm the resonance
frequency point. Afterward, a narrow-band fast scanning centered on the
point is combined with full-range scanning. This approach ensures the
accuracy of the resonance frequency point and can quickly follow the
point in the case of rapid changes, such as high wind speeds.

2.4 Implementation approach of dual
closed-loop control

To achieve the goal of dual closed-loop control, a segmented
scanning approach is adopted based on the scanning characteristics
of the full temperature range. This approach combines full-range
scanning with narrow-range fast scanning. The schematic
representation of the dual closed-loop control is shown in Figure 5.

During thefirst cycle T, a full-range scan is performed to determine the
resonance frequency point fa. Once determined, a narrow-range scan from
fb to fc is performedduring theperiod fromT to t1. Subsequent cycles from
t1 to t2, t2 to t3, t3 to t4, t4 to t5, t5 to t6, and t6 to t7 involve fast scanning
based on the frequency point to track real-time changes. Additionally,
during the period from T to t1, full-range scanning is conducted to
combine the narrow-range scanning with full-range scanning. After the
dual closed-loop control scanning is completed, the point of the narrow-
range scanning is fn and that of full-range scanning is fG.

Based on the features of the external environment, temperature
changes slowly, while pressure shows a time-varying behavior.
When |fn-fG|≤500 Hz, it is considered that the fast scanning is
effectively tracking the point, matching the temperature and
pressure conditions. Therefore, in the next scanning, the
frequency resonance point will be set to fn. However, if |fn-fG|
>500 Hz, it is considered that the fast scanning has shifted from the
resonance frequency point due to large shifting caused by rapid
changes in pressure. In this case, the next scanning will use fG as the
resonance frequency point.

FIGURE 1
(A) Principle of ultrasonic detection of wind speed and direction; (B) principle of ultrasonic phase-shift detection of wind speed and direction.

FIGURE 2
Principle of closed-loop control modulation.

FIGURE 3
Ultrasonic transducer wavelength modulation curve.
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In the wind sensor experiment, an ultrasonic transducer with a
center frequency of 40 kHz was used for scanning. The full-range
scan width was 10 kHz (30 kHz–40 kHz), and the narrow-range
scan width was 300 Hz. The dual closed-loop control method was
able to fully achieve the desired effect (García-Chocano et al., 2012).

3 Design and structure of the wind
sensor system

3.1 Overall structure diagram

The overall block diagram of the dual closed-loop controlled
wind sensor system is shown in Figure 6, which includes the signal
excitation unit, transceiver unit, signal processing unit, and central
processing unit. The overall system structure diagram is shown in
Figure 7, which includes the top cover, pressure cover, transducer-
driving circuit, transducer, transducer seat, resonance cavity, signal
processing circuit, and main fixed seat.

3.2 Design for dual closed-loop control
implementation

The specific implementation of the dual closed-loop control is
shown in Figure 8, which involves the following steps: full-spectrum
scanning, narrow-band scanning, transducer excitation driving, and

signal demodulation. The entire process of dual closed-loop control
is as follows: the main control module provides a periodic signal
with a specific frequency to the excitation driver, which forms a
corresponding frequency driving to drive the transducer. First, the
full-spectrum scanning is performed, and then, the signal
demodulation is performed during the scanning. The CPU
calculates the corresponding frequency point fa using the model.
Subsequently, with fa as the center point, the narrow-band scan
from fb to fc is performed, accompanied by full-spectrum scanning
to achieve dual closed-loop control (Li et al., 2016).

Currently, the full-spectrum scanning width of the system is
30 kHz–40 kHz, with a step of 100 Hz, and the narrow-band
scanning width is fa ±300 Hz, with a step of 20 Hz.

4 Experimental test results

4.1 Comparison of results from single and
dual closed-loop control tests

Experimental testing was conducted using the system
introduced previously, and the voltage signal output graphs for
both single-loop and double-loop control systems were observed.

The experiment’s results are presented in the following figures:
Figure 9 shows the voltage signal waveform of acoustic resonance
during full-domain scanning, indicating that different frequencies
correspond to different amplitudes. Figure 10 shows the formation

FIGURE 4
(A) Single closed-loop control modulation; (B) single closed-loop control resonance frequency shift.

FIGURE 5
Dual closed-loop control.
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of the feedback fish-shaped waveform at the resonance frequency
point. In contrast, Figure 11 shows the voltage signal waveform
formed under single closed-loop control, demonstrating that single

closed-loop control is incapable of forming a group of fish-shaped
waveforms and is unable to track frequency changes quickly. Finally,
Figure 12 shows the voltage signal waveform formed under dual
closed-loop control, demonstrating the formation of a group of fish-
shaped waveforms and the achievement of narrow-domain
scanning. This approach can quickly track the frequency changes
causing the frequency resonance point to rapidly change.

Based on the experimental results shown in the figures, it is
evident that the dual closed-loop control system effectively
addresses the resonance frequency point shifting caused by
external changes.

4.2 Calibration experiments and result
analysis of the dual closed-loop-controlled
wind sensor

Tests were conducted at wind speeds of 0.00 m/s, 3.50 m/s,
10.00 m/s, 20.00 m/s, 34.00 m/s, and 50.00 m/s under the states of

FIGURE 6
Overall block diagram of the wind sensor system.

FIGURE 7
Overall structure diagram of the wind sensor system.

Frontiers in Energy Research frontiersin.org05

Zeng et al. 10.3389/fenrg.2023.1224047

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1224047


single closed-loop control and dual closed-loop control. For each
wind speed, at least 1,000 measurements were taken, and typical
values were selected for linear fitting and regression calibration,
which demonstrated linear features. The corresponding digital
values for each wind speed are listed in Table 1, and the fitting
curves are shown in Figure 13.

The corresponding digital values under the condition of
50.00 m/s are listed in Table 2, and the trend of detection
changes under the condition of 50.00 m/s is shown in
Figure 14.

Figure 13 shows that the dual closed-loop control exhibits good
linearity between the measured wind speed and the standard wind
speed at different wind speeds, whereas the single closed-loop
control shows larger shifting from the standard line. Upon
calculation, the maximum shifting corresponding to the standard

wind speed is 0.96% under the dual closed-loop control, which is
significantly lower than the maximum shifting of 7.74% observed in
the single closed-loop control. This indicates a significant
enhancement in the system’s accuracy.

FIGURE 8
Block diagram of dual closed-loop control.

FIGURE 9
Voltage signal waveform under full-domain scanning.

FIGURE 10
Voltage signal waveform at the resonance frequency point.

FIGURE 11
Under single closed-loop control.

FIGURE 12
Under dual closed-loop control.
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Table 2 and Figure 14 show that at the wind speed of 50.00 m/s, the
maximum shifting of the dual closed-loop control relative to the
standard value is 3.06%, which is significantly lower than the

maximum shifting of 10.47% observed in the single closed-loop
control. This demonstrates that the stability of the system has been
greatly improved with the implementation of dual closed-loop control.

TABLE 1 Digital values corresponding to different concentrations of methane.

Wind speed (m/s) Single closed-loop control (m/s) Dual closed-loop control (m/s) Number of measurements

0.00 0.06 0.03 1,000

3.50 3.62 3.63 1,000

10.00 10.05 10.05 1,000

20.00 20.30 20.10 1,000

34.00 35.28 33.71 1,000

50.00 46.13 49.52 1,000

FIGURE 13
Comparison of typical values of wind speed between single and dual closed-loop control states.

TABLE 2 Corresponding digital values at the speed of 50.00 m/s.

Frequency of detection Single closed-loop control Dual closed-loop control

1 46.13 49.52

2 47.56 50.12

3 49.03 51.26

4 50.60 50.31

5 52.41 49.11

6 52.98 48.69

7 54.86 49.91

8 55.37 50.12

9 51.25 51.53

10 47.53 50.29

. . .. . . . . .. . . . . .. . .
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5 Conclusion

1. The proposed dual closed-loop control method addresses the
issue of resonance frequency shifting caused by environmental
factors, such as pressure and temperature, and solves the problem
of large wind speed measurement errors caused by the inability of
frequency modulation to keep up with the rapid changes in wind
shear. Compared with single closed-loop control, this method
improves the wind speed detection accuracy from ±10% to ±4%
and enhances the system’s adaptability to the environment. This
research has improved the reliability and complexity of the wind
sensor measurement model without increasing power
consumption or cost.

2. By using the dual closed-loop control method, a wind sensor for
better speed and direction detection was designed and tested.
Experimental results show that the system using this method had
good data repeatability, with a maximum relative error of 3.06%.

3. Under low wind speed conditions, the wind speed linearity is
high. However, under high wind speed conditions, higher
accuracy can be achieved by data compensation.
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FIGURE 14
Trend of detection changes at the speed of 50.00 m/s.
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