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1 Introduction

Due to global low-carbon and environmental concerns, modern power grids are
gradually dominated by various renewable energy sources (RESs) (Yu et al., 2022).
Nevertheless, large-scale grid connection of RESs significantly impacts operational stability
and reliability of power grids due to intrinsic intermittence and volatility from RESs
(Impram et al., 2020), resulting in remarkable renewable energy curtailments in recent
years. In particular, the wind and solar power curtailment rates in the “Three-North”
(i.e., northeast, north, and northwest) regions in China reached 17.1% and 10% in 2016,
respectively (Zhang X. et al., 2021). Generally, the hosting capacity of renewable energy is
inevitably affected by multiple factors related to power grid infrastructure planning, such
as the location of RESs (Yang and Xia, 2022), inter-regional transmission capacity (Li et al.,
2019), peak-valley load difference (Li et al., 2022), and extreme climates (Cao et al., 2022).
Reasonable power grid infrastructure investments could increase the system flexibility and
hosting capacity of renewable energy to mitigate the adverse impacts caused by high shares
of grid-connected RESs. Consequently, this study aims to provide insightful perspectives and
discussions on the power grid infrastructure investments for promoting the accommodation
capacity of renewable energy.

The opinions of this study are twofold as follows: 1) a brief survey on prioritizing
power grid infrastructure investments for upgrading the hosting capacity of RESs in
China is presented, and two evaluation indicators, namely, system flexibility and RES
accommodation factor, are then formulated to express the coordination degree of renewable
energy installations and investment in upgrading grid infrastructure; 2) a capsule network-
driven forecasting method is proposed to deduce the dynamic variation of the RES
hosting capacity under a given grid infrastructure investment plan, thereby facilitating the
coordinated allocation of renewable energy and grid infrastructure investments to promote
the RES accommodation.

2 Prioritizing infrastructure investments for grid
connection of renewable energy in China

Over the past decades, China, a global leader in boosting renewable energy
investments,has raised the total installed capacity of RESs by 80 times (Yang and Xia, 2022).
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By the end of 2022, the total installed capacity of grid-
connected photovoltaic and wind generation in China reached
365 and 393 GW, respectively, ranking first among worldwide
countries (The State Council of the People’s Republic of China,
2020). However, the problems with wind and solar power
curtailments are severe in Northwest China. For instance, the
wind (solar) power curtailment climbed to 43% (30.45%) and
38% (32.23%) in Gansu and Xinjiang provinces, China, in 2016,
respectively (Zhang X. et al., 2021). The primary reasons for the
massive renewable energy curtailment in China are threefold:
1) there are significant differences in resource endowments and
load demand between eastern and western regions in China, and
resource-rich provinces generally have an oversupply of electricity;
2) The insufficient peak shaving capacity limits the integration of
large-scale RESs into the existing power grids (Wang et al., 2020);
3) the construction of the inter-regional transmission infrastructure
fails to match the rapid growth of renewable energy installations
(Yang et al., 2021).

In recent years, China has struggled to prioritize infrastructure
investments in developing inter-regional transmission channels,
enhancing thermal plant flexibility, and deploying energy storage
systems. The infrastructure investments in the inter-regional
ultra-high-voltage transmission networks have reached $35.4
billion from 2020 to 2022 (Ke et al., 2022). The State Grid
Corporation of China (SGCC) reported that the ultra-high-voltage
projects had accumulatively transmitted 28.346 million TWh of
electrical power in 2022, an increase of 36.51% compared to
2020. Meanwhile, the deployment of energy storage systems, an
essential measure to enhance power grid flexibility, is rapidly
expanding. At the end of 2022, the newly installed capacity of
energy storage projects in China has grown to 16.5 GW and
increased five times over 2020 with a total investment of $393
billion (The State Council of the People’s Republic of China, 2020).
Consequently, on average, the curtailment rates of wind/solar
power in China decreased from 2.0%/3.5% in 2020 to 1.7%/3.2%
in 2022 (Ke et al., 2022). With the accelerated implementation
of renewable energy integrations, various RES plants, including
offshore wind power, geothermal energy, and wave and tidal
energy, will expand impressively in the coastal and rural regions to
decarbonize energy systems in China (The National Development
and Reform Commission, 2022).

3 Coordination of renewable energy
and the grid upgrading infrastructure
investments

In recent years, the extension and upgrade of existing power
grids cannot match the rapid growth of grid-connected RES
installations, leading to substantial curtailment of wind and
solar energy (Yu et al., 2022). Hence, sufficient investments for
hosting renewable energy and upgrading grid infrastructures
should be equitably allocated to effectively accommodate a high
share of variable RESs. In addition, the interaction of source,
grid, load, and storage enables system flexibility enhancement.
Based on this, coordination evaluation indicators should be
presented to characterize the mutual adaptability and compatibility
between renewable energy installations and power grid planning
(Zhang et al., 2016).

Systemflexibility is a crucial coordination indicator for assessing
the ability to copewith uncertainties from solar andwind generation
(Impram et al., 2020). In addition to the reserve capacity of power
generators and transmission lines, energy storage systems and
demand response are also becoming valuable sources of system
flexibility. The flexibility of the power system FS is presented as
follows:

{{{{{
{{{{{
{

FS = λG

NG

∑
i=1

PGi + λE

NE
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k=1

PEk + λT

NT
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l=1

PTl + λD
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PDm,

λH =
2
π
arctan[

NH
NH
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(PHj−PHj)

2],H ∈ {G,E,T,D},
(1)

where G, E, T, and D denote the set of power system flexibility
sources of conventional generation units, energy storage system,
transmission lines, and demand response sources, respectively; λG,
λE, λT, and λD denote the weight of each flexibility source, which is
expressed in terms of normalized distributional equilibrium degree;
NG, NE, NT, and ND denote the amount of each flexibility source;
PGi, PEk, PTl, and PDm denote the reserve capacity provided by
the generation unit i, energy storage unit k, transmission line l,
and demand response source m, respectively; and PHj denotes the
average reserve capacity of the whole set of each flexibility source.

On the other hand, the renewable energy accommodation
capacity factor φ is also a coordination indicator to represent
the renewable energy carrying capacity of power systems
(Zhang Z. et al., 2021), taking into consideration the load level, peak
shaving capacity, and reserve capacity of conventional generation
units, as follows:

φ =
PL + PO −

NG

∑
i=1
[PGi(1− αGi)]

PRES
(2)

where PL denotes the average system load, PO is the inter-regional
delivery electricity, αGi denotes the average peak shaving rate of
conventional generation unit i, and PRES denotes the renewable
energy installation capacity.

4 Deep learning-driven
accommodation capacity evaluation
of renewable energy

Due to the complex non-linear temporal characteristics within
power grid infrastructure investments and the accommodation
capacity of renewable energy, a deep learning-driven capsule
network (CapsNet) method is proposed to deduce the variation
of two coordination evaluation indicators with power grid
infrastructure planning. In the capsule network algorithm, a
convolution structure is used to capture hierarchically temporal
features of system flexibility and renewable energy accommodation
from the historical infrastructure investment data (Zheng et al.,
2021). Through conducting the deep learning network training,
the coordination evaluation indicators on a monthly basis exhibit
the dynamic variations of the renewable energy accommodation
capability with various power grid infrastructure investments.

The proposed CapsNet algorithm is composed of convolution
and capsule networks. The convolution and linear layers are
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employed to extract and integrate the global associated flexibility
enhancement features of various power infrastructure investment
projects (Zheng et al., 2021). Capsule networks are used to further
capture the local temporal features and projects labels of various
power grid infrastructure projects at adjacent time periods,
including the voltage level, reserve capacity, project duration, and
completion time. Furthermore, the extracted characteristics are
integrated through a regression layer to predict power system
flexibility under renewable energy infrastructure investments.
Taking the system flexibility indicator as an example, the CapsNet-
based power grid infrastructure planning deduction processes are
shown as the following steps:

• Forming CapsNet structure hierarchically to develop a deep
learning-driven renewable energy accommodation evaluation
model with the multi-dimensional vector input dataset on the
extracted features of infrastructure investment projects.

• Training the CapsNet evaluation model using historical
infrastructure investment data to explore the associated
temporal characteristics between multi-dimensional vectors of
investment project labels and system flexibility, and a dynamic
routing mechanism is used to determine optimal algorithm
parameters of the capsule layer.

• Verifying the accuracy and validity of the proposed model
to deduce and predict the power system flexibility capacity,

including power generation reserves, energy storage systems,
and available transfer capacity of transmission lines, with
practical infrastructure investment data.

With the proposed CapsNet-driven RES accommodation
capacity evaluation model, the infrastructure investment project
labels and system reserve capacity data D = (X,F) are collected.
The input data 𝑋 include various infrastructure projects labels with
the voltage level, regional location, construction type, and capacity.
Moreover, the temporal sequential characteristics extracted from
typical curves of construction and investment completion rates are
involved (Wu et al., 2022), such as the autocorrelation coefficient,
autoregressive coefficient, dynamic time warping distance, and
enclosed area. Here, F denotes the system flexibility.

During the capsule computation processes to evaluate the
accommodation capacity of renewable energy, coupling coefficients
between two capsule layers should be trained and determined by a
dynamic routingmechanism. It is an iterative routing-by-agreement
process for information extraction (Ye et al., 2022). The global
associated features extracted from input data on different power
infrastructure investment projects by a convolutional network are
enclosed in correspondingly lower-level capsules represented by
a multi-dimensional vector μi, and then, lower-level capsules can
make predictions for parameters of higher-level capsules via a
transformation weight matric W ij. The coupling coefficient cij

FIGURE 1
Monthly deduction results of system flexibility and the RES accommodation factor.
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connects the two capsule layers and determines the accommodation
capacity evaluation output vi of a higher-level capsule, and is also
calculated through the softmax function as follows:

cij =
exp(bij)

∑
k

exp(bik)
(3)

where bij denotes the connection probability between the lower-level
capsule i and higher-level j, and its initial value can be set to 0. Then,
the input vector sj for the higher-level capsule j can be obtained by
summing the weighted predictions from lower-level capsules. The
evaluation output vector vj of the RES accommodation capacity,
denoting the detection probability of a temporal feature, can be
calculated by the squash activation function to make the length no
more than 1, as follows:

{{{{
{{{{
{

sj =∑
i
cij(W ijμi),

vj =
‖sj‖

2

1+ ‖sj‖
2

sj

‖sj‖
2 .

(4)

Dynamic routing usually updates bij through the agreement
factor aij, which determines the similarity of the input and output
capsules.

{
aij = vj ⋅ (W ijμi),
bij = bij + aij.

(5)

In this paper, historical data and two coordination evaluation
indicators obtained from numerous power grid infrastructure
investment projects in Hunan Province, China, are introduced to
demonstrate the effectiveness of the proposed CapsNet algorithm.
The monthly deduction results of the Hunan provincial power grid
flexibility and renewable energy accommodation capacity are shown
in Figure 1.

Figure 1 shows that with the growing power grid investments,
the system flexibility and renewable energy accommodation
capacity factor are both increased and ranged with different
types of infrastructure investment projects. In general, these
two coordinated evaluation indicators increase significantly along
with the completion of power grid infrastructure projects with
high voltage levels, large substation, and transmission capacities,
especially for ultra-high-voltage projects. Overall, with the total
amount of about 43.046 billion CNY for power grid infrastructure
investments in 2021–2022, the total system flexibility capacity
increases by 4.183 GW and the renewable energy accommodation
capacity factor can increase by 49.8%.

5 Discussion and conclusion

According to the statistical analysis of Hunan practical power
infrastructure investments and renewable energy accommodation

data, the key findings of this paper can be summarized as follows:
1) power grid infrastructure investments should give priority
to ultra-high-voltage transmission channels and energy storage
systems with optimizing their capacities and layouts to improve
the accommodation capability of renewable energy sources; 2) the
flexibility of thermal power plants should be improved with a
high ramp rate to enhance the system accommodation capability
of RESs; 3) the coordination of renewable energy and power grid
infrastructure projects shall be strengthened, and the ratio of the
system reserve capacity to renewable energy installation should
be increased to over 60% for rational power grid infrastructure
investments.
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