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Battery state of health (SOH) estimation is crucial for the estimation of the
remaining driving range of electric vehicles and is one of the core functions of
the battery management system (BMS). The lithium battery feature sample data
used in this paper is extracted from the National Aeronautics and Space
Administration (NASA) of the United States. Based on the obtained feature
samples, a decision tree algorithm is used to analyze them and obtain the
importance of each feature. Five groups of different feature inputs are
constructed based on the cumulative feature importance, and the original
support vector machine regression (SVR) algorithm is applied to perform SOH
estimation simulation experiments on each group. The experimental results show
that four battery features (voltage at SOC = 100%, voltage, discharge time, and
SOC) can be used as input to achieve high estimation accuracy. To improve the
training efficiency of the original SVR algorithm, an improved SVR algorithm is
proposed, which optimizes the differentiability and solutionmethod of the original
SVR objective function. Since the loss function of the original SVR is non-
differentiable, a smoothing function is introduced to approximate the loss
function of the original SVR, and the original quadratic programming problem
is transformed into a convex unconstrained minimization problem. The conjugate
gradient algorithm is used to solve the smooth approximation objective function
in a sequential minimal optimization manner. The improved SVR algorithm is
applied to the simulation experiment with four battery feature inputs. The results
show that the improved SVR algorithm significantly reduces the training time
compared to the original SVR, with a slight trade-off in simulation accuracy.
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1 Introduction

With the worsening of global energy shortage and environmental pollution, various
countries have increased their attention to the development of electric vehicles (Pirmana
et al., 2023). Lithium-ion batteries, which have advantages such as high energy density, low
self-discharge rate, long cycle life, and lowmemory effect, are widely used as the main energy
source for electric vehicles (Corey, 2003). The battery management system (BMS) is an
important system for supervising and diagnosing the performance of lithium batteries. It can
monitor and estimate the changes in the battery’s state of charge (SOC) and state of health
(SOH), and prevent overcharging and over-discharging of batteries, thereby extending
battery life and reducing battery usage costs (Lawder et al., 2014). Accurate estimation of
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SOH can not only reflect the degree of battery aging and predict the
battery replacement time but also improve the accuracy of
predicting the remaining driving range by combining SOC
estimation and reducing driver anxiety.

Lithium-ion batteries are complex systems, and their aging process
is even more complex. Their capacity degradation is not caused by a
single factor but by numerous processes and their interactions. The
battery SOH change curve has a strong non-linear characteristic
(Berecibar et al., 2016). The prediction methods of battery SOH can
be roughly divided into three categories: direct measurement method,
model-based method, and data-driven method. Battery internal
resistance and capacity data can reflect battery performance
degradation and aging degree, and internal resistance increases with
capacity loss. The direct measurement method estimates the battery
SOH by looking up a table that defines the corresponding relationship
between open circuit voltage or battery internal resistance and battery
SOH (Chiang et al., 2011). The direct measurement method is relatively
simple to implement, but it relies on high-precision measuring
instruments and strict testing procedures.

The model-based method is a widely usedmethod for estimating
battery SOH, which employs experimental or collected data to
establish physical equation models of batteries, such as equivalent
circuit models, electrochemical models, mechanism models, etc.
Then it updates the parameters of these models according to the
battery aging process and analyzes or models the battery SOH. An
equivalent circuit model was established based on a constant voltage
charging profile and a battery health factor was constructed as a
feature input to predict the battery SOH in the literature (Wang
et al., 2019). Liu et al., 2022 and Yang et al., 2018. predicted the
battery SOH by directly fitting and Gaussian regression fitting based
on factors such as charging voltage, charging capacity, charging
time, and so on during the charging process. In the literature (Wang
et al., 2017), the authors established a battery SOH Gaussian process
regression prediction model on capacity incremental analysis and
applied the multi-island genetic algorithm to optimize the
hyperparameters in the model, while Weng et al., 2014 combined
the open circuit voltage change with the incremental capacity
analysis to establish a battery SOH prediction model. The
lithium-ion battery impedance model in the literature (Li et al.,
2014) was used to construct a battery SOH prediction model, where
the impedance model parameters were identified using a particle
swarm optimization (PSO) algorithm. Although the model-based
approach has a wide range of applications, its prediction accuracy is
closely related to whether the model parameters can be updated
timely and accurately. When the battery usage environment and
working conditions change drastically, researchers tend to use data-
driven methods (Vidal et al., 2020).

Data-driven methods do not require understanding the internal
structure and working principle of the battery. They build their models
based on data samples collected from routine or experimental
measurements. Common data-driven methods include the Kalman
filter method, machine learning method, etc. The Kalman filter method
is an efficient self-adaptivefilteringmethod that can effectively eliminate
noise interference in the signal and estimate the battery SOH value
based on incomplete and noisy data (Vichard et al., 2021). Some
variants of the standard Kalman algorithm, such as extended
Kalman, dual extended Kalman, and unscented Kalman, were also
used for battery SOH prediction (Andre et al., 2013; Qian and Liu,

2021). Kalman algorithm shows good performance in SOH estimation,
but its drawback is that it is computationally complex and has a high
application cost.

Machine learning-based SOH estimation is an important and
challenging research problem, which has attracted a lot of attention
in recent years. Various machine learning algorithms, such as neural
networks and support vector regression (SVR), have been applied to
estimate the SOH of batteries based on different features extracted
from the collected data. Deng et al., 2021 developed a sparse
Gaussian process regression battery SOH prediction model based
on a stochastic partial charging process Neural networks are one of
the most popular and powerful machine learning techniques for
SOH estimation. They can learn the nonlinear and complex
relationship between the SOH and the features through a series
of transformations in the input layer, hidden layer, and output layer
(Zhang et al., 2018; Shen et al., 2019; Chen et al., 2021; Wang et al.,
2022a). In the literature (Wang et al., 2022b) and (Wang et al., 2023),
Wang et al. developed improved feedforward-long short-term
memory neural networks and improved anti-noise adaptive long
short-term memory neural networks, respectively, to achieve
accurate prediction of SOC and the remaining life of lithium-ion
batteries throughout their life cycle. Deng et al. Combining long
short-term memory networks with diverse degradation patterns and
transfer learning to improve battery SOH estimation accuracy (Deng
et al., 2022). However, neural networks also have some drawbacks,
such as the difficulty of choosing the appropriate activation function,
the number of hidden layers and nodes, and the optimal parameters.
These choices depend on the experience and trial-and-error of the
researchers, which can be time-consuming and prone to overfitting.

SVR is a data-driven method based on the principle of structural
risk minimization, which can handle small samples and nonlinear
problems, insensitive to the dimension and variation of data, avoid
local optimal solutions, and thus achieve accurate prediction of
battery SOH (Patil et al., 2015). However, the hyperparameters and
input features of SVR have a great impact on its prediction accuracy
and efficiency, so it is necessary to reasonably select the
hyperparameters and input features of SVR. In literature (Li
et al., 2021), the authors used the full charge voltage, SOC,
current voltage, and discharge time as the input features of SVR,
and used the PSO algorithm to optimize the hyperparameters of
SVR; Xiong et al., 2020 used the weighted least squares method to
optimize the hyperparameters of SVR; on this basis, Zhuang and
Xiao, 2014 combined the PSO algorithm and the least squares
method to optimize the hyperparameters of SVR, improving the
prediction accuracy and efficiency. Yang et al., 2021 employed the
PSO-SVR algorithm to estimate the battery SOH based on the
incremental capacity analysis. Compared with the original SVR,
these studies improve the process of selecting the hyperparameters
of the SVR model, but the time spent in training the SVR model is
still long. In literature (Chen et al., 2018; Ali et al., 2019; Feng et al.,
2019; Severson et al., 2019; Kheirkhah-Rad and Moeini-Aghtaie,
2021), researchers constructed input features for SVR by directly
selecting or computing the following battery characteristics: full
charge voltage, SOC, current, voltage, number of cycles, time,
temperature, and capacity. Then they apply the SVR method to
predict the battery SOH. At present, there is no unified standard for
selecting input features of SVR, and different feature parameters
have different effects on battery SOH estimation.
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This paper proposes a battery SOH prediction algorithm based
on the decision tree feature importance and an improved SVR
algorithm. Firstly, using the battery experimental data publicly
released by the National Aeronautics and Space Administration
(NASA), the battery feature parameters are extracted and the feature
importance of each feature parameter is analyzed by a decision tree.
Then, five groups of different training set inputs are designed
according to the cumulative feature importance, and the battery
SOH prediction is simulated based on the original SVR algorithm.
The experimental results show that four battery features (voltage at
SOC = 100%, voltage, discharge time, and SOC) can be used as input
to achieve high estimation accuracy. Next, an improved SVR
algorithm with high computational efficiency is proposed, which
directly minimizes the primal form of the optimization problem. A
smoothing function is introduced to approximate the loss function
of the original SVR, and the original quadratic programming
problem is transformed into a convex unconstrained
minimization problem. The conjugate gradient algorithm is used
to solve the smooth approximation objective function in a sequential
minimal optimization manner. Finally, the improved SVR algorithm
is applied to the simulation experiment with four battery feature
inputs. The simulation results show that the improved SVR
algorithm has a faster training speed than the original SVR
algorithm while maintaining high prediction accuracy.

The remainder of this paper is organized as follows. Section 2
describes the principle and method, which includes the decision tree
theory, the principle of improved SVR, and the conjugate gradient.
The SOH estimation model and simulation process are offered in
Section 3. The SOH estimation results and analysis are shown in
Section 4. Section 5 presents the conclusions.

2 Principle and method

2.1 Decision tree theory

A decision tree can get the feature values for different parts of a
sample when it works with data samples. It has a tree shape, with
each non-leaf node as a test on a feature attribute. Each branch
shows the result of this test for a specific value range of the feature
attribute. To use a decision tree to make decisions, we begin from the
root node and test the matching feature attributes in the items we
want to classify. If the data has too many features, we can choose
features first before we learn with a decision tree. We only keep
features that can separate the training data well. We use information
gain or information gain ratio to select features.

Information entropy is a measure of the uncertainty of a random
variable. Suppose the feature X is a discrete random variable with a
finite number of values, whose probability distribution is
P(X � xi) � pi, i � 1, 2, . . . n, its entropy is expressed as

H(X) � −∑n
i�1
pi logpi, and the conditional entropy of data set Y

under random variable X is H(Y |X) � ∑n
i�1
piH(Y |X � xi).

Information gain is the difference between entropy and
conditional entropy. The information gain of feature X for data
set Y is defined as the difference between the empirical entropy

H(Y) of data set Y and the empirical conditional entropy H(Y |X)
of Y under the given condition of feature X, that is
λX � H(Y) −H(Y |X). Information gain depends on the selected
feature, and the feature with large information gain can better
express the data set. The feature selection method based on the
information gain criterion is: for data set Y, calculate the
information gain of each feature and compare their sizes, and
select the feature with larger information gain.

The feature importance of the variable i is

Li � λi/P(i � 1, 2,/, m;P � ∑m
i�1
λi), λi is the i information gain of

variable i. The cumulative feature importance of l variables is

Ll � ∑l
i�1
λi/P. The purpose of decision tree analysis is to select

variables that can better express the data set. This paper selects
the variable set with cumulative feature importance greater
than 85%.

2.2 The principle of original SVR

Support vector machine (SVM) is a widely used method for data
classification problems. It aims to find a classification boundary that can
separate the samples into two classes for binary classification problems.
When the sample data is linearly separable, the classification boundary
is a straight line or a plane for two-dimensional or three-dimensional
data, respectively; for multidimensional data, it is a hyperplane. When
the sample data is not linearly separable, the kernel function is applied
to map these original data from low-dimensional space to high-
dimensional space, where they become linearly separable, and then a
linear hyperplane is found to classify the samples. SVR is an extension of
SVM for regression problems, and it has a similar basic idea. Both
require constructing a bounded training set T based on sample data,
T � (x1, y1), . . . , (xl, yl){ } ∈ (X × Y)l, where l is the number of
examples, X denotes the input sample space, and Y denotes the
output sample space. To apply the SVR algorithm, we need to find
a function f(x) � w′x + b, and the output can be inferred by yout �
f(x)with the corresponding input. For a linear problem, we can obtain
a linear SVR model by solving the following constrained optimization
problem:

minw, ξ*, ξ ϕ w, ξ*, ξ( ) � 1
2
w′w + C ∑n

i�1ξ i +∑n

i�1ξ
*
i[ ]

s.t.

yi − w′xi − b≤ ε + ξ*i

w′xi + b − yi ≤ ε + ξ i

ξ i ≥ 0 and ξ*i ≥ 0

for i � 1, . . . n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where ε is the predefined error threshold between the actual value y
and the predicted value f(x), ξ � (ξ1, . . . ξn)′, ξ* � (ξ1*, . . . ξn*)′, ξi
and ξi* are slack variables, which are the errors beyond the predefined
error threshold ε, w′w/2 reflects the complexity of the regression
model, and parameter C > 0 is used to balance the model complexity
and the model error on the training set. Using Lagrange multiplier
method and KKT conditions, the primal problem is transformed into
a dual problem, and the linear SVR model is obtained as:
f(x) � ∑(αi − αi*)xi′x + b, where αi and αi* are the Lagrange
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multipliers corresponding to the constraints in the equation, and the
bias term b can be computed by the support vector data set.

For a nonlinear problem, a kernel function is used to map the
sample data to a high-dimensional or even infinite-dimensional space.
Under the Mercer condition in the reproducing kernel Hilbert space
(RKHS), the kernel function can be approximated as the inner product
of two elements K(xi, xj) � ϕ(xi) · ϕ(xj), where ϕ(xi) is a nonlinear
function (Cortes and Vapnik, 1995). Thus, the nonlinear regression
model can be expressed as: f(x) � ∑n

i�1(αi − αi*)K(xi, x) + b, where
the bias term b can also be calculated by the support vector data set. Both
linear and nonlinearmodels can be solved by decompositionmethods or
sequential minimal optimization methods. However, training the SVR
model has a time complexity of aboutO(n3), and the training time of the
SVR model is very expensive when the training set grows large.
Therefore, it is highly desirable to enhance the training speed of SVR
while maintaining the accuracy of the results.

2.3 The principle of improved SVR

To eliminate the constraints in the SVR optimization problem,
Eq. 1 is rewrite using implicit constraints as:

min
w,b

ϕ w( ) � 1
2
w′w + C∑n

i�1Vε w′xi + b − yi( ) (2)

Where Vε(·) is called as ε − insensitive function, which expression is
as follows:

Vε x( ) � 0, if x| |< ε,
x| |< ε, otherwise.

{ (3)

In Eq. 3, ε − insensitive function Vε(x) is not differentiable at the
point x � ± ε. Gradient-based methods are usually time-saving, easy to
implement, and can produce at least a local optimum, but the non-
differentiability of Vε(x) makes it hard to apply gradient-based
optimization methods to fit the SVR model. To address this problem,
we can use a smoothing function to approximate the non-differentiable
objective function (Zheng, 2011). In this paper, we use the following
smoothing function to approximate the ε − insensitive function:

Sε,τ x( ) � τ log 1 + e
x| |−ε
τ( ) (4)

where τ > 0 is called the smoothing parameter. The smoothing
function Sε,τ(x) has the following three properties, and their
proofs are given in Supplementary Appendix S1–S3, respectively.

Proposition 1. As a function of τ > 0, Sε,τ(x) is monotonically
increasing.

Proposition 2. For any τ > 0, Sε,τ(x) is a strictly convex
function in x.

Proposition 3. For any τ > 0 and any x ∈ R,
0< Sε,τ(x) − Vε(x)≤ τ log 2. In addition, Sε,τ(x) converges
uniformly to Vε(x) as τ → 0+.

For the linear SVR model, we analysis the primal optimization
problem given in Eq. 2. In order to incorporate the bias term b, we
augment the predictor vector by adding 1 as the first component;
correspondingly, we augment w by adding b as the first component.

With these considerations, the objective function in Eq. 2 can be
written as:

ϕ w( ) � 1
2
w′I*w + C∑n

i�1Vε w′xi − yi( ) (5)

where I* is the augmented matrix with the first row and the first
column being 0’s, and the rest being an n × n identity matrix I. The
SVR model could be fitted by minimizing the primal objective
function in Eq. 5. However, as the ε − insensitive loss function
Vε(·) in Eq. 5 is not differentiable, the gradient based
optimization methods cannot be applied. It is well known that
the gradient based methods are easy to implement and converge fast
to at least a local optimal point. In order to make use of the
advantages of the gradient based optimization methods, we
replace the ε − insensitive loss function by its smoothed
counterpart Sε,τ(x), yielding the smoothed objective function:

ϕτ w( ) � 1
2
w′I*w + C∑n

i�1
Sε,τ w′xi − yi( ) (6)

The following relationship between Eqs. 5, 6 is evident through
proposition 3 of the smoothing function Sε,τ(x): for any τ > 0, the
smooth objective function ϕτ(w) is an upper bound of the original
objective function ϕ(w), i.e., ϕτ(w)>ϕ(w), for any w.

As the smoothing parameter τ decreases, the smoothed objective
function has the following properties with respect to the original
objective function, and the proof is given in Supplementary
Appendix S4.

Proposition 4. As τ → 0+, the smooth objective function ϕτ(w)
uniformly converges to the original objective function ϕ(w).

From proposition 4, it is convenient to obtain that as τ → 0+, the
minimum of the smooth objective function ϕτ(w) approaches to the
minimum of the original objective function ϕ(w). Thus, we can use
the smooth objective function ϕτ(w) to replace the original objective
function ϕ(w) in the linear SVR model.

The gradient vector of the smooth objective function in Eq. 6 is
calculated as:

∇ϕτ w( ) � I*w + C∑n
i�1

sign w′xi − yi( )
1 + exp − w′xi−yi| |−ε

τ{ }xi (7)

The Hessian matrix of the smooth objective function in Eq. 6 is
as follows:

H w( ) � ∇2ϕτ w( ) � I* + C

τ
∑n
i�1

exp − w′xi−yi| |−ε
τ{ }

1 + exp − w′xi−yi| |−ε
τ{ }( )2xix

′
i (8)

The second term in Eq. 8 is positive definite, so the Hessian
matrix is also positive definite. Therefore, the smooth objective
function ϕτ(w) is convex on w, it has a unique minimum point.

In order to generalize the smoothing objective function of the linear
SVRmodel to the nonlinear SVRmodel, we analyze the nonlinear SVR
regression function. The nonlinear SVR regression function could be
obtained byminimizing the following objective function in reproducing
kernel Hilbert space H (Lee and Mangasarian, 2001):

f
���� ����2H + C∑n

i�1Vε f xi( ) − yi( ) (9)
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FIGURE 1
Discharge voltage curve of battery #1.

FIGURE 2
Discharge current curve of battery #1.

FIGURE 3
Discharge temperature curve of battery #1.

FIGURE 4
Discharge SOC curve of battery #1.

FIGURE 6
Discharge voltage rate of battery #1.

FIGURE 5
Voltage at SOC = 100% of battery #1.
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where ‖f‖2H is the function norm associated with the reproducing
kernel Hilbert spaceH. Similar to the term w′w/2 in the linear SVR
model, ‖f‖2H can also express the complexity of the model.

By the representer theorem, the regression function could be
rewritten as a linear combination of kernel functions (Smola and
Schölkopf, 2004):

f x( ) � ∑n

j�1βjK xj, x( ) + b (10)

In the reproducing kernel Hilbert space H, the model
complexity term ‖f‖2H is:

f
���� ����2H � ∑n

i,j�1βiβj〈K xi, ·( ), K xj, ·( )〉H � ∑n

i,j�1βiβjK xi, xj( )
� β′Kβ (11)

where 〈·, ·〉H is the inner product of two vectors in space H; K is an
n × n kernel matrix with Kij � K(xi, xj); β � (β1,/, βn).

The estimated function at xi is:

f xi( ) � ∑n

j�1βjK xj, xi( ) + b � β+′K+
.i (12)

where K+ is an (n + 1) × nmatrix with the first row is 1 and the rest
of K+ is the original kernel matrix K, K+

·i denotes the ith column of
matrix K+; β+ � (b, β1,/, βn)′.

Combining Eqs 11, 12, we can rewrite the objective function in
Eq. 9 for nonlinear SVR as:

ϕτ β+( ) � 1
2
β+′K*β+ + C∑n

i�1
Vε β+′K+

·i − yi( ) (13)

whereK* is an (n + 1) × (n + 1) augmented kernelmatrix, with the first
row and column are 0’s, and the remaining elements are the original
kernel matrixK. Meanwhile, it is easy to conclude that β+′K*β+ � β′Kβ.

Using the smoothing function Sε,τ(x) instead of the ε − insensitive
function, the objective function for nonlinear SVR obtained is as follows:

ϕτ β+( ) � 1
2
β+′K*β+ + C∑n

i�1
Sε,τ β+′K+

·i − yi( ) (14)

The gradient vector of the smooth objective function in Eq. 14 is
calculated as:

∇ϕτ β+( ) � K*β+ + C∑n
i�1

sign β+′K+
·i − yi( )

1 + exp − β+′K+
·i−yi| |−ε
τ{ }K+

·i (15)

The Hessian matrix of the smooth objective function in Eq. 14 is
as follows:

H β+( ) � ∇2ϕτ β+( ) � K* + C

τ
∑n
i�1

exp − β+′K+
·i−yi| |−ε
τ{ }

1 + exp − β+′K+
·i−yi

∣∣∣∣ ∣∣∣∣−ε
τ{ }( )2K

+
·iK

+′
·i

(16)
The Hessian matrix of Eq. 16 is positive definite, and the smooth

objective function ϕτ(β+) is also convex. Therefore, ϕτ(β+) has a
unique minimum point.

To deal with non-smooth objective functions using the smoothing
approximation idea, some works utilize Newton’s method to
minimize the smooth objective function (Lee and Mangasarian,
2001). However, Newton’s method involves estimating and
inverting the Hessian matrix, which is costly and error-prone in
high-dimensional spaces. The conjugate gradient method avoids
using second-order derivative information and inverting the
Hessian matrix, and it has a simple formula to determine the new
search direction. This simplicity makes the method very easy to
implement, only slightly more complex than the steepest descent.
Other advantages of the conjugate gradient method include its low
memory requirements and convergence speed. In this paper, we
choose the Fletcher–Reeves (FR) conjugate gradient method. When
applying the FR conjugate gradient method to minimize the smooth
objective function in Eq. 8, we let the conjugate gradient algorithm run
several times at the current τ value before updating it, to fully exploit
its ability to minimize the objective function. To obtain a stable
solution, we start from a relatively large τ and gradually reduce it. The
following pseudocode describes the process ofminimizing the strategy
to solve the nonlinear SVR smooth approximation objective function:

1) Initialize β+ as a random vector, set the maximum outer

iteration number M, and the conjugate gradient

iteration m;

2) For i � 1 to M do:

3) Set τ � 1/i, Choose a starting vector β+0, compute g0 � ∇ϕτ
and d0 � g0

4) For t = 1 to m:

5) If gt−1 < η, terminate cycle and return β+t−1 as the

minimum vector of ϕτ(β+)
6) Else set β+t � β+t−1 + γtdt−1, γt is the step-size at the

iteration t

7) Initialize γt � 1, D � ϕτ(β+t−1 + γtdt−1) − ϕτ(β+t−1)
8) If D≤ γt∇ϕτ(β+t−1)dt−1/4, return the current γt;

else set γt � γt/2 and go back to the step 7

9) Compute gt � ∇ϕτ(β+t), and set dt � −gt + δtdt−1,
with δt � gt′gt/gt−1′gt−1

10) end if

11) end for

12) Return β+m as the minimum vector of ϕτ(β+)
13) end for

Algorithm 1. The process of minimizing the strategy for smoothly
approximated nonlinear SVR.

FIGURE 7
SOH of battery #1 and battery #2.
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3 Battery SOH estimation model and
simulation process

The battery type used in this paper is LiNi0.8Co0.15Al0.05O2,
and its experimental data were obtained from the public database of
the NASA Ames Research Center of Diagnostic Excellence in
Washington, DC, United States. The batteries with serial
numbers B0005 and B0018 are selected and labeled as battery
#1 and battery #2, respectively. Both batteries have a nominal

capacity of 2Ah and operate under three different modes at room
temperature. All batteries are charged in a constant current (CC)
mode of 1.5A until the voltage reaches 4.2V, then switched to a
constant voltage (CV) mode until the current drops to 20 mA. They
are discharged in a constant current (CC) mode of 2A until the
voltages of battery #1 and battery #2 drop to 2.7V and 2.2V,
respectively. The cycling experiment ends when the battery meets
the end-of-life (EOL) criterion, which is a 30% decrease in nominal
capacity (from 2Ah to 1.4Ah).

FIGURE 9
Battery SOH flow chart based on improved SVR.

FIGURE 8
Eigenvalues and cumulative feature importance.
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3.1 Feature extraction for the training set

The accuracy of predicting battery SOH using data-driven
methods depends on whether the training dataset covers all the
battery environments and the type of data selected. Therefore,
choosing appropriate battery feature vectors is essential for
estimation accuracy. Considering the different experimental
conditions for collecting battery features in the laboratory and on
electric vehicles, some features, such as battery impedance, are not
easily obtained on electric vehicles. Although many researchers use
impedance as an input feature to predict battery SOH, this paper
excludes battery impedance from the selected input features. Besides
battery impedance, the common SOH features used by researchers
include battery voltage at SOC=100%, voltage, current, temperature,
SOC, discharge time and some derived values. This paper focuses on
estimating battery SOH during the discharge process, selects the
features commonly used by current researchers and performs
decision tree analysis on them, obtains the feature values and

cumulative feature importance of each feature, and calculates the
cumulative feature importance of each feature parameter. The input
features selected in this paper are discharge voltage, discharge time,
temperature, SOC, battery voltage at SOC=100%, and voltage drop
rate, as shown in Figures 1–6 below.

Figure 1 shows the discharge voltage curve of battery #1, and
Figure 6 shows the discharge voltage drop rate curve of battery #1. It can
be seen that in a single discharge process, the battery voltage drops
rapidly at first, then enters a stable decline period, and finally drops
rapidly againwhen the discharge process is near the end. In the discharge
cycle process, the discharge voltage and the discharge voltage drop rate
vary significantly in each cycle, indicating that both voltage and voltage
change rate can be used as features to measure battery aging.

Figure 2 shows the discharge current curve of battery #1, which
indicates that the battery is discharged at a constant current of 2A. It
can be seen from the figure that as the number of cycles increases,
the battery’s continuous discharge time decreases sharply. In the first
discharge experiment, the discharge time lasted about 3,400 s, as

FIGURE 10
Estimation of SOH for battery #2 under nine SOC intervals (1) SOC change (100%–10%), (2) SOC change (100%–20%), (3) SOC change (100%–30%),
(4) SOC change (100%–40%), (5) SOC change (100%–50%), (6) SOC change (100%–60%), (7) SOC change (100%–70%), (8) SOC change (100%–80%), (9)
SOC change (100%–90%).
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shown by the red Cycle-1; in the 84th cycle experiment, the
discharge time lasted about 2,800 s, as shown by the green Cycle-
84; in the 168th cycle experiment, the discharge time lasted about
2,400 s, as shown by the blue Cycle-168. As the battery ages, the
battery discharge time changes dramatically, so the battery discharge
time can be used as a feature to measure battery aging. Since the
experiment uses constant current discharge, this paper does not
select current as a feature to measure battery aging.

Figure 3 shows the discharge temperature change curve of battery
#1. It can be seen from the figure that as the number of cycles
increases, the temperature in each discharge process increases
continuously, which is caused by the increase of the internal
impedance of the battery due to aging. For a single discharge
process, the curve of discharge temperature change is not smooth
and has many fluctuations. The temperature and impedance of the
battery can both reflect the degree of battery aging significantly, but
due to the difficulty of measuring battery impedance on electric
vehicles, this paper does not choose impedance as a feature for
battery SOH prediction. Figure 4 shows the discharge SOC change
curve of battery #1. As the number of cycles increases, the rate of SOC
decrease in each discharge process changes continuously, so the
battery’s SOC can be used as a feature to measure battery aging.

Figure 5 shows the battery voltage corresponding to SOC = 100% at
the beginning of each discharge cycle of battery #1. It can be seen from
the figure that the change of the initial voltage is not regular, which is
because the initial voltage is affected by factors such as battery internal
resistance, ambient temperature, battery aging degree, etc. This paper
also considers it as one of the input features to measure battery aging.

The SOH value of the battery reflects the current reliability of
the battery. Accurate SOH prediction can enable the battery
management system to manage each battery cell in the battery
pack more effectively, especially the battery aging, effectively
maintain the safety of the electric vehicle during operation,
alleviate the driver’s driving anxiety, and help to accurately
predict the remaining driving range of the electric vehicle. The
SOH definition in this paper is: SOH � Qmax/Qrated × 100%,

where Qmax is the maximum available capacity of the battery
at the current state, and Qrated is the rated capacity of the battery.
Figure 7 shows the battery SOH value corresponding to each
cycle of battery #1 and battery #2, which reflects the degree of
battery aging. It can be seen that as the number of cycles
increases, SOH shows a downward trend overall, but has large
fluctuations in the decline process, showing strong nonlinear
characteristics.

3.2 Decision tree analysis

The features such as voltage, discharge time, temperature, SOC,
voltage at SOC = 100%, and voltage rate collected during the battery
discharge process in Section 3.1 were analyzed using the decision
tree to obtain the eigenvalues and feature importance for each
feature parameter. The cumulative feature importance of features
is also calculated.

Figure 8 shows that the battery voltage at SOC = 100%has amuch
larger eigenvalue than other battery features. The eigenvalues of the
battery voltage, temperature, discharge time, SOC, and discharge
voltage rate are different, but not by much. These parameters are
used by researchers for SOH estimation. This paper selects features
with cumulative feature importance greater than 85%.

Based on the cumulative feature importance, five groups of SOH
simulation experiments with different training set inputs are designed,
which are: the first group with battery voltage at SOC = 100%, voltage,
temperature, discharge time, SOC, discharge voltage rate; the second
group with battery voltage at SOC = 100%, voltage, discharge time,
SOC, discharge voltage rate; the third group with battery voltage at
SOC = 100%, voltage, temperature, discharge time, SOC; the fourth
group with battery voltage at SOC = 100%, voltage, temperature,
discharge time; the fifth group with battery voltage at SOC = 100%,
voltage, discharge time, SOC; and conduct simulation experiments to
test the influence of battery feature parameter selection on battery
SOH prediction.

3.3 The original SVR and improved SVR
simulation process

The simulation procedure of the original SVR algorithm consists of
the following steps. The first step is to reduce the dimensionality of the
data obtained from the NASA battery experiment. The size of the
sample data collected during the discharge process of battery #1 is
X × 45205, where X represents the number of battery features to be
selected, and the number of points collected in each discharge cycle is

TABLE 1 Average prediction error of original SVR.

Training set feature input AVG_MSE AVG_RMSE

The first group 2.711*10–3 0.0521

The second group 5.593*10–4 0.0243

The third group 3.301*10–3 0.0574

The fourth group 2.421*10–2 0.1555

The fifth group 7.156*10–4 0.0268

FIGURE 11
RMSE for battery #2 under nine SOC intervals.

Frontiers in Energy Research frontiersin.org09

Qian et al. 10.3389/fenrg.2023.1218580

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1218580


more than 100. If the size of the training set X × 31643 is selected
according to the traditional SVR training method, then the time
required for an SVR training process is about 30 days based on my
computer configuration. Therefore, the size of the training set needs to
be simplified. This paper selects 100 points for each discharge cycle, and
the corresponding SOC for each point is 1-100%. If there is no accurate
SOC corresponding point, select the closest SOC. After the initial
simplification, the size of the sample data becomes X × 16800, and
the size of the training set isX × 11760. The second step is to normalize
the three sets of experimental data collected to eliminate the dimension
problem. The third step is to perform SVR training, which takes about
16 hours to obtain the corresponding regression prediction model.

The improved SVR algorithm simulation process is shown in
Section 2.3, where the parameters are selected as described below.
When τ � 0.04, the gap between the smooth loss function and the
original function is less than 0.028 (Zheng, 2015), so in this paper we
select m � 25, M � 30, C � 2000, ε � 0.5, η � 0.001. Both the
improved and the original SVR use the Gaussian kernel as the
kernel function, K(u, v) � exp(−‖u − v‖2/2σ2), where σ � 5. The
improved and original SVR select the same size of training set and
test set, and use mean square error (MSE) to evaluate the prediction
accuracy on the test set, MSE � 1

N∑N
i�1(f(xi) − yi).

The battery SOH estimation flow chart based on improved
SVR is shown in Figure 9. The specific steps are as follows: 1)
Obtain the original training samples of the simulation
experiment from the NASA public data and reduce their
dimensionality; 2) Perform decision tree analysis of battery
SOH features to obtain cumulative feature importance; 3)
According to the cumulative feature importance, conduct five
groups of different training set input original SVR simulation
experiments to obtain the most suitable feature input group; 4)
Select the most suitable features as the input of the training set,
and apply the improved SVR algorithm to conduct a simulation
experiment to establish an improved SVR prediction model; 5)
Input test data and use the improved SVR prediction model to
obtain the predicted SOH results.

4 Results and analysis

4.1 Estimation results based on original SVR

According to the cumulative feature importance obtained by
decision tree analysis, five groups of battery SOH simulation

FIGURE 12
SOH estimation of battery #2 based on improved SVR and original SVR algorithms under nine SOC intervals (1) SOC change (100%–10%), (2) SOC
change (100%–20%), (3) SOC change (100%–30%), (4) SOC change (100%–40%), (5) SOC change (100%–50%), (6) SOC change (100%–60%), (7) SOC
change (100%–70%), (8) SOC change (100%–80%), (9) SOC change (100%–90%).
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experiments with original SVR algorithm are conducted. The input
of the five experiments follows Section 3.2 and the output is the
battery SOH value. The parameters of the original SVR model are
obtained by grid search and cross-validation methods. The
training set used to predict the SOH of the battery #2 is
randomly selected from the reduced sample set of battery #1 set
and the size of the training set is set as X × 11760 in Section 3.33.
The SOH curves of battery #1 and battery #2 batteries are shown in
Figure 7. It can be seen from Figure 7 that both batteries have a
decreasing SOH value with the increase of cycle test times, but
#2 battery ages faster than #1 battery. When SOH is less than 0.7, it
means that the battery has reached the scrap standard and needs to
be replaced with a new one (Qin et al., 2015). Nine SOC intervals
are selected to evaluate the original SVR model performance.
Figure 10 compares the simulation results of the five
experiments with the actual values of battery SOH prediction.
To better graphically demonstrate the model estimation errors for
the nine SOC intervals, the root mean square error (RMSE) is used,

RMSE �
���������������
1
N∑N

i�1(f(xi) − yi)
√

.

Figure 10, 11 show the simulation results and RMSE of battery
SOH estimation in nine SOC interval segments under five groups of
inputs. The fourth group of inputs without battery SOC feature has
the largest fluctuation and RMSE, and is inaccurate for SOH
prediction. Therefore, the fourth group of inputs is not suitable for
predicting battery SOH. The first and third groups of inputs have
similar prediction results and RMSE, with the first group slightly
better than the third group, but both are worse than the second and
fifth groups. The second group of inputs obtains the best prediction
results and RMSE, followed by the fifth group. These results show that
excluding battery temperature from the input features improves the
prediction accuracy because the collected battery temperature has
frequent fluctuations in each discharge cycle. Therefore, the
temperature collected in this experiment is not suitable for
predicting battery SOH. The Figures also show that the SOH
estimation error is large when the initial Δ SOC is low, due to the
steep discharge voltage drop rate in the SOC (100%–90%) interval.
The error decreases in the SOC (100%–90%) - SOC (100%–50%)
interval, because the discharge voltage drop rate is flat, and the
discharge voltage decreases steadily. The error fluctuates slightly in
the SOC (100%–50%) - SOC (100%–10%) interval, because the
discharge voltage drop rate changes from flat to steep grade, and
the discharge voltage also changes from steady decline to fast decline.
In general, the SOH estimation error decreases as SOC increases.

Table 1 shows the average MSE and RMSE of the battery SOH
simulation for the five groups of inputs in nine SOC intervals.
The AVG_MSE and AVG_RMSE in the table represent the
average MSE and RMSE of the nine SOC intervals,
respectively. As shown in Table 1, the fourth group of inputs
has the highest AVG_MSE and AVG_RMSE, whereas the second
group of inputs has the lowest. The fifth group of inputs is similar
to the second group input in terms of AVG_MSE and AVG_
RMSE. Both the second and fifth groups of inputs are suitable for
SOH prediction, but the fifth group of inputs requires fewer
features to be collected. Therefore, we suggest using the fifth
group of inputs as the training set feature input for SVR-based
battery SOH prediction.

4.2 Estimation results based on
improved SVR

The fifth group of inputs is used to predict SOH with the
improved SVR algorithm. Both the improved and the original
SVR have a training set size of 0.7 times the sample set size,
which is 11,760 × 4. In this paper, an ASUS computer is used in
the simulation, the CPU is an I7-6500U, the memory is 12 GB, the
solid-state hard disk is 250 GB, and the system is WIN10.

Figure 12, 13 compare the simulation results and RMSE of
battery SOH estimation using the improved SVR and the original
SVR in nine SOC intervals. As shown in Figure 12, 13, the improved

TABLE 3 Comparison of different SOH prediction algorithms.

k-NN LR ANN PSO-SVR Original SVR Improved SVR

MSE 3.134*10–3 2.078*10–3 2.172*10–3 2.341*10–4 3.695*10–4 5.221*10–4

RMSE 0.0559 0.0456 0.0466 0.0153 0.0192 0.0228

TABLE 2 Comparison of training time and prediction accuracy of original SVR
and improved SVR.

Training
time (s)

AVG_MSE AVG_RMSE

Original SVR algorithm 58,397 7.156*10–4 0.0268

Improved SVR
algorithm

9,383 1.499*10–3 0.0387

FIGURE 13
RMSE of battery #2 based on improved SVR and original SVR
algorithms under nine SOC intervals.
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SVR has slightly lower prediction accuracy than the original SVR.
The RMSE difference is 0.0342 in SOC (100%–90%) and less than
0.01 in the other SOC intervals. The improved SVR is a slight trade-
off comparable to the original SVR in terms of prediction
performance.

Table 2 summarizes the AVG_MSE, AVG_RMSE and the
training time of the improved SVR and the original SVR with the
fifth group of inputs. The improved SVR has slightly lower accuracy
than the original SVR, with a 0.00078438 higher AVG_MSE and a
0.0101 higher AVG_RMSE. This is because the improved SVR uses a
smooth function to approximate the original SVR loss function,
transforming the original quadratic programming into a convex
unconstrained minimization problem. However, the improved SVR
algorithm training time is much shorter, with an 83.9% lower training
time than the original SVR algorithm. This is because the improved
SVR algorithm uses the conjugate gradient method to solve the
convex unconstrained minimization problem, which is faster than
grid search as it does not need to traverse all points in the grid.

4.3 Comparison with other algorithms

Using battery #1 as the training dataset, we predict the SOH of
battery #2 with a SOC interval of 100%–10% for the test set. Table 3
compares the SOH prediction errors of the improved SVR, the
original SVR, and other machine learning algorithms from the
literature (Khumprom and Yodo, 2019; Li et al., 2021), namely,
k-Nearest Neighbors (k-NN), Linear Regression (LR), Artificial
Neural Networks (ANN) and PSO-SVM. As Table 3 shows, the
improved SVR has lowerMSE and RMSE than k-NN, LR, and ANN,
it indicates that the improved SVR has good predictive performance
for battery SOH. Since the improved SVR focuses more on reducing
the training time of SVR, there is an obvious drop in simulation
accuracy compared to the PSO-SVR which is dedicated to
improving the accuracy of SVR simulation. Compared with the
original SVR, the improved SVR has slightly lower accuracy but
significantly shorter simulation time.

5 Conclusion

The accurate prediction of battery SOH is one of the key
functions of electric vehicle BMS. In this paper, feature data sets
are extracted from NASA’s battery aging experiments and
dimensionality reduction is performed on them. The decision
tree algorithm is used to group the features and perform the
original SVR algorithm simulation on each group. The
simulation results show that four feature inputs can meet the
desired SOH prediction accuracy requirements: voltage at SOC =
100%, voltage, discharge time, and SOC. The original SVRmodel is
fitted by solving the dual of the original constrained optimization
problem, resulting in a quadratic programming problem that is
computationally very time-consuming to solve. To reduce the long
training time of original SVR for large sample data sets, an
improved SVR algorithm is proposed. The improved SVR
model is fitted by directly minimizing the primal form of the
optimization problem. Since the original SVR objective function is
not differentiable, we introduce a smoothing function to

approximate the objective function of the original SVR,
transforming the original quadratic programming problem into
a convex unconstrained minimization problem, and subsequently
solving the smoothed approximate objective function in a
sequential minimum optimization manner using conjugate
gradient algorithm. The improved SVR algorithm is applied to
the four feature inputs. The simulation results show that the
improved SVR algorithm saves 83.9% of the training time
compared to the original SVR algorithm, with a slight trade-off
in prediction accuracy. In future work, we plan to use data sets
collected from real vehicles and real vehicle verification tests.
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