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The large-scale integration of renewable energy resources in the power system
challenges its economic and secure operation. Particularly, the increasing
penetration of renewable energy will result in insufficient system voltage
regulation and reactive power support capabilities, and may cause high risks of
nodal voltage and branch flow violations. Therefore, to hedge the operational
risks under the worst realization of uncertainties of renewable energy sources,
a two-stage robust unit commitment (UC) model is developed. Meanwhile,
the convexified AC power flow model is incorporated in the robust UC
model to more accurately characterize the real-time operating status of power
systems. On this basis, an AC power flow-constrained robust unit commitment
(ACRUC) model is formulated. A circular linearization method is then adopted
to handle the quadratic constraints in the original AC power flow model,
transforming them into tractable linear constraints. Furthermore, to reduce the
computational complexity caused by the large-scale newly-added constraints
after the linearization process, a customized redundant constraint identification
(RCI) method is developed, in which two different modes (i.e., cold and
warm start modes) are designed considering the difference in base case
system operating condition for linearizing branch losses. Then, the redundant
network security constraints could be identified by solving a series of relatively
simple optimization subproblems. Numerical results on the modified NERL-
118 test system indicate that the proposed model could accurately depict
actual operation and scheduling conditions, and also verify that the proposed
customized RCI method could effectively reduce the problem scale and improve
the solution efficiency.

KEYWORDS

power system operation, uncertainty of renewable energy resources, linearized AC
power flow, robust unit commitment, redundant constraint identification method

1 Introduction

The security-constrained unit commitment (SCUC) could ensure the economic and
secure operation of power systems. With the integration of dispatchable sources, expansion
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of power grids, and interconnection between regional power
grids, the traditional power system has sufficient flexibility to
mitigate the operational risks (Han, X. et al., 2023). However,
power systems now face increasing challenges caused by the
uncertainty of renewable energy sources, resulting in high risks
of nodal voltage (Wang R. et al., 2022) and branch flow limit
violations (Wang S. et al., 2022). Moreover, the insufficient reactive
power support capability of renewable energy resources further
complicates power flow distribution (Nasri et al., 2015; Wang et al.,
2021), making it challenging for system operators to decide their
optimal strategies for complex system operations.

Robust optimization is well-recognized as an effective tool
to cope with uncertainties of renewable energy resources. It
focuses on the evaluation of system performance under the worst
uncertainty realization (Ben-Tal and Nemirovski, 1998; Ben-Tal
and Nemirovski, 1999; Ben-Tal and Nemirovski, 2000). Compared
to deterministic optimization, robust optimization results are
conservative but better able to deal with uncertainty caused by
random factors. It has been widely used in the optimal operation
problem of power systems with high renewable energy penetrations
(Jiang et al., 2011; Ye et al., 2016; Cobos et al., 2018).

Most studies on the unit commitment (UC) problem have
adopted theDCpower flowmodel to formulate network constraints,
rather than the more accurate AC power flow model (Wen et al.,
2015; Chen et al., 2016). The DC power flow model is a simplified
model used for approximate estimation of the active power
distribution in a transmission network. Its main idea is to simplify
the nonlinear flow problem into a linear problem by ignoring the
influence of reactive power on the active power flow distribution
(Wang et al., 2010). Traditional UC mainly focuses on the balance
of active power supply and demand and energy transition within
the system, and the DC power flow model can meet the modeling
requirements for transmission security in traditional UC while
ensuring computational efficiency (Wang et al., 2007; Wood et al.,
2013; Yang et al., 2017a). However, this simplified DC power flow
model may not be suitable for the UC problem with high renewable
energy penetrations. This is mainly due to the fact that the DC
flow model is unable to evaluate the sufficiency of the system’s
voltage regulation and reactive power support ability, and accurately
reflect the actual branches flow or transmission sections flow, and
provide information related to network losses (Castillo et al., 2015).
Therefore, it is necessary to introduce AC power flow models in
the UC to comprehensively consider the impact of active and
reactive components on the generation scheduling and transmission
security.

However, introducing AC power flow models into the UC
problem currently faces a major challenge. The traditional
UC problem is an NP-hard problem (Lavaei and Low, 2011;
Castillo et al., 2016). Adding AC power flow constraints introduces
non-convexity into the model and makes the UC problem both
a non-convex and an NP-hard problem, making it extremely
difficult to solve (Lehmann et al., 2015). Some researchers focus
on convex relaxation method to convexify the AC power flow
model. Lorca and Sun. (2017) apply semidefinite programming
and second-order cone programming to simplify the AC power
flow model. However, the accuracy and convergence of convex
relaxation methods cannot perform consistently well (Šepetanc and
Pandzic., 2020). Several other works (Zhang et al., 2013; Yang et al.,

2017b) have also convexified the AC power flow model using the
Taylor series expansions technique and linearized losses. This
approach reformulates the model into a tractable formulation.
However, solving the convexified model remains considerably
challenging for large-scale systems. One reason for this challenge
is the existence of a substantial number of network constraints,
which renders the model difficult to solve. Another factor
contributing to the complexity is the quadratic form of the branch
flow limit constraints, which transforms the model into a more
intricate mixed-integer quadratically constrained programming
problem.

In practice, power flows through non-critical branches may
not generally reach their limits, and the flow through most critical
branchesmay also not reach their limits for certain long time periods
(Hua et al., 2013; Ardakani and Bouffard, 2014). This indicates that
a certain proportion of network constraints will be redundant for
power system operation problem in many cases, since they will not
affect the feasible region of the UC problem and its optimal solution.
However, these redundant constraints will cause the problem’s
scale to become unnecessarily large and the solution efficiency to
deteriorate (Zhai et al., 2010).Therefore, identifying and eliminating
these redundant network constraints before solving the problem
can greatly reduce the model’s complexity. In Zhai et al. (2010),
sufficient conditions for quickly identifying redundant network
security constraints are proposed, to reduce excessive relaxation
and identify effective redundant constraints. A feasibility-based
boundary tightening strategy is proposed in Ding et al. (2020) to
deal with components whose output power fluctuation range varies
over time. An improved redundant constraint identification (RCI)
method is proposed in Yang et al. (2021), which is designed for
long-term UC problem. However, the above studies are applied
to DC flow-constrained UC model, which is different from AC
flow-constrained UCmodels in mathematical properties.Therefore,
these RCI methods based on DC flow-constrained UC model
cannot be simply introduced to AC flow-constrained UC models.
Therefore, its necessary to develop a customized RCI method
based on AC network constraints by leveraging their special
structures.

Based on the above literature review, this paper identifies the
following research gaps:

(1) The majority of existing methods concentrate on the
convexification of the UC problem with AC power flow
constraints. However, the convexified model becomes a
comparably intricate mixed-integer quadratically constrained
programming problem due to the presence of quadratic branch
flow constraints. Only a few methods address the linearization
of these quadratic branch flow constraints.

(2) Although numerous studies propose RCI methods for the
UC problem, these methods are primarily based on DC
flow-constraints and cannot be directly applied to AC flow-
constrained UC models. Therefore, a customized RCI method
for the UC problem, considering AC network constraints, is
currently lacking.

To address the above challenges, this paper proposes a robust
unit commitment with customized RCI method under uncertainty
of renewable energy sources. The main contributions of this paper
are as follows:
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(1) This paper presents an AC power flow-constrained robust unit
commitment (ACRUC)model to characterize the security range
of active and reactive power transmission in the transmission
network. This model will enable coordinated optimization of
active and reactive power generation scheduling.

(2) This paper also introduces a circular linearization method
to fully linearize the quadratic branch flow constraints,
transforming them into tractable linear constraints.The original
circular feasible domain defined by quadratic constraints
will thus be approximated by a polygonal feasible domain,
whose approximation error is controllable by the number of
linearization segments.

(3) To reduce the model scale, a customized RCI method is
proposed, which includes two models (i.e., cold and warm
start modes) based on different base case system operating
condition for branch loss linearization.Thismethodwill remove
redundant security constraints by solving a series of relatively
simple optimization problems.

2 ACRUC formulation

In this section, in order to obtain actual branch flow and
units’ output power accurately, the reactive power output of
conventional units, the reactive power demand of loads, and the
transmission characteristics of AC power transmission networks
are considered. A completely linearized AC power flow model
(Yang et al., 2017b) is introduced, which establishes the network
constraints of a two-stage robust UC model (Li et al., 2015) are
introduced. From the perspective of the entire model, the two-
stage robust UCmodel adaptively adjusts to formulate power system
unit commitment plans and generation scheduling plans with better
robustness.

2.1 Two-stage robust UC problem
formulation with DC flow

The two-stage robust UC model with DC flow constrained
is established in this section. The first stage [constraints (4)–(5)]
aims to optimize the UC decisions for conventional units, and the
second stage [constraints (6)–(11)] optimizes the economic dispatch
decisions of all units. From a physical perspective, the second stage
explores all scenarios of renewable energy resources and obtains the
decision results for the worst case.The first stage then adjusts theUC
decisions based on the outcomes from the second stage.

The objective function (1) is the total cost, which includes
the first-stage UC cost of conventional units and the second-stage
dispatch cost under the worst-case scenario.

The first-stage cost (2) includes the startup cost and shutdown
cost for conventional units. The relationship between binary
variables is modeled in (4), which ensures the correctness of
conventional units’ operation statuses during startup and shutdown
periods (Zhang et al., 2017). Constraint (5) describes the minimum
up and down time limits for each conventional unit (Yuan et al.,
2022).

The second-stage cost (3) includes the dispatch costs of all units.
The uncertain parameters in the robust solution are typically set at

the upper or lower limits of their uncertainty range (Wu et al., 2008),
and the uncertainty budget is commonly employed to mitigate
conservative result. The uncertainty set and uncertainty budget
are modeled in (6). Constraint (7) represents the maximum and
minimum active power output limit for each conventional unit
(Cao et al., 2021). Constraint (9) enforces the power output range for
renewable units. Constraint (8) imposes ramping-up and ramping-
down rate constraints for conventional units. System active power
balance is ensured by (10). The nodal phase angle range is defined
by (11).

2.1.1 Objective function

min
ξf∈𝔽f
 CUC(ξ f) + max

̃PNEg,t ∈𝕌,
min

ξs∈𝔽s(ξf, ̃PNEg,t )
CED(ξs, ̃PNEg,t ) (1)

CUC(ξ f) =∑
g∈ΩTG
∑

t∈T (SU
T
g u

T
g,t + SD

T
g d

T
g,t) (2)

CED(ξs, ̃PNEg,t ) =∑g∈ΩTG
∑

t∈T [C
T,F
g (pTg,t − P

T
g x

T
g ) +C

T,NL
g xTg ]

+∑
g∈ΩNEG
∑

t∈T βNEg ( ̃P
NE
g,t − p

NE
g,t ) (3)

2.1.2 Constraints of first stage

{
{
{

xTg,t − x
T
g,t−1 = u

T
g,t − d

T
g,t

uTg,t + d
T
g,t ⩽ 1

(4)
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∑
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2.1.3 Conventional constraints of second stage

{{{{{{{
{{{{{{{
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NE
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NE,0
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g,t (7)

{
{
{

−pTg,t + p
T
g,t−1 + (P

T
g −RU

T
g )u

T
g,t ⩾ −RU

T
g

pTg,t − p
T
g,t−1 + (P

T
g −RDT

g )dTg,t ⩾ −RD
T
g

(8)

̃PNEg,t − pNEg,t ⩾ 0 (9)
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pTg,t +∑g∈ΩNEG(i)
pNEg,t −∑(i,j)∈ΩL(i)

fP,Aij,t =∑d∈ΩD(i)
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{
{
{

−π ≤ θi,t ≤ π

θs,t = 0
(11)
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FIGURE 1
Framework diagram of RACUC model and redundancy constraint identification algorithm.

FIGURE 2
Schematic diagram of AC network constraint linearization.

2.2 AC network flow formulation and its
convexification

1) Linearized branch flow model with Q and v

The original nonlinear power flow equations are expressed as
follows:

f Pij,t = gij(v
2
i,t − vi,tvj,t cosθij,t) − bijvi,tvj,t sinθij,t

:∀l ∈ΩL, (i, j) = (B+(l),B−(l)), t ∈ T (12)

f Qij,t = −bij(v
2
i,t − vi,tvj,t cosθij,t) − gijvi,tvj,t sinθij,t

:∀l ∈ΩL, (i, j) = (B+(l),B−(l)), t ∈ T (13)

The phase angle θi,t and the square of the magnitude v2i,t of the
nodal voltage are chosen as independent variables to fully linearize

the AC power flowmodel, where the auxiliary variable vsij,t is defined
as follows:

vsij,t: = (vi,t − vj,t)
2 (14)

A Taylor second-order expansion for the sine and cosine
terms of θij,t, and an approximation and mathematical
transformation for the nonlinear terms of vi,t are used (Yang et al.,
2016):

{{{{{{{{{{
{{{{{{{{{{
{

sinθij,t ≈ θij,t

cosθij,t ≈ 1−
θsij,t
2

vi,t = vj,t ≈ 1

vsi,t − vi,tvj,t =
vsij,t
2
+
vsi,t − v

s
j,t

2

(15)
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FIGURE 3
Framework diagram of RCI algorithm.

TABLE 1 Test system case scenario setting.

Case no. Network model type To consider network constraints or not To adopt RCI algorithm or not

Case 1 DC model √ ×

Case 2–1 AC model (“cold start”) × ×

Case 2–2 AC model (“warm start”) × ×

Case 3–1 AC model (“cold start”) √ ×

Case 3–2 AC model (“cold start”) √ √

Case 4–1 AC model (“warm start”) √ ×

Case 4–2 AC model (“warm start”) √ √

TABLE 2 Comparison of maximum load ratio of overloaded branches in“cold start”mode.

Branch no. Γg = 6 (%) Γg = 12 (%) Γg = 24 (%)

Case 2–1 Case 3–2 Case 2–1 Case 3–2 Case 2–1 Case 3–2

L54 131.60 100.00 129.63 100.00 121.62 100.00

L78 114.25 99.70 111.90 99.46 111.88 99.92

L104 112.41 100.00 112.94 97.95 113.62 100.00

L119 142.15 100.00 138.07 100.00 138.01 100.00

L126 100.28 82.25 98.43 78.34 98.44 78.19

L127 100.28 82.25 98.43 78.34 98.44 78.19

L128 106.83 83.84 100.64 79.30 100.09 81.19

L155 126.70 99.31 153.91 99.49 159.72 99.19

L159 152.36 100.00 154.83 100.00 158.75 100.00

L178 106.42 99.89 106.49 99.48 106.49 99.97
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TABLE 3 Comparison of maximum load ratio of overloaded lines in“warm start”mode.

Branch no. Γg = 6 (%) Γg = 12 (%) Γg = 24 (%)

Case 2–2 Case 4–2 Case 2–2 Case 4–2 Case 2–2 Case 4–2

L54 107.06 88.18 106.89 83.14 108.84 98.96

L78 109.10 99.29 96.07 86.97 90.71 90.52

L104 104.34 98.00 93.88 95.42 102.21 99.39

L119 118.59 99.49 116.79 99.57 114.90 99.74

L126 75.78 68.58 75.08 66.45 75.03 69.57

L127 76.20 69.04 75.92 67.00 74.50 70.07

L128 76.96 71.47 74.96 68.04 77.09 66.47

L155 163.09 100.00 139.62 99.79 143.07 100.00

L159 118.98 83.88 116.22 82.14 128.20 99.23

L178 96.27 99.54 100.82 97.99 101.47 99.58

TABLE 4 Comparison of operating cost of thermal units.

Case no. System operating cost ($)

Γg = 6 Γg = 12 Γg = 24

Case 1 1426170 1439360 1447840

Case 2–1 1515640 1536190 1544350

Case 2–2 1563620 1578230 1589050

Case 3–1 1521000 1530130 1540570

Case 3–2 1518840 1532140 1541040

Case 4–1 1568250 N/A N/A

Case 4–2 1566910 1577860 1586200

After above analysis, the linearized AC power flowmodel can be
obtained as follows:

{{{{{{
{{{{{{
{

f P,Aij,t = gij
vsi,t − v

s
j,t

2 − bijθij,t + f
P,L
l,t

fQ,Aij,t = −bij
vsi,t − v

s
j,t

2 − gijθij,t + f
Q,L
l,t

:∀l∈ ΩL, (i,j) = (B+(l), B−(l)), t∈T

(16)

The branch losses f P,Ll,t and fQ,Ll,t in (16) can be further
linearized through an approximation process and a first-orderTaylor
expansion.Thedetailed derivation is provided in Yang et al. (2017b),
and the final expression is as follows:

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

f P,Ll,t = gijθ
0
ij,tθij,t + gij

v0i,t − v
0
j,t

v0i,t + v
0
j,t

(vsi,t − v
s
j,t)

−
gij
2
(θs,0ij,t + v

s,0
ij,t)

fQ,Ll,t = −bijθ
0
ij,tθij,t − bij

v0i,t − v
0
j,t

v0i,t + v
0
j,t

(vsi,t − v
s
j,t)

+
bij
2
(θs,0ij,t + v

s,0
ij,t)

:∀l ∈ΩL, (i, j) = (B+(l),B−(l)), t ∈ T

(17)

2) Other network constraints with Q and v under AC power flow
linearization

With the introduction of the linearized AC power flow model,
the operational constraints of the second stage must also consider
the reactive power output range of conventional units (18), the
balance of system reactive power (19), nodal voltage magnitude
range (20), and the limits of branch flow (21).

−QT
g x

T
g,t ≤ q

T
g,t ≤ Q

T
g x

T
g,t; ∀g ∈ΩTG, t ∈ T (18)

∑
g∈ΩTG(i)

qTg,t −∑(i,j)∈ΩL(i)
fQ,Aij,t =∑d∈ΩD(i)

qDd,t; ∀i ∈ΩB, t ∈ T (19)

(vi)
2 ≤ vsi,t ≤ (vi)

2; ∀i ∈ΩB, t ∈ T (20)

( fP,Aij,t )
2 + ( fQ,Aij,t )

2 ⩽ (Fl)
2; ∀l ∈ΩL, (i, j) = (B+(l),B−(l)), t ∈ T

(21)

2.3 Two stage robust UC problem
formulation with linearized AC flow

Further, the ACRUC model is formulated, with the objective
function defined byEqs 1–3.The constraints of the first stage include
(4)–(11), while the constraints of the second stage include (16)–(17)
and (18)–(21).

Figure 1 illustrates the proposed model architecture in this
paper. Firstly, a robust UC model is employed to fully consider
the output power uncertainty of renewable energy units. Then,
a linearized AC power flow model is introduced to reflect the
changes in nodal voltage and reactive power flow during the
system operation. Based on the above, the ACRUC model is
established.

However, direct solving of the ACRUC model is difficult
due to the existence of stochastic variables. Therefore, this paper
adopts the C&CG method (Zeng and Zhao, 2013) to transform
the first stage into the master problem and the second stage into
the feasibility subproblem under uncertain scenarios for iterative
solving. The subproblem incorporates constraints and decision
variables for worst-case scenarios into the master problem based on
the results obtained from solving the master problem. In addition,
the outer approximation method (Bertsimas et al., 2012) is used to
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FIGURE 4
Comparison of thermal units’ operation statuses of Case 1.

FIGURE 5
Number of online thermal units between different cases.

handle the economic dispatch subproblem during the solving
process.

3 Solution methodology

3.1 A circular linearization method for
branch flow limits constraint

Note that the branch flow limits (21) is a quadratic constraint.
Directly adding them to the UC model will make it a mixed-integer
quadratic programming problem, that is, difficult to solve and yields
poor scalability. However, it can be observed that these constraints
essentially describe a security operating region of AC branches on
the P-Q complex plane. Therefore, they can be approximated by
circular linearization instead of quadratic constraints to obtain a
fully linearized AC network constraint. Furthermore, the branch
limits (21) can be approximated by a group of linear constraints as

follows:

{{{{{{{{
{{{{{{{{
{

−K f
l,m f P,Aij,t − f

Q,A
ij,t ⩾ B

f
l,m

K f
l,Mf+1−m f P,Aij,t − f

Q,A
ij,t ⩾ B

f
l,Mf+1−m

K f
l,Mf+1−m f P,Aij,t + f

Q,A
ij,t ⩾ B

f
l,Mf+1−m

−K f
l,m fP,Aij,t + f

Q,A
ij,t ⩾ B

f
l,m

(22)

As shown in Figure 2, each quadrant is segmented into M f

parts, and there exist errors when applying the circular linearization.
The linearization error is quantified by calculating the ratio of
the difference between the sector’s area and the triangle’s area to
the sector’s area. According to error estimation in (23), increasing
the number of linearization segments can effectively reduce the
linearization error, making the linearized branch flow constraint a
more exact approximation of the original one.

ϵ f ≈ 1− cos π
4M f

(23)
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FIGURE 6
System’s voltage magnitude distribution in the scheduling horizon of
different cases.

3.2 RCI method for removing redundant
network constraints

Note that the scale of the network constraint Eq 21 is quite large,
and it is necessary to add corresponding constraints to each branch
at each time period in the scheduling horizon. After linearizing
the AC power flow, the number of constraints will also double
according to the number of linearization segments. For example,
if M linearization segments are required in one quadrant, a single
branch at a single time period will have at least 4×M branch flow
limit constraints. In a UC model with about N branches and a time
scale of 24 h, there will be 96×M×N such constraints. This brings
pressure to the solution efficiency of our problem andmay cause the
model to fall into the dilemma of exhausting computing resources
or unacceptable solution time after several iterations. Furthermore,
in the iterative solution process using the C&CG method, the scale
of constraints added by sub-problems to the main problem will also
increase sharply with the number of iterations.

Inspired by RCI technique under the DC power flow model
(Zhai et al., 2010; Yang et al., 2021), this paper proposes a
customized RCI method for the linearized AC power flow model.
Its main idea is to estimate conservatively branch flow limits in
actual operation under given load level, renewable energy prediction
results, and uncertainty error by solving multiple relatively simple
optimization subproblems. Hence, branch flow limits that will not
be overloaded are eliminated.

1) Identification method in “cold start” mode

The first step in the “cold start” mode is to identify network
constraints to determine the power limits for each branch during
each time period. To obtain the power loss for each branch, a Taylor
expansion is used based on the base case system operating condition
that in the “cold start” mode, in which nodal voltage magnitudes
are 1 and nodal voltage phase angles are 0. In this case, the network
power loss is zero and the first end branch flow is equal to the second
end branch flow, so the two-end branch flow limits do not need to be
considered separately. Based on this, the RCI model in “cold start”

mode is established, which includes an objective function defined
by Eq. 24 and constraints such as system power balance constraints
(10) and (19), linearized AC branches flow model (25), branch flow
limits (26), conventional units output range (7) and (18), renewable
energy units output range (9), nodal voltage phase angle limit (11),
and nodal voltage magnitude constraints (20).

max ( f P,Al′,t )
2 + ( fQ,Al′,t )

2 (24)

{{{
{{{
{

f P,Al,t = gij
vsi,t − v

s
j,t

2 − bijθij,t

fQ,Al,t = −bij
vsi,t − v

s
j,t

2 − gijθij,t

(25)

( f P,Al,t )
2 + ( fQ,Al,t )

2 ⩽ (Fl)
2:∀l ∈ΩL {l′} (26)

Since the constraints set of RCI model is a subset of the
constraints set of the ACRUC model, its feasible region is greater
than or equal to that of the ACRUC model. This ensures that the
maximumvalue of the calculated branch flow is greater than or equal
to the actual maximum value of the branch flow during operation.
Therefore, if the RCImethod finds that the constraint is not violated,
then this constraint must be redundant in actual operation.

Assuming that ( f P,A*l′,t , f
Q,A*
l′,t ) is the optimal solution of the

identification method problem under the “cold start” mode, if there
is no feasible solution, no optimal solution, or the branch flow limit
is exceeded, i.e., if ( f P,A*l′,t )

2 + ( fQ,A*l′,t )
2 > (Fl′)

2, it is necessary to add
a branch flow limit constraint for this branch at this time period.
Otherwise, the constraint can be considered redundant and ignored
without affecting the model solution.

2) Identification method in “warm start” mode

The identification model for the “warm start” mode is slightly
different from that of the “cold start” mode. In the “warm start”
mode, the base case system operating condition for branch power
loss in the Taylor expansion is obtained from the nodal voltage
magnitudes and voltage phase angles calculated by ACRUC with
RCI method in the “cold start” mode. In this case, the network
power loss on the branch cannot be ignored, resulting in different
power flows at the first end and second end of the branch. Hence,
the identification method must be carried out separately for the
first end and second end of the branch. The objective function is
expressed by Eq. 27 when identifying the first end branch flow,
and by Eq. 28 when identifying the second end branch flow. The
constraints for two-end of the branch flow include system power
balance constraints (10) and (19), linearized AC branch flow model
(16)–(17), conventional units output range (7) and (18), renewable
energy units output range (9), nodal voltage phase angle range
(11), and nodal voltage magnitude range (20). The branch flow
limit constraint is expressed by Eqs. 29, 31 for the first end branch
flow identification and Eqs. 29, 30 for the second end branch flow
identification.

max ( f P,Ai′j′,t)
2
+ ( fQ,Ai′j′,t)

2
(27)

max ( f P,Aj′i′,t)
2
+ ( fQ,Aj′i′,t)

2
(28)

{{{
{{{
{

( f P,Aij,t )
2 + ( fQ,Aij,t )

2 ⩽ (Fl)
2

( f P,Aji,t )
2 + ( fQ,Aji,t )

2 ⩽ (Fl)
2
;

∀l ∈ΩL ⧵{l
′}, (i,j) = (B+(l), B−(l))

(29)
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FIGURE 7
Unit commitment decisions in the scheduling horizon of different cases.

( f P,Ai′j′,t)
2
+ ( fQ,Ai′j′,t)

2
⩽ (Fl)

2;  (i′, j′) = (B+(l′),B−(l′)) (30)

( f P,Aj′i′,t)
2
+ ( fQ,Aj′i′,t)

2
⩽ (Fl)

2;  (i′, j′) = (B+(l′),B−(l′)) (31)

Assuming that ( f P,A
*

i′j′,t , f
Q,A*

i′j′,t ) is the optimal solution for the RCI

model of the first end branch flow, and ( f P,A
*

j′i′,t , f
Q,A*

j′i′,t ) is the optimal
solution for the RCI model of the second end branch flow. If either
of the RCI models for the two-end branch flows has no feasible
solution, no optimal upper bound, or exceeds the branch flow limit,
it is necessary to add a branch flow limit constraint for this branch at
time period t. Otherwise, the constraint is considered as redundant
and can be ignoredwithout affecting the solution result of themodel.

3) The process of proposed RCI method

The computational process of the RCI method under the
linearized AC power flowmodel is shown in Figure 3.The linearized
AC power flow network constraints on each branch at each time
period are split into RCI sub-problems, and the calculations are
completed using solvers separately. Then, the necessary branch flow
limit constraints are added to the constraint set of the ACRUC
model.

The RCI method based on linearized AC power flow can
effectively reduce the scale of the constraints. In addition, since
the models based on the RCI method for each branch and each
time period are decoupled from each other, the solution can be
independent and parallel. Therefore, the method has good potential
for parallel computing and can fully utilize the computing resources
of hardware devices.

4 Case study

In this section, the effectiveness of our proposed ACRUCmodel
and customized RCI method is verified by a group of numerical
experiments of modified NERL-118 test system. The parameters of
elements are adopted from Pena et al. (2017), and detailed settings
are introduced in IV-A. All calculations are performed by Gurobi
9.5.0 API for C++ on an Intel Core I5 8500 3 GHz processor.

4.1 The modified NERL-118 test case

The modified NERL-118 system includes 118 buses, 186
branches, and 54 thermal units. In addition, there are five different
capacity wind farms located at bus 24, 27, 31, 82, and 100, and 14
different capacity photovoltaic plants located at bus 15, 18, 19, 32, 54,
55, 69, 76, 92, 100, 104, 105, 110, and 112.The case has large number
of buses and branches, with renewable energy sources accounting
for 38.52% of the total installed capacity. The complexity of the UC
model is relatively high, which makes it difficult to solve. Therefore,
to reduce the complexity of the robust UC model, the test system
has merged the same type of renewable energy sources on same bus,
treating them as equivalent renewable energy plants.

This paper presents case studies to analyze the rationality
and effectiveness of linearized AC power flow network constraints
by comparing the operation statuses of thermal units, the load
conditions of overload branches, and the system operational cost.
Additionally, the effectiveness of the proposed RCI method is
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TABLE 5 Comparison of result with and without RCI in“cold start”mode.

Case no. Solving parameters Solving results

RCI or not Renewable energy uncertainty (Γg) Original problem constraints Total solving time (s)

Case3-1 × 6 147679 1971.01

12 2916.45

24 2529.38

Case3-2 √ 6 58207 580.71

12 1805.29

24 1672.68

TABLE 6 Comparison of result with and without RCI in“warm start”mode.

Case no. Solving parameters Solving results

RCI or not Renewable energy uncertainty (Γg) Original problem constraints Total solving time (s)

Case4-1 × 6 267959 4559.88

12 N/A

24 N/A

Case4-2 √ 6 81861 4513.45

12 5634.04

24 7295.34

verified by comparing the problem scale and solving efficiency with
and without RCI method. The case study designed in this section is
presented in Table 1.

4.2 Analysis of the effectiveness of
linearized AC power flow network
constraints and RCI method

The number of segments used to linearize the network
constraints is set to 6. The renewable energy forecasting error is
assumed to be 30%, and the uncertainty budget for renewable energy
units Γg are 6, 12, and 24. The comparison results between Case 2–1
and Case 3–2, as well as between Case 2–2 and Case 4–2 (as shown
in Table 2; Table 3), demonstrate that the proposed RCI method
correctly selects redundant network constraints. In both “cold start”
mode and “warm start” mode, constraints related to branches that
may exceed the power transmission security limit during operation
are retained, effectively limiting the transmission power of those
branches within the security range.

The comparison results of the systemoperating cost are shown in
Table 4. Comparing Case 3–1 and Case 3–2, it can be observed that
in the “cold start” mode, when Γg is set to 6, 12, and 24, the relative
errors of operating costs with and without RCI method are 0.14%,
0.13%, and 0.03%, respectively. Comparing Case 4–1 and Case 4–2,
it can be observed that in the “warm start” mode, when Γg is set to
6, the relative error of operating costs with and without RCI method
is 0.09%. Therefore, the RCI has little effect on the optimal value of
the objective function, ensuring its correctness.

Figure 4 illustrate UC solutions of conventional units for Case
1 under different renewable energy uncertainty budgets (Γg is set
to 6, 12, and 24). The comparison demonstrates that, as the level
of renewable energy uncertainty increases, the unit commitment of
conventional units become more frequent. This is mainly because
that the generation scheduling is needed to ensure sufficient system
flexibility to cope with high uncertainty.

Figure 5 illustrates the number of online thermal units for Case
1, Case 3–2 and Case 4–2 under the same uncertainty budget of
renewable energy (Γg is set to 6). The comparison reveals that,
unlike Case 3–2 and Case 4–2, Case 1 uses a DC power flow
model and fails to activate enough thermal units to mitigate the
impact of reactive power flow and voltage changes. However, Case
4–2 considers both linearized AC power flow and network losses,
requiring the activation of a larger number of thermal units and
demanding a higher level of capacity adequacy for the dispatchable
resources.

Figure 6 illustrates the distribution of voltage magnitude for
Case 2–1, Case 2–2, Case 3–1, Case 3–2, Case 4–1, and Case 4–2.
These cases all adopt the AC power flow model, which reflects
the variation range and distribution of the system’s voltages. In
contrast, the voltage is assumed to be constant in the DC power
flow model. Therefore, the AC power flow model more accurately
reflects the operational conditions of the system. Furthermore,
by comparing Case 3–1 and Case 3–2, as well as Case 4–1
and Case 4–2 (Γg is set to 6), we observe that the voltage
distributions obtained with and without considering RCI are very
similar. This finding further validates the correctness of the RCI
method.
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Thedispatch results of all units for Case 3–1, Case 3–2, Case 4–1
and Case 4–2 (Γg is set to 6) are shown in Figure 7. By comparing
Case 3–1 andCase 4–1, as well as Case 3–2 andCase 4–2, we observe
that the warm-start AC model takes network losses into account.
Therefore, the warm-start AC model provides a more accurate
portrayal of the system’s operational conditions compared to the
cold-start AC model.

4.3 Analysis of the efficiency of RCI
method solution

Table 5 and Table 6 demonstrate the improvement of the RCI
method in both “cold start” and “warm start” modes. The term
“original problem constraints” refers to the sum of the constraints in
the robust model first stage and second stage. “Total solving time”
refers to the total time spent on RCI and model solving. “N/A”
indicates that the model was considered unsolvable due to excessive
computational time in the solving environment described in the
article. It can be seen that, under the premise of ensuring correctness,
the identification method can effectively improve the efficiency of
model solving.

As shown in Table 5, the “cold start” mode reduced the original
problem constraints by 60.58% before and after using the RCI
method. When the renewable energy uncertainty budgets Γg are
set to 6, 12, and 24, using the RCI method in the “cold start”
mode can reduce the solving time by 70.54%, 38.1%, and 33.87%,
respectively. This demonstrates that when the power system has a
large network scale, the RCI method can significantly reduce the
number of constraints and the original problem’s size, and improve
the solving efficiency.

The effect of solution efficiency improvement is more significant
in the “warm start” mode when the renewable energy uncertainty
budgets Γg is set to 6, as shown in Table 6, where the size of the
original problem constraints is reduced by 69.45%, and there is also
a corresponding improvement in the solving time.

5 Conclusion

To cope with the risks associated with a high proportion of
renewable energy resources in power system operation, this paper
analyzes the uncertainty factors and transmission security in system.
A two-stage robust UC model and a convexified AC power flow
model are used to develop an ACRUC model. In the ACRUC
model, branch flow limit constraints are linearized using a circular
linearization method. To overcome the difficulties in solving the
large-scale branch flow limit constraints and the model, this paper
proposes a customized RCI method for the linearized ACRUC
model.

The computational results from the improved NERL-118 test
system demonstrate that the AC power flow model imposes higher
requirements for system reserve capacity and flexibility compared

to the DC power flow network constraints. This is particularly
significant in response to increasing renewable energy uncertainty.
Additionally, the results show that the original problem constraints
are reduced by 60.58% and 69.45% in the “cold start” and “warm
start” modes, respectively. These reductions achieve the goal of
reducing solving difficulty and improving efficiency.
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Nomenclature

Indices and Sets

ξf /ξs Set of decision variables for the first/second stage problem

𝔽f /𝔽s Feasible region of the first/second stage

𝕌 Set of random variables

ΩTG Set of thermal units in the system

T Set of time periods

ΩNEG Set of renewable energy units

ΩL(i)/ΩD(i) Set of branches/loads connected to bus i

B+(l)/B−(l) First/second bus of branch l

Variables

uTg ,t/d
T
g ,t Binary variables for start-up/shut-down statuses of thermal g unit at time t

pTg ,t Active power output of thermal unit g at time t [MW]

xTg Binary variables for operation statuses of thermal unit g

pNE
g ,t Power output of renewable energy unit g at time t [MW]

zNE
g ,t /z

NE+
g ,t /z

NE−
g ,t Auxiliary variables that characterize the forecasting uncertainty of renewable energy unit g at time t

f P,Aij,t /f
Q,A
ij,t Active/reactive power flow of branch ij at time t [MW]

Γg Uncertainty budget for renewable energy unit g

θi,t/θs,t Voltage phase angle of bus i/slack bus s at time t

qTg ,t Reactive power output of thermal power unit g at time t [MW]

f P,Ll,t /f
Q,L
l,t Linearized active/reactive (half) loss of branch l at time t [MW]

vi,t Voltage magnitude of bus i at time t

Mf Number of linearized power flow constraint segments in each quadrant

Parameters

CUC Start-up and shut-down cost of thermal units [$]

CED Economic dispatch costs under extreme scenarios [$]

P̃NE
g ,t Actual resource power of renewable energy unit g at time t [MW]

SUT
g /SDT

g Single start-up/shut-down cost of thermal unit g [$]

CT ,F
g /C

T ,NL
g Fuel cost/fixed operation cost of thermal unit g [$/MW]

βNE
g Penalty cost for curtailment power of renewable energy unit g [$/MW]

PT
g /P

T
g Minimum/maximum output active power of thermal unit g [MW]

T Number of time periods in the scheduling horizon

MUT
g /MDT

g Minimum start-up/shut-down time of thermal unit g [h]

PNE,0
g ,t Predicted resource power of renewable energy unit g at time t [MW]

PNE
g ,t /P

NE
g ,t Actual output power upper and lower limits of renewable energy unit g at time t [MW]

RUT
g /RDT

g Ramp-up/ramp-down rate of thermal unit g [MW/h]

F l Transmission power limit of branch l [MW]

X l Reactance of branch l

pDd,t/q
D
d,t Active/reactive demand of load on bus d at time t [MW]

QT
g /Q

T
g Minimum/maximum output reactive power of thermal unit g [MW]

vi/vi Minimum/maximum voltage of bus i

v0i,t/θ
0
i,t Base case system operating condition value of voltage magnitude/phase angle on bus i at time t

K f
l,m/B

f
l,m Slope and intercept of the linearized branch flow constraint for segmentm of branch l
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