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A virtual power plant (VPP) is an effective way to manage distributed energy
resources. Virtual power plant cluster (VPPC) is constructed due to the increasing
number of VPPs. It has great potential in carbon emission reduction through
coordination between VPPs. Therefore, a dynamic dispatch priority model is
proposed. The model adjusts the dispatch sequence of VPPs based on carbon
emissions. The higher the carbon emissions, the lower the dispatch priority. The
VPPC participates in carbon trading and the carbon trading cost is included in the
optimization objective. There are still many uncontrolled distributed energy
resources, e.g., wind power, out of the VPPC. The distributionally robust
optimal method is used to deal with the uncertainty of wind power. Finally, this
paper proposes a two-stage distributionally robust optimal model of VPPC
considering carbon emission-based dynamic dispatch priority. This model can
be solved by the column-and-constraint generation (C&CG) algorithm. A VPPC
with four VPPs is used in case studies, which verify the economic benefit and low
carbon of the proposed model.
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1 Introduction

With the emission of carbon dioxide, the greenhouse effect has severely affected
sustainable social development. It is significant to study emission reduction in power
systems, which are regarded as the main source of carbon emissions (Kang et al., 2015).
To reduce carbon emissions, there are many distributed energy resources connected to the
power grid, and they can be integrated into a VPP and participate in dispatch as a single
entity (Zhao et al., 2020). Zhang et al. (2021) propose a dynamic clustering algorithm that
allocates energy storage systems to different virtual power plants to reduce load losses. In
Wang et al. (2021), network reconfiguration is considered in the aggregation approach to
reduce the fluctuations of voltages and power.

These distributed energy sources include wind power, PV, gas turbines, energy storage
devices, electric vehicles, and dispatchable loads. Different combinations can serve different
purposes. In Luo et al. (2020), a bi-level dispatch model of VPP which consists of energy
storage devices and dispatchable loads is constructed for the target of load peak shaving and
valley filling. Yu et al. (2022) study the energy management of a VPP considering the comfort
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of the flexible load users. The impacts of energy storage devices on a
VPP are analyzed by Bagchi et al. (2019). Yang et al. (2020) integrate
electric vehicles into a VPP to participate in the power market and
analyze the function of electric vehicles. In Zhang andHu (2022), the
VPP which includes a power network, natural gas network, and
power-to-gas device participates in power and gas energy markets
with the aim to maximize profit.

Meanwhile, distributed energy resources produce uncertainty in the
power grid, and the VPP is a new way to cope with it. A distributed two-
stage economic dispatch model for VPP is proposed to decrease the
impact of uncertainties (Zheng et al., 2021). There aremany optimization
methods to handle uncertainties. The information gap decision theory is
used to achieve theminimization of operating costs and carbon emissions
(Ren et al., 2023). Omelčenko, (2021) use the methods of machine
learning. In Guo et al. (2021), the dynamic capacity optimization strategy
is formed by the riskmeasurement theory. Considering the uncertainty of
wind power and market prices, the strategic offering problem of a VPP is
formulated as a stochastic adaptive robust optimization model (Baringo
and Baringo, 2017). In Dabbagh and Sheikh-El-Eslami (2016), a two-
stage stochastic programming approach is adopted for VPP trading.
Babaei et al. (2019) adopt a distributionally robust optimization method
that utilizes moment information of random parameters. The
distributionally robust optimization deals with uncertainties by finding
the worst-case probability distribution and obtaining the optimal decision
plan. It avoids assuming a specific uncertainty distribution andmakes the
best use of limited statistical data to yield less-conservative results, but it
has rarely been applied in VPP optimization. Therefore, there is
important research value in introducing the distributionally robust
optimization into VPP optimization.

On the generation side, carbon capture and carbon trading have
become important ways of emission reduction. Reddy K et al. (2017)
model the carbon capture systems in a carbon-constrained
environment. In Akbari-Dibavar et al. (2021), carbon capture
systems are combined with coal power plants to decrease carbon
emissions. The carbon capture plant provides a spinning reserve
depending on the potential flexibility (Lou et al., 2015). Zhang et al.
(2016) study how the generation schedule is influenced by the
carbon trading mechanism. Priority rules are often used for
many load-shedding strategies. Laghari et al. (2015) present
under-frequency load-shedding strategies based on the priority of
loads. A user-determined priority schedule for load shedding is
proposed by Adamiak et al. (2014), but few researchers consider a
dispatch priority on the generation side. The above papers provide
references for priority rules to achieve carbon reduction.

VPPC is formed as the number of VPPs increase. Therefore,
investigating the optimization operation of VPPC is an urgent
demand. The VPPC pays close attention to its entire economic
cost and profits, and it can realize economic dispatch among DGs
that belong to different owners. A virtual cluster control is proposed
to achieve coordination operation and local autonomy of VPPs (Liu
et al., 2019). There is also a conflict of interest between the VPPC
and the distribution network. It is necessary to separately consider
the economic objectives of the VPPC and operational constraints of
the distribution network when formulating the optimal operation
strategy. Yi et al. (2020) propose a bi-level model for the active
distribution network with multiple VPPs to enhance the security
and economic performance of the system. To reduce the peak-valley
difference of net load, active distribution networks with VPPs join

the energy-reserve market indicating the validation in shaping the
load profile and realizing the economical operation (Zhang et al.,
2023).

Most existing research focuses on the optimization operation of
a single VPP. Few researchers consider the VPPC a study object;
however, it has great potential in carbon emission reduction.
Therefore, a distributionally robust optimal model of VPPC
considering carbon emission-based dynamic dispatch priority is
proposed. The dynamic dispatch priority is constructed to adjust the
dispatch sequence of VPPs based on the carbon emissions. The
higher the carbon emissions, the lower the dispatch priority. The
uncertainty of wind power is considered with the method of
distributionally robust optimization. This model is dispatched in
the day-ahead stage and intra-day stage. It can be solved by the
C&CG algorithm. A VPPC with four VPPs is used in case studies,
which verify the economic benefit and low carbon of the proposed
model.

2 Mathematical model

2.1 Carbon trading mechanism model

The carbon trading mechanism requires the units with carbon
emissions to get involved in trading. Carbon emissions are regarded
as a commodity. Each carbon emission source has a certain carbon
emission quota. When carbon emissions of the carbon emission
source exceed the carbon emission quota, the excess part should be
purchased from the carbon trading cost. Conversely, the remaining
part can be sold to other carbon emission sources.

Gas-fired units, diesel units, and coal-fired units are seen as
carbon emission sources in this paper. Each unit has the same
carbon emission quota and different carbon emission intensities.
The carbon emission intensity of coal-fired units is the highest, and
the gas-fired units have the lowest carbon emission intensity. The
coal-fired units are equipped with carbon capture devices. The
carbon capture device can absorb carbon dioxide generated by
the coal-fired units. The carbon trading mechanism model can be
expressed as:

EVPP,2,t � λGTPGT,t + λdiePdie,t (1)
EVPP,3,t � λcoPco,t − Ecap,t (2)

Ctra,t � εtra EVPP,2,t + EVPP,3,t − λcar PGT,t + Pdie,t + Pco,t( )[ ] (3)
where EVPP,2,t and EVPP,3,t are the carbon emissions of VPP 2 and
VPP 3; λGT, λdie, and λco are the carbon emission intensity of the gas-
fired unit, diesel unit, and coal-fired unit, respectively; PGT,t, Pdie,t,
and Pco,t are the power outputs of the units; λcar is the carbon
emission quota; Ecap,t is the amount of captured carbon dioxide; εtra
is the carbon trading price; Ctra,t is the carbon trading cost.

2.2 Carbon emission-based dynamic
dispatch priority

Most existing methods of carbon reduction increase generating
costs leading to an increase in electricity users’ costs. Therefore, a
carbon emission-based dynamic dispatch priority model which
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achieves carbon emission reduction by adjusting the dispatch
sequence of VPPs is proposed. We first set the dispatch priority
according to carbon emissions which can be presented by the
following equations:

PVPP,i,t �
P1,VPP,i,t, 0≤EVPP, i,t≤E1,VPP

P2,VPP,i,t, E1,VPP ≤EVPP, i,t≤E2,VPP

P3,VPP,i,t, E2,VPP ≤EVPP, i,t

⎧⎪⎨⎪⎩ (4)

uVPP,i,t �
u1,VPP,i,t, 0≤EVPP, i,t≤E1,VPP

u2,VPP,i,t, E1,VPP ≤EVPP, i,t≤E2,VPP

u3,VPP,i,t, E2,VPP ≤EVPP, i,t

⎧⎪⎨⎪⎩ (5)

where PVPP,i,t is the power output of VPP i; P1,VPP,i,t, P2,VPP,i,t, and
P3,VPP,i,t are the power outputs of VPP i in different dispatch
priorities; EVPP,i,t is the carbon emissions of VPP i; E1,VPP and
E2,VPP are the carbon emission thresholds dividing dispatch
priorities; uVPP,i,t is the status of VPP i, 0 is taken when the
power output of VPP i is 0, otherwise 1 is taken; u1,VPP,i,t,
u2,VPP,i,t, and u3,VPP,i,t are the status of VPP i in different
dispatch priorities. As can be seen above, there are three dispatch
priorities in this paper. The higher the carbon emissions, the lower
the dispatch priority. When the carbon emissions of the VPP exceed
the carbon emission threshold, the power output of the VPP reduces
to zero. Therefore, the VPP needs to actively reduce carbon
emissions to obtain more profits.

Then, the VPPs with higher dispatch priorities have priority in
generation. The dispatch priority rules can be expressed as:

δP1,VPP,i,t
max − 1 − u2,VPP,i,t( )M≤P1,VPP,i,t ≤P1,VPP,i,t

max + 1 − u2,VPP,i,t( )M
(6)

δP2,VPP,i,t
max − 1 − u3,VPP,i,t( )M≤P2,VPP,i,t ≤P2,VPP,i,t

max + 1 − u3,VPP,i,t( )M
(7)

δP1,VPP,i,t
max − 1 − u3,VPP,i,t( )M≤P1,VPP,i,t ≤P1,VPP,i,t

max + 1 − u3,VPP,i,t( )M
(8)

whereP1,VPP,i,t
max

andP2,VPP,i,t
max

are maximumpower outputs of the VPP i
in the first dispatch priority and the second dispatch priority; δ is the
priority generation proportion from zero to one; M is a large real
number. These formulas represent that the low-priority VPPs can start
up only when the power outputs of the high-priorityVPPs reach δ times
of the maximum power outputs. The maximum output power of VPP
2 indicates that the gas-fired unit and the diesel unit reached their
maximum output at the same time. The maximum output power of
VPP 3 is equal to themaximumoutput power of the coal-fired unit. The
carbon emission reduction effect is better when δ is closer to one. The
operating cost is lower when δ is closer to zero. This model achieves
carbon reduction by changing the dispatch sequence of VPPs.

3 Distributionally robust optimization
considering carbon emission-based
dynamic dispatch priority

3.1 Two-stage distributionally robust
optimal dispatch model of VPPC

A VPPC with four VPPs is considered in this paper. On the
generation side, there are clean energy units and conventional units.

PV is a typical clean energy unit, but its volatility is not beneficial to
the operation of the power system. In order to smooth the output
volatility of PV, it is often used in conjunction with energy storage,
which forms VPP 1. Gas-fired units, diesel units, and coal-fired units
are common conventional units. The carbon emission intensities of
the first two units are relatively low. They are aggregated as VPP 2.
For emission reduction, the coal-fired units with the highest carbon
emissions are equipped with a carbon capture device. The third VPP
consists of a coal-fired unit and a carbon capture device. The outputs
of VPP 2 and VPP 3 are constrained by the dynamic dispatch
priority rules due to the carbon emission of the units. On the load
side, the dispatchable loads which include the shiftable loads and
interruptible loads are aggregated as VPP 4. VPP 4 is encouraged to
participate in power system dispatch by economic compensation
and has the effect of peak load shifting. The VPPC is formed by the
four VPPs, which can be regarded as a small power system.

Wind power is a representative of distributed resources which is
difficult to control. Therefore, wind power is not suitable as a part of the
VPP. In this paper, the wind power is in the area powered by the VPPC,
but the VPPC does not include wind power. The low-carbon economic
operation of the VPPC is influenced by the uncertainty of wind power.
Therefore, a two-stage distributionally robust optimal dispatchmodel is
proposed to deal with the uncertainty and improve the absorption of
wind power. The dispatch priorities of VPPs are determined in the day-
ahead stage, and the outputs of each VPP are determined in the intra-
day stage according to the dispatch priorities.

3.2 Objective function

A distributionally robust optimal model of the VPPC
considering carbon emission-based dynamic dispatch priority is
proposed in this paper. The objective is to minimize the
comprehensive operating costs of VPPC consisting of four VPPs.
It can be calculated as follows:

min ∑T
t�1

Con,t + Coff ,t( )⎧⎨⎩
+ max

ps{ }∈W ∑S
s�1
ps min∑T

t�1
C1,t + C2,t + C3,t + C4,t + Cwind,t + Ctra,t( )⎫⎬⎭

(9)
where Con,t and Coff,t are the start-up and shut-down costs of units; ps
is the probability value of the sth discrete wind power output
scenario; S is the total number of discrete scenes; W is the set of
probabilities for actual wind power output scenarios; C1,t, C2,t, C3,t,
and C4,t are the operating costs of the four VPPs; Cwind,t is the
punishment cost of wind power curtailment; T is the time of
dispatch period taking the value of 24. The min form in the
outer layer represents the minimization of the total cost in two
stages. The max-min form represents the minimization of cost in the
intra-day stage under the worst wind power output scenario
probability.

3.2.1 Start-up and shut-down costs

Con,t ≥ ρon uco,t − uco,t−1( ), Con,t ≥ 0 (10)
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Coff ,t ≥ ρoff uco,t − uco,t−1( ), Coff ,t ≥ 0 (11)
The start-up and shut-down costs of the coal-fired unit are

considered in this paper. uco,t is a binary variable. Zero is taken when
the coal-fired unit is off, while one means the coal-fired unit is on.
ρon and ρoff are the single start-up and shut-down costs.

3.2.2 Operating cost of VPP 1
The operating cost of VPP 1 includes the charging and

discharging costs of the energy storage device and the
punishment cost of PV curtailment, which can be expressed as:

C1,t � ρPV P0
PV,t − PPV,t( ) + ρbat Pdis,t/η + Pch,t · η( ) (12)

where ρPV is the unit punishment cost of PV curtailment; P0
PV,t and

PPV,t are the forecast value and actual value of PV; ρbat is the unit
charge-discharge cost; η is the charge-discharge efficiency; Pch,t and
Pdis,t are charging power and discharging power, respectively.

3.2.3 Operating cost of VPP 2
The operating costs of the gas-fired unit and the diesel unit are

included in the operating cost of VPP 2, which can be expressed as
follows:

C2,t � ρGTPGT,t + adiePdie,t + bdie (13)
where PGT,t and Pdie,t are the power outputs of the gas-fired unit and
the diesel unit, respectively; ρGT is the unit generation cost; adie and
bdie are generation cost coefficients of the diesel unit.

3.2.4 Operating cost of VPP 3
The coal-fired unit is equipped with a carbon capture device in

VPP 4. The carbon capture device can absorb carbon dioxide
produced by coal combustion, and the captured carbon dioxide
needs to be stored, thus producing the storage cost. The operating
costs of the coal-fired unit and the carbon capture device are also
included in the operating cost of VPP 3. It can be presented as
follows:

C3,t � acoPco,t + bco + ρCCPCC,t + ρcapEcap,t (14)

where aco and bco are generation cost coefficients of the diesel unit;
ρCC and ρcap are the unit operation cost of the carbon capture device
and unit storage cost of carbon dioxide; Pco,t and PCC,t are power
outputs of the coal-fired unit and the carbon capture device,
respectively.

3.2.5 Operating cost of VPP 4
The operating cost of VPP 4 includes compensation costs of

shiftable loads and interruptible loads. It can be calculated as follows:

C4,t � ρshif Pshif ,t

∣∣∣∣ ∣∣∣∣ + ρintePinte,t (15)
where ρshif and ρinte are the unit compensation cost of shiftable loads
and interruptible loads, respectively; Pshif,t and Pinte,t are the
response power of shiftable loads and interruptible loads.

3.2.6 Punishment cost of wind power curtailment

Cwind,t � ρwind P0
wind,t − Pwind,t( ) (16)

ρwind is the unit punishment cost of wind power curtailment;
P0
wind,t and Pwind,t are the forecast value and actual value of wind

power, respectively.

3.3 Constraints

3.3.1 Constraints of VPP 1
The output of PV should be within the limits.

0≤PPV,t ≤P0
PV,t (17)

The energy storage device should meet the following constraints:

0≤Pdis,t ≤ ubat,tPbat
max

(18)
0≤Pch,t ≤ 1 − ubat,t( )Pbat

max
(19)

η∑T
t�1
Pch,t − 1

η
∑T
t�1
Pdis,t � 0 (20)

Ebat
min ≤E0

bat + η∑t
t′�1

Pch,t′ − 1
η
∑t
t′�1

Pdis,t′ ≤Ebat
max

(21)

Eqs. 18 and 19 are the charging and discharging power
constraints of energy storage devices, respectively. Pbat

max
is the

maximum charging and discharging power. ubat,t is a binary
variable. Zero is taken when the energy storage device is
discharging, while one means the energy storage device is
charging. Equation 20 ensures that the capacity of the energy
storage device is equal at the beginning and end of the dispatch
period, which is beneficial to the cycle dispatch. Equation 21 is the
remaining capacity constraint for each period. It can increase the
service life of the energy storage device. E0

bat is the initial capacity.
Ebat

max
and Ebat

min
are the maximum and minimum remaining

capacities, respectively.
The total output of VPP 1 PVPP,1,t is given by:

PVPP,1,t � PPV,t + Pdis,t − Pch,t (22)
It can be smoothed by combining PV and energy storage devices,

which can be expressed as follows:

−RVPP,1 ≤PVPP,1,t − PVPP,1,t−1 ≤RVPP,1 (23)
where RVPP,1 is the maximum ramp rate.

3.3.2 Constraints of VPP 2
The gas-fired unit and the diesel unit should meet the power

output constraints and ramp rate constraints, which can be
expressed as follows:

uGT,tPGT
min ≤PGT,t ≤ uGT,tPGT

max
(24)

−RGT ≤PGT,t − PGT,t−1 ≤RGTPdie
min

(25)
udie,tPdie

min ≤Pdie,t ≤ udie,tPdie
max

(26)
−Rdie ≤Pdie,t − Pdie,t−1 ≤Rdie (27)

where uGT,t and udie,t are binary variables denoting the on/off status
of the gas-fired unit and the diesel unit, zero for off and one for on;
PGT

max
and PGT

min
are the maximum and minimum power outputs of

the gas-fired unit; Pdie
max

and Pdie
min

are the maximum and minimum

Frontiers in Energy Research frontiersin.org04

Zuo et al. 10.3389/fenrg.2023.1214263

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1214263


power outputs of the diesel unit; RGT and Rdie are the maximum
ramp rates of the gas-fired unit and the diesel unit, respectively.

The total power output of VPP 2 PVPP,2,t can be calculated as
follows:

PVPP,2,t � PGT,t + Pdie,t (28)
And it meets the following constraint:

−uVPP,2,tM≤PVPP,2,t ≤ uVPP,2,tM (29)
where uVPP,2,t are binary variables denoting the on/off status of the
VPP 2; zero for off and one for on.

3.3.3 Constraints of VPP 3
The coal-fired unit should meet the following constraints:

uco,tPco
min ≤Pco,t ≤ uco,tPco

max
(30)

Pco,t − Pco,t−1 ≤ uco,t−1 Rco − Sco( ) + Sco (31)
Pco,t−1 − Pco,t ≤ uco,t Rco − Sco( ) + Sco (32)

∑t+Ton−1

k�t
uco,t ≥Ton uco,t − uco,t−1( ) (33)

∑t+Toff−1

k�t
1 − uco,t( )≥Toff uco,t−1 − uco,t( ) (34)

Equation 30 is the power output constraint of a coal-fired unit.
Pco
max

and Pco
min

are the maximum and minimum power outputs of
the coal-fired unit. Eqs. 31, and 32 are the ramp rate constraints. Rco

is the maximum ramp rate and Sup is the maximum ramp rate when
the unit starts up and shut down. Eqs. 33, 34 are running time
constraints. Ton and Toff are the minimum on and off time of the
coal-fired unit.

The constraints of power outputs Eq. 35 and ramp rates Eq. 36
are considered for the carbon capture device.

PCC
min ≤PCC,t ≤PCC

max
(35)

−RCC ≤PCC,t − PCC,t−1 ≤RCC (36)
PCC

max
and PCC

min
are the maximum and minimum power outputs of

the carbon capture device; RCC is the maximum ramp rate. The
captured carbon dioxide can be calculated as follows:

Ecap,t � λPCC,t (37)
where λ is the amount of carbon dioxide captured by unit power.

Because the carbon capture device does not exchange power
with the outside of the VPP 3, the power output of VPP 3 PVPP,3,t is
given by:

PVPP,3,t � Pco,t (38)

3.3.4 Constraints of VPP 4
The shiftable loads can be presented by the following

constraints:

∑T
t�1
Pshif ,t � 0 (39)

−Pshif
max ≤Pshif ,t ≤Pshif

max
(40)

Equation 39 indicates that the shiftable loads remain unchanged
during the whole dispatch period. The response power of shiftable
loads should be within the limits in Eq. 40 Pshif

max
is the maximum

response power of the shiftable loads.
The interruptible loads should meet the following constraints:

0≤∑T
t�1
Pinte,t ≤Pinte,all

max
(41)

0≤Pinte,t ≤Pinte
max

(42)
Equation 41 indicates that the total response power of

interruptible loads is limited during the whole dispatch period.
Pinte,all

max
is the maximum response power during the whole

dispatch period. Equation 42 indicates that the response power of
interruptible loads should be within the limits at each dispatch
moment. Pinte

max
is the maximum response power at each dispatch

moment.
The power output of VPP 4 PVPP,4,t can be presented by:

PVPP,4,t � Pshif ,t + Pinte,t (43)

3.3.5 Constraints of wind power

0≤Pwind,t ≤P0
wind,t (44)

3.3.6 Constraints of power balance

PVPP,1,t + PVPP,2,t + PVPP,3,t + PVPP,4,t + Pwind,t � Pload,t (45)
The wind power and the power output of the VPPC with four

VPPs supply the load demand.

3.3.7 Ambiguity set construction of wind power
Themethod of distributionally robust optimization is adopted to

deal with the uncertainty of wind power. There is uncertainty in the
probability of wind power output scenarios. Therefore, an
ambiguous set of wind power output scenarios is constructed by
moment information. First, the historical scenarios of wind power
output are clustered into several typical scenarios using the K-means
algorithm, and the probability of typical scenarios is obtained. Next,
the 1-norm and ∞-norm constraints centered around typical
scenario probabilities are used to describe the set of actual wind
power output scenario probabilities, which can be expressed as
follows:

W � ps{ }

ps ≥ 0, s � 1, 2, . . . , S

∑S
s�1
ps � 1

∑S
s�1

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ1
max
1≤ s≤ S

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(46)

where p0
s is the probability of typical wind power output scenarios;

θ1 and θ∞ are the maximum probability deviation under the 1-norm
and ∞-norm constraints.
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The probability of wind power output scenarios should meet the
following confidence constraints:

Pr ∑S
s�1

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ1⎧⎨⎩ ⎫⎬⎭ ≥ 1 − 2Se−
2Kθ1
S (47)

Pr max
1≤ s≤ S

ps − p0
s

∣∣∣∣ ∣∣∣∣≤ θ∞{ }≥ 1 − 2Se−2Kθ∞ (48)

where K is the number of historical wind power output scenarios; Pr
{} is the probability of inequality being established in {}.

The right sides of Eqs 47, 48 are confidence levels, which can be
presented by β1 and β∞.

θ1 � S

2K
ln

2S
1 − β1

(49)

θ∞ � 1
2K

ln
2S

1 − β∞
(50)

When the number of historical scenarios increases or the
confidence level approaches one, the probability deviation of
wind power output scenarios decreases. The probability of actual
wind power output scenarios is closer to the probability of typical
scenarios. The operator can balance the economy and robustness of
the optimization results by adjusting the confidence level.

4 Solution methodology

The two-stage distributionally robust optimal dispatch model is
constructed in this paper. In the day-ahead stage, the variables unrelated
to the probability of actual wind power output scenarios are optimized,
including the states and dispatch priority of each VPP. In the intra-day
stage, the distributionally robust optimal method is used to optimize the
operating power of each VPP and the power of wind curtailment under
the worst wind power output scenario probability. The C&CG
algorithm is introduced to solve the two-stage distributionally robust
optimal dispatch model. It decomposes the model into a main problem

(MP) and a sub problem (SP). They can be written in the following
compact matrix form:

MP:

min
x,ys

Ax + η

s.t. η≥∑S
s�1
ps Bys + Cξs( )

Dx≤d
Gys ≤g, s � 1, 2, . . . , S
Ix + Jys ≤ j, s � 1, 2, . . . , S
Pys + Qξs ≤ r, s � 1, 2, . . . , S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

SP:

max
ps{ }∈W ∑S

s�1
ps min

ys
Bys + Cξs

s.t. 44( )
Gys ≤g, s � 1, 2, . . . , S
Ix + Jys ≤ j, s � 1, 2, . . . , S
Pys + Qξs ≤ r, s � 1, 2, . . . , S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(52)

where x is the first stage optimization variable; ys is the optimization
variable for the sth typical scenario in the second stage; ξs is the
predicted wind power output for the sth typical scenario; A, B, C, D,
G, I, J, P, and Q are coefficient matrices; d, g, j, and r are parameter
vectors.

The specific solution steps of the C&CG algorithm are as follows.

Step 1. Set the initial wind power output scenario, scenario
probability values, upper bound UB = +∞, lower bound
LB = −∞, convergence criterion ε = 0.1, and the number of
iterations n = 0.

Step 2. Solve the MP to obtain the first stage decision variables, and
the LB is updated.

Step 3. Solve the SP with the first-stage decision variables known to
obtain the second-stage decision variables and the worst wind power
output scenario probability and update the UB.

FIGURE 1
Typical wind power output scenarios.
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Step 4. If UB-LB≤ε, stop the iteration and output the result. If not,
add new second-stage variables and the corresponding constraint
based on the wind power output scenario probability obtained by
solving the SP to the MP. Next, return to step 2 with iteration
number n = n+1.

5 Case studies

5.1 Case description

A VPPC with four VPPs is used to verify the feasibility and
effectiveness of the distributionally robust optimal dispatch model
proposed in this paper. The composition of each VPP is described in
section 3.1. The unit curtailment cost of PV and wind power is 50
$/MW. The carbon emission intensities of the gas-fired unit, the
diesel unit, and the coal-fired unit are 0.4 t/MW, 0.6 t/MW, and
1.5 t/MW. The amount of carbon dioxide captured by unit power is
4 t/MW. The unit charge-discharge cost is 40 $/MW. The unit

operation cost of the carbon capture device is 10 $/MW. The unit
storage cost of carbon dioxide is 5 $/t. The unit compensation cost of
shiftable loads and interruptible loads are 40 $/MW and 50 $/MW,
respectively. The paper assumes that the wind power output follows
the normal distribution with the predicted wind power output as the
mean and 0.5 times the predicted wind power as the variance, and
10,000 historical wind power output scenarios are generated. Five
typical wind power output scenarios are clustered using theK-means
algorithm, as shown in Figure 1. The confidence levels β1 and β∞ are
set to 0.99.

This model is solved by commercial software CPLEX in
MATLAB.

5.2 Analysis of carbon emission-based
dynamic dispatch priority

To verify the impact of carbon emission-based dynamic dispatch
priority, the case studies are conducted with and without the

FIGURE 2
Power outputs with and without dynamic dispatch priority: (A) VPP 2 (B) VPP 3.
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FIGURE 3
Carbon emissions with different priority generation proportions.

TABLE 1 Various costs under different priority generation proportions.

Priority generation
proportion

Operating cost of
VPP 1 ($)

Operating cost of
VPP 2 ($)

Operating cost of
VPP 3 ($)

Operating cost of
VPP 4 ($)

Carbon
trading
cost ($)

Total
cost ($)

0 41.67 1967.94 2687.35 44.89 811.12 5552.97

0.2 41.67 2152.29 2502.99 44.89 716.31 5458.16

0.6 40.78 2174.51 2483.28 45.85 705.77 5450.18

0.8 23.64 2449.45 2283.32 45.75 561.66 5363.83

1 23.94 2755.69 2137.35 33 275.57 5225.55

FIGURE 4
Amount of carbon captured with carbon emission thresholds.
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dynamic dispatch priority. The power outputs of VPP 2 and VPP
3 are shown in Figure 2 because only VPP 2 and VPP 3 follow the
dynamic dispatch priority rules. The priority generation proportion
is set to one.

The carbon emission intensity of the coal-fired unit in VPP 3 is
higher than the carbon emission intensities of the gas-fired unit and
the diesel unit in VPP 2. The power output of VPP 2 increases and
the power output of VPP 3 decreases when considering the dynamic
dispatch priority. The dispatch priority of VPP decreases when the
carbon emissions of VPP exceed a certain value, resulting in delayed
power output and achieving carbon reduction. The dispatch

sequences are decoupled from the carbon emissions without
dynamic dispatch priority. Each VPP participates in dispatch
with an economic orientation. The power output of VPP
3 increases because the generation cost is relatively low. By
contrast, the power output of VPP 2 decreases.

Carbon emissions with different priority generation proportions
are shown in Figure 3. It can be found that the carbon emissions
decrease while the priority generation proportion increases because
the higher the priority generation proportion, the higher the power
generated by the VPP with low carbon emission. It has an inhibitory
effect on carbon emissions. Each VPP generates freely when the

FIGURE 5
Relation curve between carbon emission thresholds, carbon emissions, and total cost.

FIGURE 6
Operating costs of VPP 2 and VPP 3 under different carbon trading prices.
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priority generation proportion is zero. The power output of the coal-
fired unit in VPP 3 increases causing an increase in carbon
emissions.

In Table 1, the operating cost of VPP 2 increases by 40% and the
operating cost of VPP 3, carbon trading cost, and total cost decreases
by 20%, 66%, and 6% as the priority generation proportion increases
from zero to one. Because VPP 2 has less carbon emissions
compared with VPP 3. And the output of the coal-fired unit in
VPP 3 decreases resulting in a decrease in the carbon trading cost
and the total cost. Therefore, the carbon emission-based dynamic
dispatch priority can reduce the carbon emissions and total cost.

The amount of carbon captured with different carbon emission
thresholds is shown in Figure 4. Each VPP wants to receive higher

dispatch priority because they want to gain higher revenue.
Therefore, each VPP will try to reduce its carbon emissions as
much as possible, but the carbon capture device has power limits. If
the amount of carbon dioxide absorbed within the power limit of the
carbon capture device can improve the dispatching priority of VPP,
the output power of the carbon capture device will be as large as
possible. On the contrary, the output power of the carbon capture
device will reduce due to the operating costs. Therefore, the amount
of carbon captured will increase with the decrease in carbon
emission thresholds most of the time, and the output power of
the carbon capture device will not increase at some time.

Figure 5 shows a relation curve between carbon emission
thresholds, carbon emissions, and total costs. The carbon

FIGURE 7
Carbon trading cost under different carbon trading prices.

FIGURE 8
Relation curve between total cost, carbon emission, and carbon trading price.
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emissions decrease when the carbon emission threshold
decreases from 1.2 to 1. VPP 3 needs to increase the power
output of the carbon capture device to reduce carbon emissions
and achieve higher dispatch priority, and the carbon emissions
increase when the carbon emission threshold decreases from 1 to
0.7 because the power output of the carbon capture device
reaches its limit currently and is unable to increase the
dispatch priority of VPP 3. The trend of total cost changes is
basically consistent with carbon emissions. The carbon emissions
and total cost reach the minimum at the same time. Therefore,
the lowest carbon emissions and total cost can be achieved by
setting reasonable carbon emission thresholds.

5.3 Analysis of the carbon trading
mechanism

To verify the impact of carbon trading mechanisms, the
operating results under different carbon trading prices are
analyzed.

The operating costs of VPP 2 and VPP 3 under different
carbon trading prices are shown in Figure 6. The operating cost of
VPP 2 increases and the operating cost of VPP 3 decreases with
the increase in carbon trading prices. When the carbon trading

price increases to 50$, the operating cost of VPP 2 increases
significantly and the operating cost of VPP 3 decreases
significantly. The operating costs of VPP 2 and VPP 3 remain
unchanged when the carbon trading price exceeds 80$. Because
the carbon trading mechanism increases the generating cost, it
has inhibitory effects on VPP with high carbon emissions and
encourages the generation of VPP with low carbon emissions.
When the carbon trading price is less than 50$, VPP 3 still has
economic advantages. When the carbon trading price exceeds
80$, the carbon trading mechanism has the strongest inhibitory
effect on VPP 3.

Figure 7 shows the trend in carbon trading cost with the
increase in carbon trading price. When the carbon trading
price is less than 40$ or higher than 50$, the carbon trading
cost increases with the increase in carbon trading price. When
the carbon trading price is 50$, the carbon trading cost
significantly decreases. Because the carbon trading cost of
VPP 3 is too high, the power output of the coal-fired unit in
VPP 3 decreases.

In Figure 8, the total cost increases and the carbon emissions
decrease with the increase in carbon trading price. Therefore, the
carbon trading mechanism can reduce the carbon emissions from
the VPPC and increase the total cost in the meantime. The economic
and low-carbon performance of the VPPC can be balanced by
setting reasonable carbon trading prices.

TABLE 2 Comparison between different optimal methods.

Method Operating cost of
VPP 1 ($)

Operating cost of
VPP 2 ($)

Operating cost of
VPP 3 ($)

Operating cost of
VPP 4 ($)

Carbon
trading
cost ($)

Total
cost ($)

Distributionally robust
optimization

23.76 2802.20 2280.92 33.45 314.99 5455.31

Deterministic
optimization

23.94 2755.69 2137.35 33 275.57 5225.55

TABLE 3 Result of comparison under different numbers of historical data.

Numbers Total cost ($)

1-norm ∞-norm Comprehensive norm

10 5760.17 5751.11 5751.11

1000 5663.32 5655.31 5655.31

5000 5529.77 5521.46 5521.46

10,000 5508.73 5455.31 5455.31

TABLE 4 Result of comparison under different confidence levels.

β1 Total cost ($)

β∞ = 0.5 β∞ = 0.9 β∞ = 0.99

0.5 5437.92 5440.29 5446.56

0.9 5444.36 5448.89 5450.21

0.99 5445.37 5450.21 5455.31

TABLE 5 Comparison between comprehensive norm and ∞ norm.

β1 Total cost ($)

∞-norm Comprehensive norm

0.5 5460.24 5445.32

0.9 5460.24 5450.24

0.99 5460.24 5455.31

TABLE 6 Comparison between comprehensive norm and 1 norm.

β∞ Total cost ($)

1-norm Comprehensive norm

0.5 5537.48 5440.56

0.9 5537.48 5447.58

0.99 5537.48 5455.31
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5.4 Analysis of the distributionally robust
optimal method

5.4.1 Comparison with the deterministic method
The number of historical wind power output scenarios is 10,000.

The confidence levels β1 and β∞ are set to 0.99. In this section, the
distributionally robust optimal method is compared with the
deterministic method. The optimization results are shown in
Table 2.

In Table 2, most costs of the distributionally robust optimal
method are higher compared with the deterministic method.
Because the probability of the worst wind power output scenario
can be obtained through distributionally robust optimization, the
carbon emission-based dynamic dispatch priority model is
considered. The dispatch priority of VPP 4 is lower because of
the substantial carbon emission from the coal-fired unit. The coal-
fired unit in VPP 4 has a sufficient adjustment margin. Therefore,
the coal-fired unit is the main unit to cope with the uncertainty of
wind power. More operating cost of VPP 4 increases leading to an
increase in carbon trading cost. The total cost also increases by 4%.

5.4.2 A comparison of different numbers of
historical wind power output scenarios

In this section, the confidence levels β1 and β∞ are set to 0.99. 1-
norm constraint,∞-norm constraint, and the comprehensive norm
are considered, respectively. The optimization results when selecting
different numbers of historical data are compared. The results are
calculated based on the number of wind power historical data
ranging from 100 to 10,000, as shown in Table 3.

Table 3 shows that the total cost gradually decreases as the
historical data increases. The increase in the number of historical
data reduces the deviation of scenario probability, thus reducing the
conservatism of solving the problem. It also can be seen that the total
cost is lower with the comprehensive norm constraint compared to
the other two constraints under the same number of historical data,
which indicates that the conservatism of the model with the
comprehensive norm constraint is lower.

5.4.3 A comparison of different confidence levels
This section analyzes the calculation results by setting different

confidence levels β1 and β∞. The number of historical data is 10,000.
It can be seen from Table 4 that the total cost increases with

increasing confidence levels. As the confidence levels increase, the
uncertainty of wind power output increases. The VPPC needs to
dispatch more distributed resources resulting in an increase in total
costs.

The confidence level β∞ is set to 0.99 and the confidence level β1 is
set to 0.5, 0.9, and 0.99, respectively. The comparison between the results
under the comprehensive norm constraint and ∞-norm constraint is
shown in Table 5. The results under the comprehensive norm constraint
are lower because the comprehensive norm constraint takes the 1-norm
constraint into account resulting in lower conservatism.

The confidence level β1 is set to 0.99 and the confidence level β∞
is set to 0.5, 0.9, and 0.99, respectively. The comparison between the
results under comprehensive norm constraint and 1-norm
constraint is shown in Table 6. Similarly, the total cost under the
comprehensive norm constraint is lower and less conservative than
under the 1-norm constraint.

6 Conclusion

A distributionally robust optimal model of the VPPC considering
carbon emission-based dynamic dispatch priority is proposed in this
paper. The main results of case studies are as follows.

(1) The carbon emission-based dynamic dispatch priority can not
only reduce carbon emissions but also reduce the total cost by
6%. It can promote each VPP to operate in a greener way. The
higher the priority generation proportion, the stronger the
inhibitory effect on carbon emissions. Better economic and
low-carbon performance can be achieved by setting
reasonable carbon emission thresholds.

(2) The carbon trading mechanism can reduce the carbon
emissions in VPPC and increase the total cost at the same
time. Therefore, it is necessary to balance the economic and low-
carbon performance of the VPPC by setting reasonable carbon
trading prices.

(3) When considering the wind power uncertainty, the costs of the
distributionally robust optimal method are higher compared
with the deterministic method. The increase in the number of
historical data reduces the conservatism of this model. The
conservatism of this model increases with the increase in
confidence levels, and the conservatism of the model with
the comprehensive norm constraint is lower.

Electrical energy is only considered in the VPPC. The
interdependency between natural gas and electrical energy is
increasing. Further work will consider multiple forms of energy in
the VPPC.
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