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Electric vehicle (EV) users’ driving requirement is restricted by the long charging
period and high cost. In this paper, a hierarchical transactive power exchange
method on expressways is proposed to eliminate range anxiety faced by EV
users and further reduce their cost. When EVs are driven on expressways, battery
swapping is considered the suitable power exchangemode due to high efficiency
and adjustability. EVs are scheduled to supplement energy in battery swapping
stations (BSSs) according to the remaining energy and battery swapping cost.
Then, the power exchange among batteries and the power grid in BSSs is
optimized for reducing the operation cost. In the optimization process, battery-
to-battery and battery-to-grid modes are considered for reducing the power
cost in the high electric price period. Some EVs release battery energy in
designated BSSs and supplement energy in other BSSs. It reduces fast charging
power of the battery and operation costs in designated BSSs. Several case
studies are presented to validate the effectiveness and economy of the proposed
method.

KEYWORDS

electric vehicle, power exchange, battery swapping station, battery degradation cost,
expressway

1 Introduction

Electric vehicles (EVs) have gained significant attention due to their environmentally
friendly characteristics (Liu et al., 2018; Ban et al., 2019; Fang et al., 2021). To promote EV
development, the governments have implemented a series of relevant policies, such as
driving restrictions and purchase subsidies (Haddadian et al., 2015). Consequently, it is
expected that the number of EVs increases rapidly (Shao et al., 2017; Park et al., 2022).
The proliferating number of EVs brings flexible resources to the power grid and provides
promising solutions to improve power grid operation (Cao et al., 2022; Jozi et al., 2022).
However, EV users’ driving requirement is restricted by the long charging period and high
cost.

EV charging power is coordinated for satisfying users’ driving requirements. Liu et al.
(2013) adaptively adjusted the charging power according to the battery’s state-of-charge
(SOC) and EV plug-out time. This method satisfied various EV owners’ charging
requirements and reduced the adverse impact of the massive charging loads integrated into
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the power grid. Luo et al. (2020) and Shen et al. (2021) coordinated
the charging period of diverse EVs according to the plug-in period
and load curve of the power grid. It reduced the power cost through
peak-load shifting. López et al. (2015) dispatched the charging
power in the load valley period. It improved the local consumption
of renewable energy generation. The charging requirements of EV
users were successfully satisfied in these methods by coordinating
the charging power and periods. Meanwhile, the normal operation
of the power grid was maintained.

In 1998, fast charging was proposed for supplementing energy
in EVs within a short period (Kutkut et al., 1998). Duan et al.
(2021) proposed a fast-charging method to improve EV users’
experience. Moradipari et al. (2020) stated that the real-time
navigation guided EVs driving toward fast-charging stations to
reduce the queuing time and improve the owners’ experience.These
methods significantly reduced the charging period and expanded
EVs’ driving range.

Zhang et al. (2020) integrated the interests of traffic networks
into power distribution systems and the fast-charging station joint
planning model. Through the information interaction, EV driving
became more convenient. Gjelaj et al. (2020) proposed a stochastic
planning method of the direct-current fast-charging stations
that considered the EV driving route. The method significantly
improved the user’s experience due to the short charging period.
However, fast charging significantly accelerates the cycle aging of
the battery. It results in an exorbitant battery degradation cost
(BDC).

BSSs play a crucial role in promoting a sustainable EV ecosystem
(Zulkarnain et al., 2014; Adepetu et al., 2016). The stations could
reduce the BDC and EV charging period by extending the battery
charging period and increasing the battery reserve (Ding et al.,
2022; Kocer et al., 2022). Choi et al. (2020), Zhang et al. (2020), and
Cui et al. (2023) stated that batteries in BSSs are centrally charged
during the low electricity price period. It reduces BSSs’ operation
cost and EV charging cost. Infante et al. (2018) proposed a two-
level hierarchical BSS model, including the unit model and the
station model. The unit model used a transition-based modeling
technique, which allows the observation froma bottom-up approach
on battery allocation. The station model acted as a system-view
platform to evaluate operational strategies for BSS, considering
BDC, users’ behavior, and supplementary grid services. Infante et al.
(2020) proposed that the link between the electricity network and
transport network provided opportunities for BSSs with a strategic
optimization scheme. In these approaches, BSSs not only effectively
satisfy users’ requirements but also improve the operation condition
of the power grid.

In order to further reduce EV users’ cost and eliminate
their range anxiety on the expressways, a hierarchical transactive
power exchange method where EV supplements energy in a cost-
effective manner is proposed in this paper. To satisfy users’ driving
requirements, EVs driving on expressways are dispatched to BSSs at
a lower level. In the process, the BSS energy storage situation, EV’s
remaining energy, and moving energy consumption are considered.
At the middle level, the power exchange among batteries and the
power grid is optimized in each BSS. In this process, multiple power
exchangemodes, such as fast charging, battery-to-battery (B2B), and
battery-to-grid (B2G), are coordinated. At the upper level, some EVs
release energy in the BSSs at exorbitant costs. In the process, the

FIGURE 1
Framework of the proposed power exchange system.

fast-charging power in BSSs is reduced, and the parameters at lower
and middle levels are changed.

The remainder of this paper is organized as follows: in Section 2,
the systemmodel is presented.Theproposed hierarchical transactive
power exchange method is presented in Section 3. In Section 4, the
Hungarian assignment and particle swarm optimization algorithms
are adopted to optimize the whole power exchange scheme.
Extensive case studies are presented and discussed in Section 5.
Conclusion is given in Section 6.

2 System model

2.1 Power exchange system

Figure 1 shows that the hierarchical transactive power exchange
system on expressways includes the control center, the power grid,
BSSs, and EVs. EVs are dispatched to BSSs according to the BSS
energy storage situation, EV remaining energy, and moving energy
consumption. In BSSs, the power exchange among the power grid
and batteries is performed. When the BSS operates at an exorbitant
cost, some EVs are encouraged to release energy in the BSS and
supplement energy in other BSSs.

The control center collects information from EVs, BSSs, and
the power grid (e.g., SOC of batteries and forecast electricity
price). According to the collected information, the power exchange
schemes are optimized in the control center, and the results are sent
to EVs and BSSs. When BSSs operate at prohibitive costs, EVs will
be considered the energy prosumers in the optimized process.

The control center collects information from EVs. It increases
the risk of privacy leakage. Privacy protection could be performed
by increasing the difficulty and cost of privacy leakage.The following
measures can be adopted:

1) Hidden EV user’s information. It increased the difficulty and
the time cost of privacy leakage (Efthymiou et al., 2010; Su et al.,
2019).
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2) Entrust the third parties to manage the data. The parties could
protect data professionally (Hur, 2013; Ruj et al., 2013).

3) Severe penalties for information disclosure should be imposed.

2.2 Power exchange model

To reduce BSSs’ operation and power costs, the process of
EV supplementing energy is hierarchical. At the lower level, EVs
are dispatched to BSSs for satisfying users’ driving requirements.
For providing sufficient swappable batteries economically in each
BSS, the power exchange among batteries and the power grid is
performed at the middle level. At the upper level, some EVs release
energy in the BSS which operates at exorbitant costs and supplement
energy in other BSSs. It is worth noting that the power exchange
scheme at the upper level will cause the updated schemes at lower
and middle levels. The power exchange model is shown as follows
(1):

CEV = P
up
EV ⋅EPP

ω +CBD −P
down
EV ⋅ESP

ω, (1)

CEV = [C1,C2,⋯,CNL
]ω,CBD = [CBD,1,CBD,2,⋯,CBD,NL

]ω, (2)

{{{{
{{{{
{

EPP = [ap,1,ap,2,⋯,ap,NL
]ω,ESP = [as,1,as,2,⋯,as,NL

]ω,

Pup
EV = QEV ⋅ [ΔSOC

up
1 ,ΔSOC

up
2 ,⋯,ΔSOC

up
NL
]ω,

Pdown
EV = QEV ⋅ [ΔSOC

down
1 ,ΔSOC

down
2 ,⋯,ΔSOC

down
NL
]ω,

(3)

where CEV represents the cost matrix of EVs. Pup
EV and Pdown

EV
represent the supplement energy and the releasing energy matrixes
of EVs, respectively. CBD represents the BDC matrix of EVs.
EPPω and ESPω represent the transposition of energy purchasing
and selling price matrixes, respectively. ap,l and as,l represent the
electricity purchasing and selling prices, respectively.QEV represents
the battery capacity.ΔSOCup

1 andΔSOCdown
1 represent the increasing

and decreasing SOC of an EV battery, respectively.NL represents the
number of EVs at lower power exchange.

In (1), the cost matrix of EVs includes the power purchase cost
and BDC. The power purchase cost and the power selling income
depend on the real-time electricity prices and power cost. The cost
at the middle level is reflected by electricity prices and the number
of dispatched EVs.

3 Problem formulation of battery
swapping

Figure 2 shows that EVs are dispatched to various BSSs for
supplementing energy at a lower level. At themiddle level, the power
exchange among the batteries and the power grid is performed in
each BSS. At the upper level, some EVs release energy in BSSs
at exorbitant operation costs. It is worth noting that the power
exchange at the upper level will change the power exchange scheme
at other levels.

3.1 Battery swapping at the lower level

At the lower level, EVs are dispatched to various BSSs. The
dispatching optimization model is established as follows:

FIGURE 2
Proposed hierarchical power exchange method.

min 
NL

∑
l=1

Cl =
NL

∑
l=1
(ap,l ⋅ ΔSOC

up
l ⋅QEV +CBD,l), (4)

s.t. CBD,l = α1(Pl(t)β1 + α2(1− SOCl(t))
β2), (5)

{{{
{{{
{

0 < vl(t) ≤ vmax,
0 ≤ ΔSOCup

l ≤ ΔSOCmax,
ΔSOCmax = SOCmax − SOCmin,

⇒ {
0 < Pl(t) ≤ vmax ⋅ψl,
SOCmin ≤ SOCl(t) ≤ SOCmax,

(6)

ap,l =
Nb

∑
b=1

ap,b ⋅ ΔSOC
up
l,b ⋅QEV/

Nb

∑
b=1
ΔSOCup

l,b ⋅QEV, (7)

{
{
{

QEV ⋅ (SOCl(t) − SOCmin) ≥ Dad,l ⋅ψl,

Dad,l =min(D1,l,D2,l,⋯,Dn,l,⋯,DNB,l) ≥ 0,
(8)

where Cl represents the cost of the lth EV. CBD,l represents the
BDC of the lth EV battery. Pl represents the power consumption
of the EV. α1, α2, β1, and β2 represent the battery degradation cost
parameters. SOCl represents the SOC value of the EV battery. vl
and vmax represent the speed and maximum speed of the moving
EV, respectively. SOCmax and SOCmin represent the maximum and
minimum SOC of the battery, respectively. Dn,l and Dad,l represent
the distance andminimum distance between the BSS and the lth EV,
respectively. NB represents the number of batteries in the BSS. ψ l
represents the unit moving energy cost of the EV.

In (4), the optimization object is the minimum EV cost. The
number of EVs dispatched to each BSS is considered the decision
variable. EV’s moving energy consumption accelerates the cycle
aging of batteries, and the BDC is formulated as shown in (5). In (6),
the real-time output power is constrained within the rational range,
and the real-time SOC of batteries is constrained for preserving
batteries from over-discharge. In BSSs, the energy price for EVs
fluctuates, as shown in (7). The remaining energy of EV batteries
is constrained, as shown in (8).
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3.2 Power exchange at the middle level

At the middle level, the power exchange among batteries and
the power grid is performed in each BSS. The optimization model
is established as follows:

min Cb = (
Nb

∑
b=1

CBD,b +
Nb−1+1

∑
b=1

ach,b ⋅ Pb), (9)

s.t. ach,b =

tend
∑
t0

ap,grid(t) ⋅ Pb−grid(t) +
tend
∑
t0

ap,grid(t) ⋅ Pb−b′(t) +CBD,b′

tend
∑
t0

Pb−grid(t) +
tend
∑
t0

Pb−b′(t)

,

(10)

{{{{
{{{{
{

CBD,b =
t
∑
t0
(α1(Pb(t)

β1 + α2(1− SOCb(t))
β2)),

Pb =
t
∑
t0
Pb(t) =

t
∑
t0

NB−1+1
∑
b′=1

Pb−b′(t), t0 ≤ t ≤ tend,
(11)

{{{{{{
{{{{{{
{

Pb−b′(t) =min(Pb,rem(t),−Pb′,rem(t)),

Pb,rem(t) = Pb(t) −
nb
∑
b′=1

Pb−b′(t),Pb′,rem(t) = Pb′(t)−
nb
∑
b=1

Pb′−b(t)

PGrid(t) = Pb,rem(t)|nb=Nb−1
+ Pb′,rem(t)|nb=Nb−1

,

⇒

{{{{{{{{{{{
{{{{{{{{{{{
{

Pb(t) = Pb−grid(t) +
Nb−1

∑
b′=1

Pb−b′(t),Pb−grid(t) ≥ 0,

Pb′(t) = Pgrid−b(t) +
Nb−1

∑
b=1

Pb′−b(t),Pgrid−b′(t) ≥ 0,

PGrid(t) =
Nb

∑
b=1

Pb(t) ≥ 0,0 ≤ Pb(t) ≤ Pch,max,−Pdis,max ≤ Pb′(t) ≤ 0,

(12)

{
{
{

SOCb(tend) ≥ STb = SOCmax − SOCdev,

SOCmin ≤ SOCb(t) ≤ SOCmax,
(13)

(STb − SOCb(t))QEV ≤
tend
∑
t
Pb(t) ≤ (SOCmax − SOCb(t))QEV, (14)

{
{
{

SOCb′(t) ≥ SOCmin

SOCb′(t) ≤ SOCmax

⇒
tend
∑
t
Pb′(t) ≥ (SOCmin − SOCb′(t))QEV,

(15)

{{{{
{{{{
{

SOCb(t+Δt) = SOCb(t) +
Pb(t)
QEV
≥ SOCb(t),

SOCb′(t+Δt) = SOCb′(t) +
Pb′(t)
QEV
≤ SOCb′(t),

(16)

{{{
{{{
{

Nb ≥ Nb,l(t) ⇒
NB

∑
b=1

Nb ≥ NL(t),

nb(t)|SOC≥(SOCmax−SOCdev) ≥ Nb,l(t),
(17)

where Cb represents the operation cost of the bth BSS. ach,b and
ap,grid represent the electricity prices of charging the battery and
the power grid, respectively. Pb represents the charging power
of the battery. PGrid represents the output power of the power
grid. Pb-grid represents the power that battery charges from the
grid. Pb-b’ represents the B2B power. Pb,rem represents the battery’s
unmatched optimization power. STb represents the desired SOC
of the battery. SOCdev represents the allowable SOC deviation of

the battery. Nb,l represents the number of EVs dispatched to the
lth BSS. NB represents the number of BSSs. b and b' represent
the indexes for the number of batteries and discharging batteries,
respectively. Pch,max and Pdis,max represent the maximum charging
and discharging power of batteries, respectively. Δt represents the
time interval. t0 and tend represent the initial and end of a certain
period, respectively.

The power exchange performed in each BSS aims to reduce
the operation cost, and the BSS’s minimum operation cost is the
optimization object, as shown in (9). The total charging power of
the BSS is considered the decision variable. In (10), the electricity
price of BSSs is defined, and it depends on the power cost and BDC.
The BDC is defined in (11). Each battery could match with multiple
objects. In (12), the exchanged power is limited by the smaller
power of matchable objects. The charging power and discharging
power are both limited in the rational range.The SOC of the battery
is constrained, as shown in (13) and (15). During the charging
period, the real-time SOC of the charging batteries is constrained
for preventing over-charging of the battery, and the battery’s power
range is concluded as (14). During the discharging period, the
real-time SOC of the battery is constrained for preventing over-
discharging of the battery, and the battery’s power range is concluded
as (15). The real-time SOC of the battery is updated and limited, as
shown in (16). At the middle level, each BSS satisfies users’ driving
requirements.Therefore, the number of batterieswith the designated
SOC value is constrained, as shown in (17).

3.3 Battery swapping at the upper level

At the upper level, some EVs release energy in BSSs, which
operate at exorbitant operation costs, and supplement energy in
other BSSs. The optimization model is established as follows:

max 
Nu

∑
u=1

Ru
′ = λ

Nu

∑
u=1

u = λRBSS > 0, (18)

s.t. RBSS = Cn|μ−1 +Cn+1|μ +⋯+CNB
|μ −Cn|μ, (19)

ΔSOCup
u +ΔSOCdown

u −ψu ⋅Dn,u/QEV ≥ 0, (20)

{
{
{

SOCmin ≤ SOCm,u ≤ SOCmax,

SOCmin ≤ SOCm′,u ≤ SOCmax,
(21)

SOCm′,u − SOCmin ≥ Dad,u ⋅
ψu

QEV
, (22)

where Ru represents the decreasing cost of BSSs due to the uth
EV releasing energy. Ru’ represents the income of the uth EV. RBSS
represents the decreasing cost of the BSS. Cn|u represents the cost
of the nth BSS that u EVs join in the upper power exchange. Nu
represents the number of EVs at the upper power exchange. λ
represents the operation cost ratio of BSSs.

In the optimization model, the maximum profit of users is the
objective, and the number of EVs dispatched to BSSs is considered
the decision variable. In (18), the users’ reward is dependent on the
decreased cost of BSSs. The upper power exchange could avoid fast
charging of some batteries and reduce BDC.When the electric price
at the period is high, the upper power exchange could reduce the
charging power and the power cost. The power cost and BDC in
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FIGURE 3
Designed middle power exchange algorithm.

TABLE 1 Comparativemethod characteristics.

Comparative method Battery
swapping

Battery-to-battery EV energy
release

M1 ○ × ×

M2 ○ ○ ×

M3 (proposed method) ○ ○ ○

the BSS are decreased and slightly increased in other BSSs. This is
because an acceptable number of EVs are dispatched to other BSSs.
The fast-charging power in the BSS is decreased, and the charging
power in other BSSs is slightly increased. Therefore, the total cost of
BSSs is decreased. At the upper power exchange, the BSSs decreased
the cost due to EVs releasing energy, and EVs’ extra cost due to
supplementing energy in other BSSs is considered, as shown in
(19). In (20), EV moving loss is considered, and the residual energy
of EV batteries is constrained to ensure that EVs could drive to
supplement energy. In (21) and (22), the SOC of batteries is limited
in a reasonable range, and the residual energy of EVs is limited by
the adjacent BSS’s distance.

4 Hierarchical power exchange
algorithm

4.1 Lower power exchange

At the lower power exchange, EVs are dispatched to BSSs
for supplementing energy. In this process, the number of EVs

TABLE 2 Simulation parameters.

Parameter Value Parameter Value

SOCl(tl,0) 0.3 + round (rand × 1)/10 Dn,l (km) 80

SOCb(tb,0) 0.2 + round (rand × 6)/10 NBSS 3

SOCm(tm,0) 0.7 + round (rand × 1)/10 Nb 40

SOCmax 0.80 α1 ($/kWh5) 0.2336 × 10−8

SOCmin 0.20 α2 ($/kWh5) 0.1024 × 10−1

SOCdev 0.05 β1 5

STb 0.80 β2 5

Pch,max (kW) 7 T (hour) 24

Pdis,min (kW) 7 △t (hour) 1

vmax (km/hour) 120 λ 0.8

QEV (kWh) 80 ψ l, ψu (kWh/km) 0.1

dispatched to each BSS is considered the decision variable, and the
particle swarm optimization algorithm is applied. The optimization
result will have an impact on the optimization process at the middle
level.

4.2 Middle power exchange

At the middle level, the power exchange among batteries
and the power grid is performed in each BSS for reducing the
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FIGURE 4
Dynamic parameters in the simulation process.

FIGURE 5
Purchasing power using (A) M1, (B) M2, and (C) M3.

operation cost. This process is considered a power assignment
problem.The particle swarm optimization offers several advantages,
including a fast rate of convergence, high precision, and simplicity
in implementation. On the other hand, the Hungarian algorithm is
a combinatorial optimization algorithm used to solve assignment
problems efficiently within polynomial time. These algorithms are
applied to solve the power assignment problem. The decision
variable in this problem is the total charging power of the BSS, and
the particle swarm optimization algorithm is employed to obtain the
optimal solution. In the power assignment process, the Hungarian
algorithm is applied to obtain the batteries’ optimal power exchange
scheme at each particle (Zeng et al., 2020). The procedure of the
designed algorithm is shown in Figure 3.

CPSO(t) =

[[[[[[[

[

c11(t),c12(t) … c1(Nb)(t)

c21(t),c22(t) … c2(Nb)(t)

⋮

cNb1(t),cNb2(t) … cNb(Nb)(t)

]]]]]]]

]

, (23)

{
{
{

cij = cij −min{ci1,ci2,⋯,ciNb
}, i ∈ [1,2,⋯,Nb],

cij = cij −min{c1j,c2j,⋯,cNbj}, j ∈ [1,2,⋯,Nb],
(24)

{
{
{

cij = cij −minEun,cij ∈ Eun,

c′ij = c
′
ij +minEun,c

′
ij ∈ Eco,

(25)

where Eun and Eco represent the uncovered elements and the
elements covered by two lines, respectively. Ncell represents the
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FIGURE 6
Purchasing power cost using (A) M1, (B) M2, and (C) M3.

FIGURE 7
Battery degradation cost using (A) M1, (B) M2, and (C) M3.

number of assigned cells. N row and Ncolumn represent the row and
column number of the matrix, respectively.

In the optimization process, the operation cost matrix of the BSS
is expressed as (23). In the matrix, the number of rows represents
that of batteries. The number of columns represents that of the
divided power. cnn in the element represents the corresponding
cost generated by the battery charging/discharging. In (24), the

calculation rule ensures zero elements in each row and column. In
(25), the calculation rule updates the cost matrix.

4.3 Upper power exchange

At the upper power exchange, EVs release energy in the BSS
which operates at an exorbitant cost. In the optimization process,
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TABLE 3 Cost comparison (×102$).

M1 M2 M3

PPC BDC PPC BDC PPC BDC

BSS1 32.22 47.85 32.22 47.85 30.80 44.03

BSS2 11.93 15.69 11.93 15.69 11.97 15.80

BSS3 9.19 17.86 9.18 17.87 9.99 18.28

Summation 53.34 81.40 53.33 81.40 52.77 78.11

Total cost 134.74 134.73 130.88

the number of EVs dispatched to the BSS is considered the decision
variable, and the particle swarm optimization algorithm is applied.
After EVs release energy, the number of EVs that supplement energy
is changed, and the optimized schemes at the other two levels should
be updated.

5 Simulation and discussion

As shown in Table 1, three power exchange methods are
employed for verifying the effectiveness of the proposed method.

5.1 Simulation parameters

The simulation model parameters are presented in Table 2
(Song et al., 2017; Kim et al., 2018; Zhang et al., 2019). At the upper

level, EVs release energy in the first BSS and supplement energy in
other BSSs. For simplifying the computation, ach,b is assumed to be
equal to ap,l.

The initial number of EVs that supplement energy and ap,grid is
dynamic, as shown in Figure 4 (Song et al., 2017). To simplify the
simulation process, the BDC resulting from fast charging is assumed
as shown in (26):

CBD,b = CBD,b|Pb(t)=Pch,max
⋅
(Pb(t) − Pch,max)

Pch,max
, i f Pb(t) > Pch,max. (26)

5.2 Power exchange performance
comparison

The purchasing power from the power grid using three different
methods is shown in Figure 5. During some periods, such as the
01st–07th hours, PGrid measured using three different methods is
equal. Batteries in BSSs are charged from the power grid due to low
electricity prices. The low operating cost of the BSS results in few
EVs releasing energy. In the 09th hour, PGrid using M2 is lesser than
that using M1 in BSS3. This is because ap,grid increases, and there is
some B2B power in M2. Due to the increased number of dispatched
EVs, almost all batteries are charged in BSS1. Therefore, there is less
B2B power in BSS1, andPGrid usingM1 andM2 seems to be equal. In
BSS2 and BSS3, the distinction betweenM1 andM2 is imperceptible
due to the few dispatched EVs. PGrid using M3 is significantly less
than that using other methods in BSS1 and more than that using

FIGURE 8
Power exchange of (A) location 16 in BSS1, (B) location 21 in BSS2, and (C) location 33 in BSS3.
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other methods in other BSSs. This is because some EVs release
energy in BSS1, and the fast-charging power is decreased. However,
this process increases the number of EVs that supplement energy
in BSS2 and BSS3. EVs centralize supplement energy in BSS1 for
reducing the BDC, resulting from EV moving.

The power purchasing cost measured using three different
methods is shown in Figure 6. The cost calculated using M1 and
M2 is almost identical due to low electricity prices and less B2B
power. The excessive EVs supplement energy in BSS1, resulting in
fewdischargeable batteries. FewEVs supplement energy in BSS2 and
BSS3, resulting in low charging power and lowpower cost. InM3, the
fast-charging power of BSS1 is reduced due to EVs releasing energy.
It results in the decreased power cost in BSS1 and increased power
cost in BSS2 and BSS3.

The power exchange schemes result in the inconsistent BDC,
as shown in Figure 7. The BDC in BSS1 is more than that in
BSS2 and BSS3. It is because EVs centralize supplement energy
in BSS1 and fast charging in some batteries takes place. The
BDC variance between M1 and M2 is not remarkable. This is
because almost all batteries in BSS1 have to charge for excess EVs
supplementing energy. With fewer EVs driving to BSS2 and BSS3,
BSSs could schedule an economic and elastic charging scheme.
The BDC using M3 in BSS1 is less than that using M1 and M2
by reducing the fast-charging power. Meanwhile, it increases the
number of EVs that supplement energy in BSS2 and BSS3. The
BDC using M3 is a little more than that using M1 and M2 due
to an acceptable number of EVs being dispatched to BSS2 and
BSS3.

The detailed cost performance is presented in Table 3, and the
power purchasing cost is referred to as PPC. According to the
analysis shown in Figures 5–7, the power purchasing cost using M2
is less than that using M1 in BSS3 due to the slight B2B power.
The BDC using M2 is only a little more than that using M1 in
BSS3 due to few discharging batteries. The power purchasing cost
using M3 in BSS1 is less than that using M1 and M2 and more
in other BSSs. This is because the fast-charging power in BSS1
is decreased and the charging power in other BSSs is increased.
The BDC using M3 in BSS1 is less than that using M1 and M2
and more in other BSSs. This is because the fast-charging power
in BSS1 is reduced and the charging power in other BSSs is
increased.

Figure 8 shows the chosen battery location in each BSS. The
charging power and SOC curve of the battery in the locations
are presented with the three methods. In BSS1, due to some EVs
releasing energy at the upper power exchange, the purchasing
power using M3 is reduced significantly during the 14th–17th
hours. In BSS2 and BSS3, the purchasing power using M3 increased
remarkedly during the 12th–13th hours due to the additional EVs
with low SOCbatteries generated at the upper level. Batteries in BSS2
and BSS3 need more charging power for meeting owners’ driving
requirements. In BSS3, during the 10th hour, the battery using M2
discharged because of the high electric price and idle batteries.
The battery charging from other batteries could reduce the BSS’s
operation cost. During the 11th hour, the purchasing powerwithM3
decreased relatively to that withM2.This is because the upper power
exchange results in the varying number of EVs driving to BSS3
and the re-optimization for the lower and middle power exchange
schemes.

TABLE 4 Cost reduction in the upper power exchange.

ts1 SOCs1 SOCs2 ΔQupper (kWh) Ru’ ($)

EV1 11 0.70 0.30 32.0 2.99

EV2 12 0.70 0.40 24.0 13.41

EV3 14 0.70 0.37 26.4 14.78

EV4 17 0.80 0.38 33.6 2.16

EV5 20 0.70 0.42 22.4 3.55

At the upper power exchange, the cost reduction of the randomly
chosen EVs is shown in Table 4. EVs swap lower SOC batteries
in BSS1 and supplement energy in BSS2 or BSS3. It can be seen
from Table 4 that the initial SOC of the EV battery has little impact
on the BSSs’ cost. The cost reduction of EV1 is approximately
equal to that of EV4, and the cost reduction of EV3 is much
more than that of EV4. The initial SOC of the EV1 battery is
equal to that of the EV3 battery. This is because the cost reduction
is dependent on the BSS’s operation conditions. When the BSS
operates at an exorbitant cost, the responsive EVs at the upper power
exchange will receive optimistic rewards. The BSS’s cost reduction
is considered the user’s contribution, which directly affects their
reward.

6 Conclusion

In this paper, a hierarchical transactive power exchange method
is proposed to solve EV users’ range anxiety on expressways. At the
lower level, EVs are dispatched to supplement energy in various
BSSs. At themiddle level, BSSs schedule the power exchange scheme
that considered the power exchange modes, such as B2G and B2B.
At the upper level, some EVs release battery energy in the BSS
which operates at exorbitant costs and supplement energy in other
BSSs.

The proposed method ensures that EVs supplement energy on
expressways in a highly efficient, flexible, and cost-effective manner.
To guarantee the normal operation of BSSs, EVs can gradually
increase the SOC of batteries bymultiple swapping batteries in BSSs.
The subject requires additional investigation on how to schedule the
rational and economic power exchange schemes.
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