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With the emergence of various new power systems, accurate wind power
prediction plays a critical role in their safety and stability. However, due to
the historical wind power data with few samples, it is difficult to ensure the
accuracy of power system prediction for new wind farms. At the same time,
wind power data show significant uncertainty and fluctuation. To address this
issue, it is proposed in this research to build a novel few-sample wind power
prediction model based on the least-square generative adversarial network
(LSGAN) and quadratic mode decomposition (QMD). Firstly, a small amount
of original wind power data are generated to improve the data by least-
square generative adversarial network, which solves the error in prediction
with limited sample data. Secondly, a quadratic mode decomposition method
based on ensemble empiricalmode decomposition (EEMD) and variationalmode
decomposition (VMD) is developed to address the instability of wind power data
and extract hidden temporal characteristics. Specifically, ensemble empirical
mode decomposition decomposes the data once to obtain a set of intrinsic
mode functions (IMFs), and then variational mode decomposition is used to
decompose the fuzzy irregular IMF1 function twice. Finally, a bidirectional long
short-term memory network (BiLSTM) based on particle swarm optimization
(PSO) is applied to predict wind power data. The LSGAN-QMD-PSO-BiLSTM
model proposed in this research is verified on awind farm located in Spain, which
indicates that the proposed model achieves the lowest root mean square error
(RMSE) and mean absolute error (MAE) errors of 100.6577 and 66.5175 kW, along
with the highest R2 of 0.9639.

KEYWORDS

short-term wind power prediction, least-square generative adversarial network,
quadratic mode decomposition, particle swarm optimization, bidirectional long short-
term memory

1 Introduction

As an environmentally friendly source of energy, wind power contributes significantly
to the power system. Under excellent on-site conditions, wind power ensures a
continuous supply of electricity to the grid (Liu et al., 2023a). However, the generation
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of wind power is affected by the wind direction, temperature, and
humidity onwind farms. Consequently, wind power shows volatility
and uncertainty due to the change in these influencing factors
(Li et al., 2023). It is a major challenge to ensure the stable operation
of the power system when a wind farm with low forecast accuracy is
connected to the power system. In this circumstance, the stability
of the power system is significantly compromised. Therefore, the
accurate prediction and analysis of wind power is crucial to the safe
and stable operation of a new power system (Jin et al., 2022).

Up to now, there has been a wide range of analytical methods
proposed for wind power prediction. In general, these methods are
classified into three types: physicalmethods,mathematical statistical
methods, and artificial intelligence methods (Chen et al., 2022a).
The representative of physical methods is the prediction model
based on various meteorological data, including wind direction,
temperature, humidity, etc. However, these meteorological data
suffer considerable uncertainties, and the errors in predicted
wind power data are significant, which is a challenge for wind
power grid connection (Wang et al., 2021). In contrast to physical
methods, mathematical-statistical methods are typically used to
describe themathematical relationship inwind power data via linear
fluctuation.The traditional statistical methods include the quantile-
regression model (QR) (Hu et al., 2022), autoregressive moving
average (ARMA) (Han et al., 2017), autoregressive integrated
moving average (ARIMA) (Yunus et al., 2015), and Hammerstein
autoregressive model (Maatallah et al., 2015), showing an advantage
in the accuracy of wind power prediction over physical methods.
However, it is difficult to describe the complex relationship of
wind power data of fluctuating and intermittent nature due to
the linear fluctuation of mathematical-statistical methods (Wang
J. et al., 2015).

With the advancement of computer science and technology,
artificial intelligence methods have been widely adopted for wind
power prediction. The traditional methods of artificial intelligence
include various machine learning methods, such as support vector
machine (SVM) (Wang et al., 2019), least squares support vector
machine (LSSVM) (Wang Y. et al., 2015), extreme learning machine
(ELM) (Xiong et al., 2023), and kernel ELM (KELM) (Ding et al.,
2022). Due to the emergence of neural network algorithms, deep
learning has provided a different perspective on wind power
prediction for researchers. Yin et al. (2021) presented a novel
asexual reproduction evolutionary neural network (ARENN) for
short-term wind power prediction, where an asexual reproduction
evolutionary approach was first proposed to optimize the neural
network based on a set of various loss functions. Chen et al. (2022b)
put forward a convolutional neural network-bidirectional long
short-term memory network combination model (CNN-BiLSTM)
to construct a wind energy forecast model, achieving a higher rate
of time series data utilization and prediction accuracy. However,
the operation of CNN is a time-consuming process that requires
a large amount of computing resources, which is adverse to wind
power prediction. Wang et al. (2018) constructed a deep belief
network (DBN) model for forecasting wind power. The forecasting
results of the DBN are superior to those of the backpropagation
neural network (BP). However, when the gradient falls below 1, the
more DBN layers, the easier it is to solve gradient disappearance.
Wang et al. (2020) proposed a novel wind power forecasting model
based on a gated recurrent unit (GRU) and applied an adaptive

optimization method to construct a high-quality learning model,
with a better performance achieved in accuracy than conventional
prediction models. As for traditional GRU, it can extract the
sequence time information only in the forward direction, which
affects the efficiency of time information utilization significantly.
Based on a long short-term memory (LSTM) neural network and
beta distribution function, Yuan et al. (2019) presented a novel
hybrid model for wind power prediction intervals. Compared
to the beta distribution optimized by the PSO-based BP neural
network, the proposed model-based LSTM exhibits a higher
accuracy in prediction. The wind power prediction model based
on deep learning incorporates both a single algorithm prediction
model and a composite algorithm prediction model based on
optimization algorithm enhancement. After the optimization of
its model parameters, there is a significant improvement in the
prediction performance of the improved composite prediction
model, indicating that this model is suited to the fundamental
prediction model of wind power (Ewees et al., 2022). Furthermore,
compared with other optimization algorithms, PSO has fewer
parameters to adjust, faster convergence speed, and a greater
simplicity in its implementation (Al-Andoli et al., 2022), for which
it is adopted for parameters optimization in this research.

Despite the excellent prediction performance of the
aforementioned deep learning models in wind power prediction,
they can achieve highly accurate prediction results only by training
the models on large amounts of data (Ren et al., 2018). Moreover,
the construction of new wind farms at this stage suffers the problem
of few samples, whichmeans that the deep learning predictivemodel
is subjected to significant underfitting in the training process, which
affects the accuracy of prediction significantly (Ge et al., 2022). To
solve this problem, Chen et al. (2021) devised a transfer learning
(TL) strategy to build a target wind farm prediction model based
on a source wind farm with less data and training time. However,
this method is applicable only to a new wind farm constructed in
close proximity to an existing wind farm with sufficient historical
data. Also, individual power producers are unwilling to share data
due to data privacy concerns. This leads to certain limitations on
the practice of transfer learning based on insufficient data for wind
power prediction. In recent years, a novel data enhancementmethod
called the generative adversarial network (GAN) has been proposed
(Goodfellow et al., 2020) to solve the insufficiency of data for wind
power prediction. By studying a collection of training examples
and learning the probability distribution, the GANmodel generates
more examples from the estimated probability distribution. For this
reason, GANs have been widely used to improve the reliability of
data given a small number of examples. Bendaoud et al. (2021)
explored the application of GAN for load forecasting. After the
generation of daily load profiles, they used the new data to predict
the daily load.The average absolute percentage error of the proposed
GAN models provided excellent predictions. Ye et al. (2022)
identified five promising GANs and evaluated their performance
in predicting the demand of a building for electricity. GAN has now
been verified in data enhancement according to the above literature.
Therefore, it is reasonable to apply GAN to wind power prediction
in the absence of data on the surrounding wind farms. However,
the initial GANs encounter the problems like training difficulty and
mode collapsing, while the generated data edge distribution and
the single data mode change rapidly. Therefore, the least squares
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function is used in this research to improve the original GAN
(LSGAN), which compensates for the insufficient data on newly
built wind farms and improves the accuracy of prediction.

In addition, there are significant uncertainty and volatility in
wind power data, which makes the correct processing of wind
power data before forecasting requisite for improving the accuracy
of prediction. The primary method used in the previous research
to process wind power data is decomposition (Qian et al., 2019).
Cai et al. (2019) proposed to predict wind power by using the
generalized regression neural network (GRNN) and the ensemble
empirical mode decomposition (EEMD) method in combination.
It was demonstrated that the proposed method can achieve high
accuracy of prediction by superimposing the prediction results of
the subseries of EEMD as the results of wind power prediction. Qi
et al. (2020) presented the data preprocessing method of variational
mode decomposition (VMD) for the decomposition of original
wind power data. Based on the different characteristics of the
subseries, prediction intervals are constructed for each subseries.
According to the numerical results, the proposed model performs
better in the accuracy of prediction. In spite of this, VMD also
suffers some problems, such as the intermittent signals received
when excessive decomposition occurs and insufficient regularity.
Safari et al. (2017) proposed to conduct singular spectrum analysis
(SSA) in which the chaotic nature of wind power time series is taken
into account. By eliminating the extremely fast changes with limited
amplitudes, SSA can maintain the general trend of the chaotic
components, which improves smoothness. Admittedly, SSA can
effectively reduce the impact of noise, but it is also more demanding
on data and requires the use of relatively complete time data for
analysis. De Giorgi et al. (2014) presented a least squares support
vector machine (LS-SVM) with wavelet decomposition (WD) to
predict short-term wind power, demonstrating that the proposed
model is superior to other methods in most circumstances. Huang
and Wang (2022) put forward an improved PSO-optimized LSTM
with wavelet packet decomposition (WPD) to predict wind power,
and conducted several case studies on the proposed model. The
simulation results show that the model performs well in prediction
accuracy. To sum up, various decomposition methods have been
proposed and used in combination with high-quality forecasting
models to achieve good forecasting results. However, they may be
unfit for thoroughly analyzing the volatility of wind power because
only a single decomposition method is used to decompose the wind
power data. In addition, the intrinsic mode function (IMF) of the
highest frequency in the EEMD is fuzzy and irregular (Liu et al.,
2019). Therefore, a quadratic mode decomposition (QMD) method
based onEEMDandVMD is proposed in this research to completely
decompose wind power data.

From above, it can be seen that there have now been plenty
of studies conducted on wind power prediction in the presence
of few data samples, but few of them focus on the newly-built
wind farms with limited wind power data. Therefore, a new wind
farm power prediction model is proposed in this research that
is based on LSGAN to improve the performance in wind power
prediction. Furthermore, in order to build a robust wind power
prediction model, it incorporates an improved basic prediction
model of BiLSTM optimized by PSO algorithm and quadratic mode
decomposition for the complex wind power series. Herein, the
LSGAN is first introduced to improve the wind power data of a few

samples collected from a newly-built wind farm, thereby resolving
the underfitting caused by the use of insufficient data for deep
learning training.Then, it is proposed to reduce the volatility of wind
power data by using the QMD to split the wind power data into
the original data and the data generated from LSGAN by EEMD
and VMD. Finally, PSO is proposed to optimize the weight and bias
parameters of the fully connected layer in the BiLSTMmodel for the
wind power subseries from LSGAN-QMD. After all the subseries
prediction results are obtained, the results of wind power prediction
are obtained by summing them.

Below are the key innovations and contributions of this research:
1) LSGAN is first applied to enhance the reliability of wind

power data and improve the non-linear fitting degree of deep
learning for higher accuracy of wind power prediction for newly-
built wind farms with few samples.

2) The QMD method combined with EEMD and VMD is
developed for wind power data decomposition to specify the highest
frequency fuzzy IMF in EEMD and minimize the volatility of wind
power data.

3) The PSO algorithm is used to optimize the parameters of the
entire connection layer in the prediction model for high-precision
wind power prediction, which enhances the performance of the
BiLSTMmodel in making predictions and its robustness.

4) The wind power data collected from the Sotavento Galicia
wind farm in Spain are used to demonstrate the excellent prediction
performance of the proposed LSGAN-QMD-PSO-BiLSTM model.
It outperforms other hybrid forecasting models.

The rest of this research is organized as follows. In Section 2,
the framework and details of the proposed model are presented.
Section 3 details the metrics required for evaluating the LSGAN and
shows the prediction performance. In Section 4, the experimental
tests are described and the prediction results are presented. The
conclusion is drawn in Section 5.

2 The framework and details of the
proposed model

2.1 Architecture of the proposed prediction
model

The LSGAN-QMD-PSO-BiLSTMmodel consists of three parts,
as shown in Figure 1.

2.2 Wind power data augmentation based
on generative adversarial networks

2.2.1 Generative adversarial network (GAN)
In 2014, Goodfellow et al. (2020) proposed the unsupervised

generation model which is called the generative adversarial network
(GAN) and is based on game theory. The GAN model involves
two deep neural networks: a discriminator (D) and a generator
(G). Specifically, the task of the generator is to convert Gaussian
noise into the generated data. In each iteration, the new data
generated by the generator are evaluated by the discriminator.Then,
the generator adapts itself by receiving the information returned
by the discriminator. During this game, the generator gradually
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FIGURE 1
The whole process of the LSGAN-QMD-PSO-BiLSTM model.

adapts to the environment (i.e., the discriminator) until the
discriminator cannot distinguish the real data from the generated
data. Finally, the generator outputs the new data that are similar
to the real data. Figure 2 shows the structure of the adversarial
networks.

Mathematically, the rationale of GAN is as follows:
Generator G: In the adversarial process, the input of the

generator is a series of Gaussian noise Z sampled from pz , and a
series of upsampling operations are performed by the neurons of
different functions to output realistic scenarios (Chen et al., 2018).
G’s training is performed to capture the real data distribution pr and
make the samples generated by it as real as possible. Then, G(z) is
taken as the generated sample as well as a new random variable.The
loss function of G is expressed as Eq. 1.

LG = Ez∼pz [log (1−D (G (z)))] (1)

Discriminator D: During the game, the discriminator and the
generator are trained simultaneously. The input to D consists of real
historical data and the data G(z) generated from G. It is expected
that D can make correct decisions on the input data. D is aimed at
minimizing its loss function, and the parameters of D are updated
during adversarial proceedings (Yin et al., 2021). The loss function
of D is thus expressed as Eq. 2.

LD = −Ex∼pdata[logD(x)] −Ez∼pz[log(1−D(G(z)))] (2)

Considering the training objective of the dual-player minimax
game, Eqs 1, 2 are combined to establish the complete loss function
of the traditional GAN as shown in Eq. 3, where D(x) and D(G(z))
represent the discriminant results of the discriminator on the true
input and the generated random variable, respectively.

min
G

max
D

V (D,G) = Ex∼pdata [logD (x)]

+Ez∼pz [log (1−D (G (z)))] (3)
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FIGURE 2
The structure of generating adversarial networks.

2.2.2 Least-square generative adversarial
network (LSGAN)

The sigmoid cross-entropy loss function is used in the original
GANs. When the generator is updated, the loss function widens
the gap between the virtual data and the real data edge distribution
due to the gradient disappearance encountered by the samples
on the real side of the decision boundary. Mao et al. (2017)
proposed the least-squares generation antagonism network, which
is identical to the original GAN. An a/b mapping strategy
intended for the samples is implemented in the discriminator.
Herein, a and b represent the labels of generated and real data,
respectively.

min
D

VLSGAN (D) =
1
2
Ex∼pdata (x) [(D (x) − b)

2]

+ 1
2
Ex∼pz (z) [(D (G (z)) − a)

2] (4)

min
G

VLSGAN (G) =
1
2
Ex∼pz (z) [(D (G (z)) − c)

2] (5)

where c represents the value of the generated data that G
attempts to cheat D on.

There are two advantages possessed by LSGAN. On the one
hand, LSGAN penalizes the samples even if they are correctly
classified, whereas GAN does not, with loss barely caused to the
samples located on the correct side of the decision boundary. The
decision boundary and parameters of the discriminator are fixed
when the generator is updated. Because of the penalty, the generator
produces samples in the direction of the decision boundary. On the
other hand, the decision boundary must span the distribution of
real data to achieve accurate sample distribution learning, otherwise
the learning process would be saturated. Therefore, moving the
generated samples closer to the decision boundary can make them
better conform to the real data distribution. Moreover, punishing
the samples distant from the decision boundary can increase the

number of gradients produced when updating the generator, which
further resolves gradient disappearance and improves the learning
stability of LSGAN.

2.2.3 Data set augmentation by LSGAN
To solve the insufficiency of data on newly-built wind farms

as support for the training of prediction models, the application
of LSGAN is proposed in this research to augment wind power
sample data.The given real training set is inputted into the generator,
and the pseudoreal data are outputted after the network reaches the
specified number of iterations. Then, the real data are concatenated
with the generated data.The parameters of LSGANare set as follows:
a) Generator: it is set up in four dense layers, and the neurons in
each layer are set as (100,128), (128,128), (128,128), (128,144). The
activation function is ReLU, and the learning rate is set to 0.001; b)
Discriminator: four dense layers are also set up, and the neurons
in each layer are set as (144,128), (128, 128), (128, 128), (128, 1).
The activation function is ReLU, and the learning rate is set to
0.001.

However, the augmentation data are not suitable as the input
of the prediction model due to its severe non-stationary property.
In the next chapter, the proposed quadratic mode decomposition
will be introduced to decompose the wind power sequence carried
by the augmented data, which reduces the difficulty in training the
prediction models.

2.3 Wind power data decomposition based
on the quadratic mode decomposition
method

The highest frequency intrinsic mode function generated from
EEMD, named IMF1, is fuzzy, and it is difficult to analyze the
state of real wind power data distribution accurately. To minimize
the volatility and uncertainty in wind power data, this research
presents a decomposition method including EEMD and VMD,
called quadratic mode decomposition (QMD). The rationales of
EEMD and VMD are illustrated as follows.

2.3.1 Ensemble empirical mode decomposition
(EEMD)

As a method of signal preprocessing analysis, EMD is
widely used to process non-stationary and non-linear signals
(Ghezaiel et al., 2017). In essence, it is the stepwise decomposition
of the variation or trend of different frequencies in the signal, and
the final result is a group of eigenmodes of vibration (IMFs), with
each decomposed IMF representing the characteristic signals of
different frequencies in the original signal. However, modal aliasing
may occur in the course of EMD signal processing, which causes
the failure in separating modal functions (Huang et al., 2019). The
EEMD method introduces Gaussian white noise into the original
signal, and the automatic distribution of the signal in the appropriate
time scale is achieved after multiple average calculations. This is
effective in solving modal aliasing (Liu et al., 2023b). Wind power is
susceptible to significant random fluctuations as well as the impact
caused by wind direction, wind speed, and other factors. As a result,
there is a lot of noise in the wind power series. To reduce noise,
the wind power series is divided using the EEMD algorithm, which
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enables the removal of random fluctuation components from the
series and the extraction of main trend components. Below is how
the EEMD is used to decompose the wind power series.

After the wind power data are augmented with GAN, the new
wind power data xaugmenting (t) are added with the independent
Gaussian white noise si (t) to obtain the noise-added wind power
data:

xiaugmenting (t) = xaugmenting (t) + si (t) (6)

where xiaugmenting (t) represents the noise-added wind power data
after the i th noise is added.

Then, the noise-added wind power data xiaugmenting (t) are
decomposed into finite IMFs and a residue:

xiaugmenting (t) =
J

∑
j=1

IMFij (t) + res
i
J (t) (7)

where J refers to the number of IMFs, and resiJ (t) denotes the
residue.

The above two steps are repeated with different Gaussians until
the corresponding IMFs are yielded by K iterations.

Finally, the final IMFs are obtained from all IMFs mean values
as calculated by K iterations.

xaugmenting (t) =
1
K
(

K

∑
i=1

J

∑
j=1

IMFij (t) + res
i
J (t))+ sK (8)

where sK =
s
K
.

The new IMF1 value, indicated by newIMFi1 (t), of wind power
data generated from EEMD is presented as:

newIMFi1 (t) =
1
K

K

∑
i=1

IMFi1 (t) (9)

2.3.2 Variational mode decomposition (VMD)
In general, the intrinsic mode functions (IMFs) generated by

EEMD are fixed signals. However, the IMF1 signal is of non-
systematic and irregular nature (Liu et al., 2014). As the non-
linearity of wind power increases, the IMF1 becomesmore irregular,
which adds to the difficulty in making predictions. According to
(Liu et al., 2014), the accuracy of wind power prediction improved
slightly when the IMF1 signal is removed. However, there is no
theoretical basis for this research. To address the IMF1 issue, a
secondary decomposition approach based on VMD is proposed
in this research to further decompose the IMF1 component into
sub-series.

The VMD algorithm is completely non-recursive and adaptive
(Zhang et al., 2023). It builds a variational problem from the
signal decomposition problem and solves it to obtain the best
answer. In this way, it is ensured that the decomposed sequence
is a modal component with a central frequency and a finite
bandwidth, which enables the effective separation of the IMFs at
each frequency. Also, the M modal components of the preset scale
are obtainable (Wang and Li, 2023). Its core step is to construct
and solve the variational constraint problem. Below is the process
of implementing VMD for wind power newIMF1(t) values from
EEMD.

Firstly, the variational constraint problem is constructed as
follows:

min
{um}{ωm}
{

M

∑
m=1
‖∂t[[δ (t) +

j
πt
]⋆ um (t)] ⋆ e−jωmt‖

2
}

s.t.
M

∑
m=1

um = newIMF1 (t)

(10)

where ∂t represents the gradient operation, δ (t) indicates the
unit pulse, j denotes the imaginary unit, {um} = {u1,u2,⋯uM} is
the IMF function after decomposition with several M, and {ωm} =
{ω1,ω2,⋯ωM} refers to the IMF function after decomposition with
several M, and represents the center frequency of each intrinsic
mode function.

Then, the problem is solved by constructing the augmented
Lagrange expression L through the introduction of the penalty factor
α and Lagrange operator λ into the section:

L({um} , {ωm} ,λ)

= α
M

∑
m=1
‖∂t[[δ (t) +

j
πt
]⋆ um (t)] ⋆ e−jωmt‖

2

+‖ f (t) −
M

∑
m=1

um (t)‖
2

2

+⟨λ (t) , f (t) −
M

∑
m=1

um (t)⟩ (11)

By iterating un+1m andωn+1
m to calculate Eq. 12with an alternating

multiplication operator, the saddle point is obtained as the best
answer to the problem. The iteration equation of any eigenmode
function and its center frequency are respectively expressed as:

ûn+1m (ω) =
f̂ (ω) − ∑

i≠m
ûi (ω) +

λ̂(ω)
2

1+ 2α(ω−ωm)
2 (12)

ωn+1
m =

∞

∫
0

ω|ûm (ω)|
2dω

∞

∫
0

|ûm (ω)|
2dω

(13)

where ûn+1m (ω), ̂f (ω) and λ̂ (ω) are referred to as the
corresponding Fourier transforms of un+1m (ω), and n indicates the
number of iterations.

Finally, it is evaluated whether each decomposition component
meets the preset requirements on error accuracy ɛ:

ε >
M

∑
m=1
‖ûn+1m − ûnm‖

2
2/‖û

n
m‖

2
2 (14)

If the inequality is satisfied, the decomposition components
currently obtained are outputted; otherwise, revert to Eq. 13 and
Eq. 14 to continue the iterative update.

2.4 The PSO-BiLSTM wind power
prediction model

The wind power augmenting and decomposing data generated
by the GAN and QMD are processed using the proposed PSO-
BiLSTM model to predict the wind power data. Usually, the
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BiLSTM model relies on its optimizer for parameter updating
and iterative calculation. However, the built-in optimizer cannot
reach the intensity of big data training required for deep
learning, and it tends to fall into optimal local solutions when
dealing with optimization problems. As a result, the accuracy
of prediction is poor (Zhang et al., 2020). To address this issue,
the PSO algorithm with an excellent optimization performance
is presented in this research and trapping from local optima
to apply the optimizer of the full-connection layer of BiLSTM
and keep the original optimizer of the other layers, achieving
better prediction performance of BiLSTM. The rationales of
BiLSTM, PSO, and their implementation are illustrated as
follows.

2.4.1 Bidirectional long short-term memory
(BiLSTM)

LSTM is suitable for capturing the long-term dependencies
in time series as a variant of recurrent neural networks (RNNs)
(Mao et al., 2023a). Distinct from traditional RNN, LSTM
overcomes slope disappearance and tends to be more predictive.
As shown in Figure 3A, this cell is subjected to control by a
cell state and three information gates. There are three input
variables and two output variables in each LSTM unit, where
xt is the current time-step input, ut−1 is the last time-step
unit state, ht−1 is the last time-step hidden state, ut is the
current time-step unit state, and ht is the current time-step
hidden state. The operation of the LSTM unit consists of three
phases. The state update of the LSTM cells is performed using
Eqs 15–19.

Ft = σ(w fx ⋆ xt +w fh ⋆ ht−1 + b f) (15)

It = σ(wix ⋆ xt +wih ⋆ ht−1 + bi) ⊗ tanh(wux ⋆ xt +wuh ⋆ ht−1 + bu)
(16)

ut = Ft ⊗ ut−1 + It (17)

Ot = σ(wox ⋆ xt +woh ⋆ ht−1 + bo) (18)

ht = Ot ⊗ tanh(ut) (19)

where Ft represents the forget gate, It indicates the input gate
and Ot denotes the output gate. Sigmoid and tanh are treated as
activation functions. In Eqs 16, 17 and 19, ⊗ represents element
multiplication. In Eqs 15, 16 and 18, w⋆ x represents the weight
parameter of xt , w⋆ h represents the weight parameter of ht−1, and
b represents the bias parameter of the three information gates and
unit state.

Wind power data show typical time series properties, and
the power value at a certain time is related not only to the
forward data but also to the reverse data. However, the traditional
LSTM is capable to extract data time-related information only
in the forward direction. In comparison, the LSTM based on a
bidirectional prediction strategy (i.e., BiLSTM) relies on double
hidden layers which are opposite in the directions of transmission
for connection with the same output layer, which allows the output
layer to obtain the information about the past and future states

FIGURE 3
(A) The structure of long short-term memory. (B) The structure of
Bidirectional Long Short-Term Memory.

(Cao et al., 2022).Therefore, BiLSTMcan extract time-characteristic
information in two different directions, thus improving data
integrity utilization.The structure of Bidirectional Long-short Time
Memory is shown in Figure 3B. The BiLSTM is constructed using
a three-layer network with 4, 8 and 16 neurons respectively,
and the output layer is a dense one. The activation function is
the ReLU function with a drop rate of 0.1 and a learning rate
of 0.001.

2.4.2 Particle swarm optimization (PSO)
Proposed by Kennedy and Eberhart (1995), PSO is a random

optimization algorithm obtained from the simulation of migration
and aggregation of the bird population in its foraging behavior. If a
group of birds is foraging at random and there is only one food in
this area, the most efficient foraging strategy is to search around the
nearest bird for the current prey.The PSO algorithm, which is based
on this model, has been widely used to solve various optimization
problems. To solve the optimization problem, the potential solution
of the problem corresponds to the specific location of a bird in the
search space. These “birds” are usually referred to as particles. Each
particle keeps flying in space at its own speed and position. In the
process of searching for the best position, a group of solutions are
generated randomly at first, while the particles in space remember
and follow the current best particle to repeat the above process for
search in the solution space.With a powerful learning function, PSO
can find the next better solution based on the better solution found
the previous time. Through cooperation and interaction, it searches
for the best local location (pbest) and best global location (gbest) in
the search space. The speed and position of all particles are updated
as follows:

Vnew = βV+ c1r1 (pbest−X) + c2r2 (gbest−X) (20)
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Xnew = X+Vnew (21)

where X and V represent the current position and speed of the
particle, Xnew andVnew are referred to as the new position and speed
of the particle, β indicates the inertia weight to control the impact of
historical speed, c1 denotes the cognitive learning factor, c2 stands for
the social learning factor, and r1 and r2 represent two independent
random numbers in the range of [0,1].

2.4.3 The implementation of PSO in BiLSTM
Despite the significant advantages of the BiLSTM model in the

processing of time series data, the full-connection layers (FCL)
trained by the popular Adam optimizer perform poorly in the
learning rate. Also, it is inclined to fall into the local optima,
which affects the prediction performance and the outcome of
generalization. Considering the excellent performance of the PSO
algorithm in global optimization and convergence speed, PSO is
introduced to optimize the FCL parameters of the BiLSTMnetwork,
which solves the problems like inaccurate initial connection weight
and parameter acquisition for the BiLSTM model. Also, the
objectivity of parameter selection is enhanced, and the accuracy
of wind power data prediction is improved. Therefore, a combined
PSO-BiLSTMmodel is proposed in this research to predict building
carbon emissions in the following steps:

Firstly, a population Z of size P and dimension D is established,
where D represents the number of weights and biases of the FCL. It
is expressed as Eq. 22.

D = hFCL × nout + nout (22)

where hFCL and nout are referred to as the number of network
neurons in the front and later layers, respectively.

Then, the weights and biases are randomly generated in
population Z to achieve parameter initialization according to the
limited rules, including wrange and brange, as shown in Eq. 23.

{{{
{{{
{

wrange = (−√
5

hFCL + nout
,√ 5

hFCL + nout
)

brange = (−|b| − θ, |b| + θ)

(23)

where b represents the bias of the output layer and θ refers to the
offset of the bias.

Each individual in population Z can be expressed as follows:

Z (k, :) = [pk1,pk2,…,pkD] , k ∈ [1,P] (24)

After the population Z of PSO is established, the fitness of each
individual can be calculated by using Eq. 25.

fit (Z (k)) = 1
nsmaple

nsmaple

∑
i=1
(ytrue − ypre)

2, k ∈ [1,P] (25)

where fit (Z (k)) refers to the fitness value of the k th particle in
population Z, nsmaple denotes the number of trained samples, and
ytrue and ypre represent the actual and predicted values, respectively.

The fitness value of the new population as generated by the
crossover of PSO is compared with the old one through the greedy
mechanism, and the better one stays the particle until the next
iteration. In this way, the process is terminated when the maximum
number of iterations of the PSO algorithm is reached. Otherwise,
the crossover is repeated and the PSO is updated. Finally, the best
individual with the optimal fitness value is used to represent the
weights and biases of the FCL.

The structure of BiLSTM optimized by PSO is illustrated in
Figure 4.

3 Metrics for evaluating the GAN and
prediction performance

3.1 The metrics for the GAN model

To assess the performance of this model from different
perspectives, five generated data detection tests are performed in this
research. Various indicators, including maximum mean deviation
(MMD), mean absolute error, root mean square error, cumulative
distribution function (CDF), and standard deviation (STD), are used
to measure the similarity of distribution between actual data and
generated data.Themethods of calculation are shown in Eqs 26–30.

YMMD = √
T

∑
i=1
(ygenerated (t) − ytrue (t))

2

(26)

YMAE =
1
T

T

∑
t=1
|yture (t) − ygenerated (t )| (27)

FIGURE 4
The structure of BiLSTM optimized by PSO.
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FIGURE 5
The original data of wind power, wind speed, and wind direction.

TABLE 1 A comparison between BiLSTM and other basic predictionmodels.

Prediction model RMSE (kW) MAE (kW) R2

BP 260.2177 189.3944 0.6364

RNN 180.6225 121.3997 0.8377

GRU 137.4081 90.4252 0.9244

LSTM 136.9698 90.6517 0.9331

YRMSE = √
n

∑
i=1
|yture (t) − ygenerated (t)|

2

(28)

YCDF = ∫
x

−∞
Seq (t)dt (29)

YSTD = √
1
T

T

∑
t=1
(Seq (t) − μ)2 (30)

3.2 The metrics for prediction performance

To evaluate the wind power prediction performance of the
proposed model, three metrics are adopted for this research: root
mean square error (RMSE), mean absolute error (MAE), and R-
square (R2). Also, RMSE and MAE are used to measure the error
between the actual wind power data and the predicted wind power
data. R2 is calculated to represent the linear relationship between

the input and output data of the prediction model. The calculation
results are shown in Eqs 31–33.

RMSE = √ 1
npre

npre

∑
i=1
(yitrue − y

i
pre)

2 (31)

MAE = 1
npre

npre

∑
i=1
|yitrue − y

i
pre| (32)

R2 = 1−

npre

∑
i=1
(yitrue − y

i
pre)

2

npre

∑
i=1
(yitrue − ȳtrue)

2

(33)

where npre represents the number of prediction samples and ȳtrue
refers to the average value of the actual wind power.

4 Case study

In order to evaluate the prediction performance of the proposed
LSGAN-QMD-PSO-BiLSTM model, the one-step wind power
prediction comparative experiment is performed. All the prediction
models are made to run 10 times independently for reduced
statistical error. Also, simulation is carried out under the Keras deep
learning framework with Python 3.7. Equipped with an Intel Core
i5-10210U 1.6 GHz processor and 16 GB memory, the simulation
platform runs the Windows 11 operating system.

The wind power data used in this research were sampled from
2/1/2018 to 2/25/2018 at a 10-min interval on the Sotavento-Galicia
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FIGURE 6
(A) The prediction and real wind power curves based on basic forecasting models. (B) The prediction and real wind power curves based on optimized
forecasting models.

TABLE 2 A comparison between PSO and other optimizers.

Prediction model RMSE (kW) MAE (kW) R2

BiLSTM 132.9846 86.4184 0.9381

WOA-BiLSTM 125.8573 83.0719 0.9397

GWO-BiLSTM 124.4759 81.0828 0.9389

PSO-BiLSTM 120.4339 78.7214 0.9439

wind farm in Spain, including a 20-day training data set (2/1/2018
to 2/20/2018) and a five-day test data set (2/21/2018 to 2/25/2018).
Figure 5 shows the curves of the data.

4.1 Case 1: The effectiveness of
PSO-BiLSTM

In this subsection, the PSO-BiLSTM model is verified by
conducting two types of experiments. One is to evaluate BiLSTM,
and the other is to assess the advantage of applying the PSO

algorithm to BiLSTM. Through these experiments, the PSO-
BiLSTM model is demonstrated to be effective in predicting
wind power for subsequent research on decomposition and data
enhancement.

4.1.1 The assessment of BiLSTM
This experiment is intended to identify a single deep-learning

model suitable for the combined model proposed in this research
to predict wind power. Due to the significant temporal correlation
exhibited by the wind power data, four different time series deep
learning models represented by RNN are applied in this research,
namely, RNN, GRU, LSTM, and BiLSTM. The experiment is
carried out using these four models and the benchmark BP model
to determine whether the BiLSTM model can outperform the
other basic deep learning models in the accuracy of prediction.
The errors in wind power prediction are listed in Table 1,
and the prediction curves of the wind power are presented in
Figure 6A.

According to Table 1, the BiLSTMmodel outperforms the other
basic prediction models in the accuracy of prediction. For example,
in comparison with the RNNmodel, the RMSE andMAE errors are
reduced by 26.37% and 28.81%, respectively; in comparisonwith the
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FIGURE 7
The decomposition results of wind power series by the QMD method. (A) EEMD results from original data. (B) VMD results from IMF-1 of EEMD.

LSTMmodel, the RMSE and MAE errors are reduced by 2.91% and
4.68%, respectively. In addition, the prediction wind power curve of
BiLSTM is found closer to the real data curve than the prediction
curves of other models, as shown in Figure 6A. The BiLSTM model
performs best, with the minimum RMSE error, the minimumMAE
error, and the optimal R2 value. It is demonstrated that the BiLSTM
model is suitable as the original basic wind power prediction model
for research.

4.1.2 A comparison between PSO and other
optimization algorithms

The proposed PSO-BiLSTM model relies on the PSO algorithm
to optimize the FCL weights and bias in BiLSTM. PSO algorithm
is characterized by few parameters, fast convergence, and low
computational difficulty, for which it has been widely applied to
deal with various non-convex, non-linear optimization problems.
However, further experimental research is still required to
optimize the parameters of deep learning models for wind power
prediction with few samples. To solve this problem, the PSO
algorithm is applied in this sub-section to optimize the BiLSTM
model for experimentation, and a comparison is performed with
three different well-known optimization algorithms intended for
optimizing BiLSTM, including the whale optimization algorithm
(WOA) and gray wolf optimization (GWO) algorithm, and the

original model of the ADMM optimizer. Table 2 lists their wind
power prediction errors, and Figure 6B presents the predicted wind
power curves.

As can be seen from Table 2, the PSO-BiLSTM model
achieves a better prediction performance than the original
BiLSTM model with the ADMM optimizer on RMSE, MAE,
and R2 by 9.43%, 8.91%, and 0.62%, respectively. Also, the PSO
algorithm outperforms the other two algorithms. Compared
with the WOA-BiLSTM and GWO-BiLSTM models, the
RMSE, MAE, and R2 of the PSO-BiLSTM model improve by
4.31%, 5.24%, and 0.44%, as well as 3.25%, 2.91%, and 0.53%,
respectively.

In addition, Figure 6B shows that the wind power prediction
curve of PSO-BiLSTM is closer to the real data curve of other
models, especially that of BiLSTM, which suggests the outstanding
wind power prediction performance of the PSO-BiLSTMmodel.

4.2 Case 2: The validity of the QMDmethod

4.2.1 The effectiveness analysis of QMD based on
BiLSTM

In this subsection, the wind power data are decomposed into
several time series by the proposed QMDmethod, including EEMD
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FIGURE 8
(A) The prediction experiment verification of QMD method. (B) The prediction and real wind power curves based on optimized forecasting models.

and VMD. Figure 7 shows the wind power decomposition series.
Also, the results obtained by using the EEMD method for wind
power IMFs and those obtained by using the VMDmethod for wind
power EEMD IMF-1 are shown in the figures below.

Additionally, an experiment is conducted to compare the
QMD method based on the secondary decomposition of
EEMD and VMD with the EEMD and VMD subjected to
decomposition once, as well as the undecomposed prediction
method, for verifying the QMD method in terms of improving
the accuracy of wind power prediction. It involves the EEMD-
BiLSTM, VMD-BiLSTM, QMD-BiLSTM and original BiLSTM
models. The errors in wind power prediction are shown in
Figure 8A, and the wind power prediction curves are presented
in Figure 8B.

According to the prediction results, applying the QMDmethod
to decompose the wind power series can improve the accuracy
of forecasting relative to the single decomposition method or the
original data without decomposition. For example, compared with
the EEMD-BiLSTM andVMD-BiLSTMmodels, the QMD-BiLSTM

model outperforms them in all errors by 9.17%, 6.22%, and 1.07%,
as well as 6.97%, 5.55%, and 1.01%, respectively. In particular,
compared with the original data of the BiLSTM model, the QMD-
BiLSTM model reduces the errors significantly by 11.23%, 13.16%,
and 1.18%. Furthermore, comparedwith the other prediction curves
shown in Figure 8B, the wind power curve of PSO-BiLSTM is the
closest to the real data curve. These results show that the proposed
QMD model is capable to improve the prediction performance of
BiLSTM.

4.2.2 The verification of QMD-PSO-BiLSTM
In this subsection, the QMD-BiLSTM, PSO-BiLSTM and

QMD-PSO-BiLSTM models are experimentally compared to
explore the role of the PSO algorithm in the QMD-BiLSTM
model. The wind power prediction errors are shown in Figure 8A,
and the wind power prediction curves are illustrated in
Figure 8B.

According to the prediction results, compared with the
PSO-BiLSTM model, the QMD-PSO-BiLSTM model shows a
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FIGURE 9
STD and CDF of data generated by LSGAN and other augmentation methods. (A) STD values. (B) CDF values.

slightly more significant MAE error for its stability, but it still
outperforms the PSO-BiLSTM model in RMSE and R2 errors
by 6.04% and 0.84%, respectively. Furthermore, compared with
the other prediction curves in Figure 8B, the wind power curve
of the QMD-PSO-BiLSTM model produces the best-fitting effect
with the real data curve. The above analysis shows that the
proposed QMDmodel plays an important role in the PSO-BiLSTM
model.

4.3 Case 3: The application of
LSGAN-QMD-PSO-BiLSTM in wind power
forecasting

4.3.1 Metrics of the samples generated from
LSGAN

To evaluate the performance of the proposed LSGAN accurately,
it is compared with several typical generative adversarial network
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models, such as the original GAN, Wasserstein GAN, and deep
convolutional generative adversarial network (DCGAN). It is worth
noting that the generator and discriminator of all GANs adopt a
four-layer convolutional neural network, in which the activation
function is ReLU, the convolution kernel is 3, the convolutional
step is 2, the number of iterations is 500, and the training batch is
32. To simulate few-shot learning based on the data augmentation
method, the samples with a length of 20 days in the original data are
treated as the training set of the GAN network. Notably, the input
of the generator is the 100-dimensional noise following Gaussian
distribution, while the output is the pseudotrue new data. The input
of the discriminator is the new data and the original true data,
while its output is the discriminant result (that is, true or false).
In this section, the evaluation indicators described in Section 3.1
are applied to verify the generation performance of different GAN
models in terms of statistical similarity, resemblance, and modal
diversity.

4.3.1.1 Modal diversity
The STD method is applied to ascertain whether the generated

data are similar to the real data in modal diversity and to track
the implied noise in the data. Figure 9A shows the STD curves of
wind speed, wind direction, and wind power as drawn by using
different GAN models. As shown in Figure 9A, the blue, yellow,
and green curves, which respectively represent GAN, WGAN, and
DCGAN, fluctuate more often at an interval that is significantly
different from the original data. That is to say, the data generated
by these three models are different from the original true data in
modal diversity, and there is more noise caused. While, the red
curve representing LSGAN is more similar to the blue curve that
shows the real data within the fluctuation range, and the frequency
of fluctuation is comparable to that of the real data. It means that
LSGAN is applicable to generate new data with a similar level of
modal diversity to the real data but with less noise.

4.3.1.2 Resemblance
In this research, MMD is adopted to measure the difference

between real training data and the data generated by various GAN
models. Table 3 shows the minimum MMD of the data generated
by LSGAN, indicating that the distribution generated by LSGAN is
most similar to the target distribution.

4.3.1.3 Statistical similarity
Three indexes are applied to study the statistical similarity of

the generated data. Table 3 lists the calculation results of RMSE,
MAE, and R2, while Figure 9B shows the CDF visualization of the
data of each GAN model. As shown in Figure 9B, the purple curve
representing LSGAN and the blue curve of the real data fall within
the range of the time series, while GAN andWGAN perform poorly
in this aspect. Besides, the performance of LSGAN on RMSE and
MAE indexes is superior to other generationmodels. To sum up, the
proposed LSGAN performs better than other GANs in generating
statistical similarity to the original data.

4.3.2 The validity of wind power prediction with
LSGAN

In this subsection, the proposed LSGAN and GAN models
are combined with the basic BiLSTM model to conduct the

TABLE 3 Scores of various evaluationmetrics by GAN,WGAN, DCGAN, and
the proposed LSGAN.

Wind power (kW)

Metrics/Models GAN WGAN DCGAN LSGAN

MMD 433.33 431.38 430.65 374.09

MAE 80.11 98.84 70.94 70.90

RMSE 103.73 120.02 96.37 90.71

Wind Speed (m/s)

Metrics/Models GAN WGAN DCGAN LSGAN

MMD 2.21 1.36 4.89 1.14

MAE 7.82 4.27 7.24 3.61

RMSE 8.92 8.48 5.37 4.71

Wind Direction (°)

Metrics/Models GAN WGAN DCGAN LSGAN

MMD 53.86 50.94 72.10 42.53

MAE 152.07 112.15 126.73 108.24

RMSE 178.72 138.90 155.11 129.17

TABLE 4 Results of evaluation indices obtained by using the unaugmented
and augmented training data sets.

Prediction model RMSE (kW) MAE (kW) R2

BiLSTM 132.9846 86.4184 0.9381

GAN-BiLSTM 121.2762 81.6413 0.9421

LSGAN-BiLSTM 117.7983 74.2741 0.9440

comparative experiment for verifying both the impact of enhanced
data on wind power prediction and the auxiliary prediction
effect of the enhanced training set in the proposed LSGAN and
GAN models. The unaugmented data are {(Xun

(i) ,Y
un
(i))

Num
i=1
}
Num=2880

,
where Xun = [xwsture(t),x

wd
ture(t)], and Yun refers to the wind power

prediction value. Then, the original training set is spliced with
the generated data{(Xge

(i),Y
ge
(i))

Num
i=1
}
Num=2880

of the same length to

form an augmented dataset{(Xau
(i) ,Y

au
(i))

Num
i=1
}
Num=5760

to be inputted
into the BiLSTM model for training. Finally, the 5-day test set is
used to complete the verification process, and the error indicators
defined in Section 3.2 are used to obtain the test results, as shown in
Table 4.

According to the results shown in Table 4 about RMSE, MAE
and R2, using the GAN-enhanced training data set can improve
the accuracy of wind forecasting significantly for the newly-built
wind farms.Theproposed LSGAN-BiLSTMoutperforms other non-
enhanced or enhanced predictionmodels in short-termwind power
prediction, with a minimum RMSE of 117.7983 (kW), MAE of
74.2741 (kW), and R2 of 0.9440. Also, it achieves an improvement
on the BiLSTM model by 11.42%, 14.06%, and 0.63%, respectively,
which confirms the advantage of the proposed LSGAN in wind
power prediction for newly-built wind farms in the context of data
insufficiency.
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TABLE 5 R2 index results of predictionmodel under different training set length scenarios.

Data length 5 days 10 days 15 days 20 days 25 days 30 days

BiLSTM 0.6277 0.7043 0.7368 0.7989 0.8103 0.8316

GAN-BiLSTM 0.6741 0.7553 0.8043 0.8797 0.8816 0.9001

LSGAN-BiLSTM 0.8198 0.8339 0.8414 0.9440 0.9451 0.9466

FIGURE 10
(A) Prediction error results among the different decomposition methods; (B) The prediction and real wind power curves among the different
decomposition methods.

Furthermore, in order to reveal the impact of the data-augment
model on the predictionmodel under the condition of different data
lengths, GAN and LSGAN are applied to enhance the samples of
different lengths separately. Also, BiLSTM is used to predict the test
set of the following day. R-Square results are obtained, as shown in
Table 5.

As can be seen fromTable 5, in the absence of data enhancement,
the effect of simple BiLSTM prediction is unreliable, especially
when the training data span less than 25 days, and R2 indexes are
all very low. Meanwhile, when the training data of the LSGAN
model span only 5–15 days, the accuracy of prediction remains
unsatisfactory. Besides, when the training data span 20 days, the
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accuracy of prediction reaches 0.9440, which is 15.15%, 13.20%, and
12.19% higher than in the previous three scenarios, respectively.
As the span of training data reaches 25 and 30 days, the accuracy
of prediction by LSGAN-BiLSTM is also improved, but not to the
same extent as the 20-day data. To be exact, the improvement is only
0.116% and 0.275%. That is to say, the proposed LSGAN can assist
the predictionmodel given only 20 days’ worth of data and a limited
length of the training set.

4.3.3 Performance of the proposed
LSGAN-QMD-PSO-BiLSTM model

To verify the wind power prediction model which is proposed
in this research to combine LSGAN, QMD and PSO-BiLSTM,
the entire wind power forecasting experiment is performed
in this subsection by using the LSGAN-QMD-PSO-BiLSTM,
GAN-QMD-PSO-BiLSTM and QMD-PSO-BiLSTM models for
comparison with the QMD-BiLSTM and PSO-BiLSTM models.
The errors in wind power prediction are shown in Figure 10A,
and the curves of wind power forecasting are presented in
Figure 10B.

The proposed LSGAN-QMD-PSO-BiLSTMmodel outperforms
all the comparison models. For example, relative to the GAN-
QMD-PSO-BiLSTMandQMD-PSO-BiLSTMmodels, the proposed
model significantly reduces the errors by 3.72%, 8.22%, and
0.33%, as well as by 11.06%, 15.71%, and 1.34%, which evidences
the effectiveness of LSGAN in combining the QMD and PSO-
BiLSTM methods. Compared with the PSO-BiLSTM and QMD-
BiLSTM models, the proposed model reduces the errors by
16.43%, 15.49%, and 2.07%, as well as by 14.74%, 11.37%,
and 1.51%. In addition, compared with other prediction curves
shown in Figure 10B, the wind power curve of LSGAN-QMD-
PSO-BiLSTM is the closest to the real data curve. The above
findings confirm the advantage of the wind power prediction
model proposed in this research over the persistence model
and other decomposition-based or optimization-based hybrid
forecasting models in terms of short-term few-sample wind power
forecasting.

To objectively evaluate the proposed LSGAN-QMD-PSO-
BiLSTM wind power prediction model, the errors are shown as a
bar chart in Figure 10A. Apparently, the proposed model achieves
the highest accuracy of wind power forecasting in all circumstances,
implying that the proposed prediction model performs best
consistently.

5 Conclusion

In this research, a wind power prediction method based
on LSGAN-QMD-PSO-BilSTM is proposed to address the low
accuracy of power prediction caused by a lack of data on newly-built
wind farms. The analysis of the actual case allows for the following
four deductions.

(1) This research presents a quadratic mode decomposition
technology to mitigate the impact of fluctuations on
power prediction because of the significant fluctuations
and randomness in the original wind power data. The
experimental results show that the QMD-BiLSTM model

outperforms the EEMD-BiLSTM and VMD-BiLSTM models
in all error values by 9.17%, 6.22%, and 1.07%, as well as
6.97%, 5.55%, and 1.01%, respectively. The experimental
results demonstrate that the proposed QMD method performs
better in denoising data than other decomposition techniques
or non-decomposition techniques. Meanwhile, there is a
significant improvement in the accuracy prediction by the
model.

(2) It is proposed in this research to optimize the parameters of
BiLSTM full-connection layer by using the PSO algorithm,
which addresses the issue that the neuron parameters trained
by the common optimizer are prone to the local optimum.
Experimental results show that the PSO-BiLSTM model
produces a better prediction performance than the original
BiLSTM model with the ADMM optimizer in RMSE, MAE,
and R2 by 9.43%, 8.91%, and 0.62%, respectively. According
to the experimental results, the proposed PSO-BiLSTM
outperforms the unoptimized or other optimization algorithms
in preventing the parameters from falling into the local
optimum and improving the accuracy of prediction by the
model.

(3) Due to the lack of data on newly-built wind farms, LSGAN
is first used to determine the edge distribution of actual
data before pseudotrue new samples are created to complete
data augmentation for the training set. Experimental results
show that LSGAN-BiLSTM outperforms other unenhanced or
enhanced prediction models (like the BiLSTMmodel) in short-
term wind power prediction by 11.42%, 14.06%, and 0.63%,
respectively, with a minimum RMSE of 117.7983 (kW), MAE
of 74.2741 (kW), and R2 of 0.9440. The proposed LSGAN
outperforms the other algorithms in terms of generating
high-quality data and improving the accuracy of power
prediction.

(4) The effectiveness of LSGAN in combining the QMD
and the PSO-BiLSTM methods is demonstrated by
comparing it with the GAN-QMD-PSO-BiLSTM and
QMD-PSO-BiLSTM models. It is found that the proposed
model reduces the error significantly by 3.72%, 8.22%,
and 0.33%, as well as 11.06%, 15.71%, and 1.34%,
respectively. The proposed LSGAN-QMD-PSO-BilSTM
method achieves the lowest error-index and the highest
prediction accuracy when compared to other comparison
methods.

Allowing for the excellent performance of this method, more
forecasting scenarios will be included in our future research, such
as photovoltaic generation forecasting or load forecasting. However,
a limitation facing this research is that the simulation is performed
using only the data collected from the Sotavento wind farm and
only meteorological features are considered.Therefore, the data sets
carrying more meteorological characteristics will be analyzed in the
future to explore other influencing factors and improve the accuracy
of prediction.
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