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Many types of rotating mechanical equipment, such as the primary pump,
turbine, and fans, are key components of fourth-generation (Gen IV) advanced
reactors. Given that these machines operate in challenging environments with
high temperatures and liquid metal corrosion, accurate problem identification
and health management are essential for keeping these machines in good
working order. This study proposes a deep learning (DL)-based intelligent
diagnosis model for the rotating machinery used in fast reactors. The diagnosis
model is tested by identifying the faults of bearings and gears. Normalization,
augmentation, and splitting of data are applied to prepare the datasets for
classification of faults. Multiple diagnosis models containing the multi-layer
perceptron (MLP), convolutional neural network (CNN), recurrent neural network
(RNN), and residual network (RESNET) are compared and investigated with the
Case Western Reserve University datasets. An improved Transformer model is
proposed, and an enhanced embeddings generator is designed to combine
the strengths of the CNN and transformer. The effects of the size of the
training samples and the domain of data preprocessing, such as the time
domain, frequency domain, time-frequency domain, and wavelet domain, are
investigated, and it is found that the time-frequency domain ismost effective, and
the improved Transformer model is appropriate for the fault diagnosis of rotating
mechanical equipment. Because of the low probability of the occurrence of a
fault, the imbalanced learning method should be improved in future studies.

KEYWORDS

fault diagnosis model, deep learning, rotating machine, advanced nuclear reactor,
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1 Introduction

Commercial pressure water reactors (PWRs) are undergoing life extensions from 40
years of operation to 60 years of operation. The safe and economic operation of these
plants is considered in anticipation of a second round of license extensions. The technical
issues are similar to the life extension of advanced reactors. In fact, many small modular
reactors (SMRs) and designed advanced reactors have increased their operating cycles
(typically ten more years after the designed 40 years). As key mechanical components both
in PWRs and advanced reactors, rotating mechanical equipment unusually operates under
harsh environments of elevated temperature, cyclic loading, and even corrosion. Potential
flaws could lead to catastrophic incidents with significant financial losses anddeaths;
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prognostics health management (PHM) has become indispensable
to rotating machinery in advanced nuclear reactors. PHM, which is
one of the crucial systems in a rotating machine, uses an intelligent
diagnosis method as a crucial component to monitor and diagnose
issues efficiently (Hamadache et al., 2019). Traditional diagnosis
methods mainly apply signal processing methods to identify the
features of the recorded signals and then infer possible faults from
the identified features (Li et al., 2018; Sun et al., 2018; Zhao et al.,
2018). However, signal processing and feature extraction are time
consuming and empirical in nature because both operations depend
on prior knowledge of the massive and heterogeneous data. Thus,
the precise and efficient performance of the diagnosis model is still
a challenging problem.

Artificial intelligence-based diagnosis models have recently
become a suitable method in many areas, including computer vision
(CV), natural language processing (NLP), state diagnosis, and other
fields. Typical methods include artificial neural networks (ANN),
k-nearest neighbors (KNN), naive Bayes, and deep learning (DL)
(LeCun et al., 2015; Liu et al., 2018). Early fault detection techniques
for gears, bearings, and rotors were categorized as signal processing
techniques and AI-based techniques (Wei et al., 2019). Data-driven
health monitoring by DL-based methods has been summarized and
tested by Zhao et al. (2019) with regard to monitoring the operation
condition of rotating machinery. Duan et al. (2018) reviewed the
diagnosis and prognosis of mechanical equipment based on DL
algorithms such as the dynamic Bayesian network (DBN) and
convolutional neural network (CNN). Lei et al. (2020) performed a
comprehensive review of developing intelligent diagnosis models by
using machine learning methods. In addition; Ellefsen et al. (2019)
introduced and reviewed four well-known DL algorithms—Auto-
encoder (AE), CNN, extended short-term memory network
(LSTM), and DBN—In practical PHM applications. For smart
manufacturing and manufacturing diagnostics, AI-based methods
and applications (smart sensors, intelligent manufacturing, PHM,
and cyber-physical systems) were also reviewed by Chang et al.
(2018).

This article mainly focuses on the deep learning-based diagnosis
models of the rotatingmachinery used in advanced nuclear reactors.
An improved Transformer model is proposed, and an enhanced
embeddings generator is designed with a CNN-based positional
information extractor. A comparison and analysis of the different
diagnosis models, including the MLP, CNN, RNN, RESNET, and
Transformer, are performed in Section 2. Because nuclear rotating
mechanical equipment adapts the vibration signals to diagnose the
current status, this article uses the typical healthy bearings datasets
from the Case Western Reserve University (CWRU) to train and
investigate DL-based diagnosis models.The datasets for the network
training and the data preprocessing technique are also introduced
in this section. Major findings are presented in Section 3, and a
conclusion is drawn in Section 4.

2 Methods and data

Multiple deep learning algorithms are available for constructing
diagnosismodels.Their features are firstly introduced in Section 2.1.
The labeled datasets are crucial for training the neural networks,
and the datasets used in the present study are described in

Section 2.2. The data processing techniques are introduced in
Section 2.3.

2.1 Introduction of DL models

2.1.1 Convolutional neural network
A type of feedforward neural network with deep structure

and convolution computing is known as the “convolutional neural
network” (CNN). It has been used extensively in image processing
and natural language processing since it was initially presented
in 1997 (LeCun and Bengio, 1995). The basic components of the
CNN include convolutional layers, activation functions, pooling
layers, and fully connected layers. This particular type of neural
network has demonstrated dominance in image processing (AlexNet
won the ImageNet competition in 2012) and classification (ResNet’s
accuracy surpassed that of humans in 2016) (He et al., 2016). The
RESNET is a deep CNN architecture designed to address the issues
of vanishing gradients and degradation in training deep networks.
Residual blocks employ skip connections to directly pass the input
signal to subsequent layers while learning the residual to represent
the change in the network layers. This design allows the model to
directly learn the residual, making it easier to optimize the network.
In this study, we create five CNN layers for input data and also
customize the well-known RESNET (ResNet18) for four different
input data types. As a feed-forward neural networkwith convolution
computation and deep design, the convolutional neural network
(CNN) is frequently employed in image and natural language
processing. A convolutional and pooling layer are included in each
hidden layer of a CNN. The convolutional layer converts the local
signal of the preceding layer to the ones of the following layer by
employing a filter with common weights to derive characteristics
from the input signal.

It is challenging to train CNN models with acceptable accuracy
of fault diagnosis since the volume of the labeled samples used
in fault diagnosis is comparably modest to that of the images in
ImageNet. However, deep CNN models can perform well on small
data (Yosinski et al., 2014) by combining with transfer learning
(Donahue et al., 2014). Since the RESNET may boost accuracy with
higher network depth, we transfer the RESNET trained on ImageNet
to the fault diagnostic field in this study. The RESNET is naturally
applied in the layers of feature extraction to applications for defect
diagnosis since it performs well in picture classification and feature
extraction.

We have presented a model (Figure 1) that contains four
convolutional layers, batch normalization layers, ReLU layers, and a
pooling layer for the purpose of fault diagnostics, which is shown in
Table 1. Moreover, Table 2 presents the parameters of the RESNET
model we used. A three-layered basic block structure with 64,
128, 256, 512, and N neurons, where N is the total number of
defect categories, makes up the classification module. The retrieved
characteristics are sent into the categorization module.

2.1.2 Short-term memory network
Due to the CNN’s inability to obtain the long-term dependence

characteristics of time series data and the complex features of non-
linear data, the RNN is well suited for dealing with time series and
has the ability to characterize temporal dynamic behavior. However,
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FIGURE 1
Diagramof the CNN model for fault diagnosis of rotating machine.

TABLE 1 Parameters of the CNNmodel.

No. Layers Hyperparameters

1 Input signal Channel = 1

2 Data preprocessing method Time Domain, Frequency Domain, Time–Frequency Domain, or Wavelet Domain

3 CNN model Conv (16,15), BN, ReLU

Conv (32,3), BN, ReLU, Max-pooling (2,2 × 1)

Conv (64,3), BN, ReLU

Conv (128,3), BN, ReLU, Adaptive Max-pooling (4)

Linear (128,256), ReLU

Linear (256,64), ReLU

4 Fault classifier Linear (class number)

TABLE 2 Parameters of the RESNETmodel.

No. Layers Hyperparameters

1 Input signal Channel = 1

2 Data preprocessing method Time Domain, Frequency Domain, Time-Frequency Domain, or Wavelet Domain

3 RESNET model Conv (64,7,2,3), BN, ReLU, Max-pooling (3,2 × 1)

Basic Block [Conv1x1 (64,1)]

Basic Block [Conv1x1 (128,2)]

Basic Block [Conv1x1 (256,2)]

Basic Block [Conv1x1 (512,3)]

Adaptive Max-pooling (1)

4 Fault classifier Linear (class number)
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TABLE 3 Parameters of the BiLSTMmodel.

No. Layers Hyperparameters

1 Input signal Channel = 1

2 Data preprocessing method Time Domain, Frequency Domain, Time-Frequency Domain, or Wavelet Domain

3 Embeddings generator Conv (16,3,1), BN, ReLU, Max-pooling (2,2 × 1)

Conv (32,3,1), BN, ReLU, Adaptive Max-pooling (25)

4 BiLSTM model T = 64, layers = 2

5 Fault classifier Linear (class number)

FIGURE 2
LSTM neuron internal structure.

there are certain drawbacks to the RNN, such as the potential
for gradient explosion or disappearance during backpropagation.
For processing continuous input streams, LSTM was introduced in
1997 as a solution to these issues. Bidirectional LSTM (BiLSTM)
is able to selectively recall and forget information and can capture
bidirectional relationships across extended distances (Hochreiter
and Schmidhuber, 1997). For the classification problem, we use
BiLSTM to cope with two different forms of input data (Table 3).
The RNN is constructed with three layers: the input layer, hidden
layer, and output layer. Each layer’s features are represented by the
notations xit, h

i
t, and oit, where the superscript and subscript denote

the sample number and time step, respectively. U, V, and W are
the weight matrix. The forward propagation of a standard RNN is
defined as follows:

h(i)t = f(wh
i
t−1 +Ux

i
t + bu) (1)

o(i)t = vh
(i)
t + bv (2)

where bu and bv are the bias vectors, and f ( ) is the non-linear
activation function (Gers et al., 2000). The standard RNN is often
limited by the long-term dependencies and becomes unable as the
sequence grows (Bengio et al., 1994). A common solution is using
the architecture of the LSTM network (Figure 2).

The enhanced classic RNN, or LSTM, can record the entire
history of the input data. By combining the forgetting gates, output
gates, and input gates, LSTM addresses these issues. The LSTM
neuron’s internal organization is depicted in Figure 2. The primary
concept is that a number of gates regulate how information flow
along the time axis is updated. To decide whether or not the input
xt and hidden state of the preceding layer h(t−1) should be added
to the current cell, we introduce the input state. The forget gate
controls whether or not the cell value should be preserved in relation
to the current input and the prior concealed state.The current layer’s
output is based on both the current input and the preceding layer’s
output. A set of state responses that incorporate both the most
recent input and output data will be produced by LSTM neurons.
The memory cell makes sure that the gradient can be transferred to
several stages without disappearing or exploding. The update of the
input, forget, and output gates is listed as follows:

f (i)t = σ[w f(h
(i)
t−1 + u

(i)
t ) + b f] (3)

in(t)t = σ[win(h
(i)
t−1 + u

(i)
t ) + bin] (4)

out(t)t = σ[wout(h
(i)
t−1 + u

(i)
t ) + bout] (5)
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TABLE 4 Parameters of theMLPmodel.

No. Layers Hyperparameters

1 Input signal Channel = 1

2 Data preprocessing method Time Domain, Frequency Domain, Time-Frequency Domain, or Wavelet Domain

3 BiLSTM model Linear (1024), BN, ReLU

Linear (512), BN, ReLU

Linear (256), BN, ReLU

Linear (128), BN, ReLU

Linear (64), BN, ReLU

4 Fault classifier Linear (class number)

FIGURE 3
Overall architecture of the improved Transformer model.

⌢
C
(i)
t = tan h[wc(h

(i)
t−1 + u

(i)
t ) + bc] (6)

C(i)t = f
(i)
t ⚬C
(i)
t−1 + in

(i)
t ⚬
⌢
C
(i)
t (7)

h(i)t = out
(i)
t ⚬ tan h(C

(i)
t ) (8)

whereW and V are the input and hidden state weights, respectively,
and b stands for the biases. In the t-th update step, the input gate,
forget gate, output gate, and cell state are updated by the input x
and the hidden state of the (n-1)-th step. The hyperparameters of
the BiLSTM model presents in Table 3.

2.1.3 Multi-layer perceptron (MLP)
The MLP, which is a fully connected network with numerous

hidden layers, was put forth as the ANN’s model in 1987

(Rumelhart et al., 1985). With such a basic framework, the MLP is
capable of performing some basic categorization tasks. However,
when the task gets more difficult, the MLP is challenging to train
due to the vast number of factors. For the one-dimensional (1D)
input data in the current study, an MLP with five fully linked
layers and five batch normalization layers is utilized (Table 4).
CE loss refers to the softmax cross-entropy loss, BN refers to the
batch normalization layer, and FC refers to the fully connected
layer.

We use the CNN and MLP neural network topologies in
this article. We will assess how well they perform in applications
involving fault diagnostics and transfer learning. One-dimensional
vibration signals are the type of data used in this work. In this
case, a one-dimensional CNN structure is employed. Letx and y
represent the neural networks’ input andoutput vectors, respectively.
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TABLE 5 Parameters of the proposedTransformermodel.

No. Layers Hyperparameters

1 Input signal Channel = 1

2 Data preprocessing method Time Domain, Frequency Domain, Time–Frequency Domain, or Wavelet Domain

3 Enhanced embeddings generator Conv (16,15,7), BN, ReLU, Max-pooling (3,2 × 1)

Conv (32,7,3), BN, ReLU, Max-pooling (3,2 × 1)

Conv (64,3,1), BN, ReLU

4 Input embeddings Linear

5 Transformer encoder T = 32, Heads = 8, drop rate = 0.5

6 Fault classifier Linear

FIGURE 4
Experiment platform for rolling bearing fault sensing.

An input layer, an output layer, and a number of hidden layers
make up the MLP. The letter hi represents the hidden vector.
Then, the forward propagation process of the MLP is as follows:
where bi is the bias vector, wi is the weight matrix, j (×) is
the activation function, and softmax(×) represents the softmax
classifier. The forward propagation process of the CNN is as

follows:

z1 = j(x*w1+ b1)

c1 = down(z1)

⋯

zi = j(ci− 1*wi+ bi)

ci = down(zi)

h1 = j(wc1ci = bc1)

y = so ftmax(wc2h1+ bc2)

(9)

where down (×) is the pooling operation and * stands for the
convolution operation. For both the MLP and CNN, the loss
function is a cross-entropy one as follows:

L(y, ŷ) = − 1
n
∑n

i
yi logŷi − (1− yi)log(1− ŷi) (10)

where yi is one of the labels, ŷi is one of the predictions, n
is the number of the training samples, and n is the number of
the batch samples. The training method of both the MLP and
CNN is back-propagation (BP) based on the gradient descent
strategy. The parameters of the MLP model are shown in Table 4.

2.1.4 Improved transformer
Transformer is a deep learning model widely used for natural

language processing and other sequence processing tasks. It was

TABLE 6 Label of themodes of fault.

Label Fault mode Description

1 Health State The normal bearing at 1791 rpm and 0 HP

2 Inner ring 1 0.007-inch inner ring fault at 1797 rpm and 0 HP

3 Inner ring 2 0.014-inch inner ring fault at 1797 rpm and 0 HP

4 Inner ring 3 0.021-inch inner ring fault at 1797 rpm and 0 HP

5 Rolling Element 1 0.007-inch rolling element fault at 1797 rpm and 0 HP

6 Rolling Element 2 0.014-inch rolling element fault at 1797 rpm and 0 HP

7 Rolling Element 3 0.021-inch rolling element fault at 1797 rpm and 0 HP

8 Outer ring 1 0.007-inch outer ring fault at 1797 rpm and 0 HP

9 Outer ring 2 0.014-inch outer ring fault at 1797 rpm and 0 HP

10 Outer ring 3 0.021-inch outer ring fault at 1797 rpm and 0 HP
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FIGURE 5
Vibration signals in time domain (left) and frequency domain (right) of the 10 fault modes.

developed by Google based on the encoder-decoder framework
with an attention mechanism. The Transformer model can handle
variable-length sequence data and has better parallelization
capability and faster training speed compared to traditional
recurrent neural networks (RNNs).The Transformer is composed of
multiple stacked encoders and decoders, each consisting of multiple
attention sub-layers and fully connected neural network sub-layers.
During training, the Transformer uses the self-attentionmechanism

to capture the relationships between sequences, which effectively
handles sequence data.

This study proposes a novel Transformer model for diagnosing
faults in rotating machinery by integrating the strengths of the
CNN and transformer. The architecture of the proposed model
is presented in Figure 3 and consists of three major components:
an enhanced embeddings generator, a transformer encoder, and a
fault classifier. The parameters of the transformer architecture are
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FIGURE 6
The time-frequency spectrum with time-frequency domain (left) and wavelet domain (right) of the 10 fault modes.

listed in Table 5. The enhanced embeddings generator incorporates
a CNN-based positional information extractor to convert the
preprocessed 1-D data into a sequence of token embeddings. Since
the input of the transformer is 1-D sequence tokens, a three-
layer 1-D CNN architecture has been designed as an enhanced
embeddings generator to ensure that the token embeddings have
the same spatial arrangement information as the preprocessed

data and that the transformer can access the inductive bias while
having local feature extraction ability. The transformer encoder
is connected after the input embeddings, which can reduce the
model complexity to avoid gradient disappearance during the
training process. Because the final output of the transformer is
a sequence of the embeddings, an FC layer is used in the fault
classifier.
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FIGURE 7
The accuracy of the CNN, BiLSTM, MLP, RESNET, and Transformer with
epoch number.

2.2 Datasets

Many types of rotating mechanical equipment, such as the
primary pump, turbine, and fans, are key components of Gen IV
advanced reactors. Normally, industrial vibration detectors are used
to monitor and diagnose the rotating machinery state. Although
many different failure modes exist in the nuclear industry, the
similar fault diagnosis process makes it feasible to investigate the
DL-based diagnosis models. We use the typical healthy bearings
datasets from CWRU as benchmark testing datasets in order to
assess the efficacy of the suggested diagnosis models. Datasets
from the Case Western Reserve University (CWRU) have been
procured through the Bearing Data Center. Under four different
motor loads, vibration signals were recorded at 12 or 48 kHz for
healthy bearings and damaged bearings with single-point faults.
Single-point defects were added for each operating condition on the
rolling element, inner ring, and outer ring, with fault widths of 0.007,
0.014, and 0.021 inches, respectively.Thedata used in this studywere
gathered at the drive end, and the sampling frequency employed was
12 kHz.

As shown in Figure 4, the acceleration data were collected both
close to and far from the motor bearings. Using electro-discharge
machining, defects were introduced into themotor bearings (EDM).
The inner raceway, rolling component (the ball), and outer raceway
all experienced faults that ranged in dimension from 0.007 inches to
0.040 inches. The test motor’s defective bearings were replaced, and
vibration datawere collected at loads ranging from0 to 3 horsepower
(the rotating speed ranges from 1797 to 1720 RPM).

2.3 Data preprocessing

2.3.1 Time domain
The time domain input denotes the usage of vibration signals

without any prior processing as the input. Each sample in this study
has a length of 1024. A total of 20% of all the samples are used as the
testing set, while 80% of all samples are used as the training set.

2.3.2 Frequency domain
The term “frequency domain” refers to the process of employing

the fast Fourier transform (FFT) to convert a sample into the
frequency domain. The data length is cut in half as a result of this
procedure, and the new sample is described as:

xFFTi = FFT(xi) (11)

where the operator FFT(·) represents transforming xi into the
frequency domain and taking the first half of the result.

2.3.3 Time-frequency domain
This kind of input is generated by applying the short-

time Fourier transform (STFT) to the samples. The Hanning
window is used, and the window length is 64. After this
operation, the time–frequency representation (a 33 × 33 image) is
generated as:

xSTFTi = STFT(xi) (12)

where the operator STFT(·) represents transforming xi into the
time–frequency domain.

2.3.4 Wavelet domain
Continuous wavelet transform (CWT) is used to obtain the

wavelet domain representation for the wavelet domain input,
as illustrated in Eq. 16 The length of each sample is set at
100 because the CWT requires a lot of time. Following this
procedure, the (a 100 × 100 image) wavelet coefficients are
produced as:

xCWT
i = CWT(xi) (13)

where the operator CWT(·) represents transforming xi into the
wavelet domain.

The performance of the DL models is significantly influenced by
the type of input data and method of normalization. The complexity
of feature extraction is determined by the types of input data,
and the difficulty of calculation is determined by normalization
techniques and evaluation. This article’s normalizing technique can
be used by:

xnormalize
i =

xi − xmin
i

xstdi
(14)

3 Results and discussion

The bearing dataset from the CWRU’s bearing data center
have been compared in this study. Four groups of data from
the normal bearing, the bearing with the fault on the inner
race, the bearing with the defect on the outer race, and the
bearing with the fault on the ball make up the dataset. In these
tests, four spinning speeds are used, namely, 1797 rpm, 1772 rpm,
1750 rpm, and 1730 rpm. Table 6 contains a list of the label
data.

Figure 4 displays the bearing’s vibration signals at a speed of
1797 revolutions per minute. The captured signals were divided
into 100 samples, each of which has 1024 points. The testing
set and training set can be selected at random. We used 5,
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10, 15, and 20 examples of each fault mode for training and
the remaining 40 samples for testing in order to compare the
performances of the classifiers with various sizes of the training
set.

The typical raw vibration signals for ten modes are shown
in Figure 5. It is apparent that it is challenging to determine
the kind of failure from the raw data without data processing.
The time-frequency spectrums with the time-frequency domain
and wavelet domain for the ten modes are shown in Figure 6.
The proposed diagnosis models have been evaluated against these
spectrums.

As shown in Figure 7, the accuracies of prediction of the CNN,
BiLSTM, MPL, RESNET, and Transformer models with different
data preprocessing methods are compared. A total of 10 samples
are chosen to train the diagnosis models. The CNN, BiLSTM,

RESNET, and Transformer models can reach a stable and accurate
state after 25 epochs without overfitting. The four data processing
techniques are suitable for the three diagnosis models. However,
the frequency domain input and time–frequency domain input are
appropriate for the MPL as they can achieve the precise model
The MPL with the time domain input and wavelet domain input
are unable to distinguish the fault modes. In Figure 7, the CNN,
BiLSTM, and RESNET have a good accuracy with the time domain
and wavelet domain. However, the MLP is unavailable with these
two data preprocessing methods. The frequency domain input
and time–frequency domain are compatible with these diagnosis
models.

In addition to data preprocessing, the train samples number has
a great effect on the performance of the diagnosis models (Figure 8).
The CNN, BiLSTM, and RESNET methods have a good accuracy

FIGURE 8
The accuracy with the CNN, BiLSTM, MLP, RESNET, and Transformer models with different training sample numbers under different data preprocessing
methods: (A) time domain; (B) frequency domain; (C) time-frequency domain; and (D) wavelet domain.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1210703
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Sun and Wang 10.3389/fenrg.2023.1210703

FIGURE 9
The accuracy of the CNN, BiLSTM, MLP, RESNET, and Transformer
models with different SNRs.

with the four data preprocessing methods, with 10 samples for each
fault mode. However, the time domain and wavelet domain method
show the shortage for theMPLmethod.The time-frequency domain
and frequency method are available for the MPL method, with 5
samples for each fault mode.

As it is known, signal noise also has great influence on diagnostic
accuracy. To test the robustness of the proposed models, white
Gaussian noise is added to the training and the testing samples with
different signal-to-noise ratios (SNRs). The trend of the different
diagnosis models accuracies is shown in Figure 9, with different
SNRs using the time-frequency domain input data. For the BiLSTM,
MLP, RESNET, and Transformer, the satisfied models are obtained
when the SNR is more than 10 dB. The BiSLTM and Transformer
show strong anti-noise ability and performs significantly well.
Meanwhile, the other models show a shortage in this range of
SNR due to overlooking long-term dependencies in the time-
series data. BiLSTM models can handle long-term dependencies
in time-series data and capture local features in the sequence.
Transformer models are based on self-attention mechanisms that
effectively handle long-term dependencies between sequence data,
which can cause the robustness of the diagnosis model in case of
signal noise.

Thekey conditions for deep learning diagnosismodel processing
are sufficient and representative data, proper data preprocessing, and
hyperparameter tuning. Deep learning models require sufficient
high-quality data to learn and generalize effectively. The dataset
should be diverse, balanced, and representative of the various fault
types. Sufficient data ensure that the model can capture complex
patterns and make accurate predictions. Data preprocessing
plays a crucial role in deep learning. It involves tasks such as
cleaning, normalization, feature scaling, and handling missing data.
Preprocessing ensures that the data are in a suitable format for the
model and removes any noise or biases that could hinder learning.
Deep learning models have various hyperparameters, such as drop
rate, layer number, and regularization parameters, that need to
be tuned. Proper hyperparameter tuning can significantly impact

the model’s performance, convergence speed, and generalization
ability.

4 Conclusion

In the present study, we propose the five DL-based diagnosis
models, i.e., the MLP, CNN, RNN, RESNET, and improved
Transformer model. The performance of the five models has been
evaluated and compared. It is shown that the CNN, BiLSTM, and
RESNET can achieve good accuracy of prediction with four types
of data preprocessing, even with only 10 samples for training.
The MLP method can also yield satisfactory accuracy if the
input is provided in the time–frequency domain. The improved
Transformer model with the input provided in the time domain and
frequency domain is most suitable for the fault diagnosis of rotating
machinery.
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