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Accurate battery capacity estimation can contribute to safe and reliable operations
of lithium-ion battery systems. The incremental capacity (IC) based techniques
provide promising estimates of battery capacity. However, curve smoothing
algorithms are usually required in the IC-based methods, which introduce
additional errors and are computationally burdensome. To address this issue,
this work proposes a novel approach using multi-voltage-interval IC peaks
combined with a back-propagation neural network (BPNN) for battery capacity
estimation. Multiple voltage intervals covering relatively narrow and wide values
are applied for computing IC curves to enhance the estimation robustness. In
particular, there is no need to employ smoothing algorithms. A BPNN is then
applied to approximate the correlation between multi-voltage-interval IC peak
and capacity. Besides, a five-point moving window technique is proposed to
capture multi-voltage-interval IC peaks online effectively. Experimental results
show capacity estimates with the majority of relative errors of ±1% and the
maximum error of 2%.
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1 Introduction

With the advantages of high energy density, long cycle life, and no memory effects,
lithium-ion battery is preferred as an energy storage device in renewable energy storage
systems, smart grids, and electrified transportation (Shi et al., 2021; Su et al., 2022). An
efficient battery management system (BMS) with accurate and robust state estimation
techniques is indispensable to achieve safe and reliable battery operations. Among the core
techniques of BMS, battery capacity estimation plays an essential role in estimating battery
state of health (SOH), remaining useful life, and energy capability, but it still poses significant
challenges. This is because lithium-ion batteries always demonstrate time-variable and
highly nonlinear dynamics, which are involved in complicated electrochemical mechanisms
(Deng et al., 2022; Sun et al., 2022).

A considerable amount of research about the techniques of battery capacity estimation
and SOH estimation has been reported in the literature (Xiong et al., 2018; Severson et al.,
2019; Sulzer et al., 2021; Zhao et al., 2023), in which the model-based methods outperform
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others in terms of their superior robustness against noise and
erroneous initial states (Zheng et al., 2016). Observers with an
equivalent circuit model or an electrochemical model are usually
deployed in the scheme of the model-based methods for the co-
estimation of battery capacity, states, and other parameters (Xiong
et al., 2018). However, since cell divergence is ineluctable among
battery cells, the model-based methods need to individually identify
and update the model parameters for each cell (Feng et al., 2019;
Yang et al., 2020). It requires high computational efforts and a high
volume of memory in a microprocessor within the BMS, which
heavily obstructs their applicability for practical applications.

In recent years, remarkable results have been achieved by
applying incremental capacity analysis (ICA) not only for
lithium-ion battery aging mechanism identification but also for
battery capacity and SOH estimation. The ICA technique
transforms a conventional voltage versus capacity curve into an
incremental capacity (IC) curve. The shapes, positions, and
intensities of IC peaks can be used to characterize the loss of
active materials, increase of resistance or loss of lithium
inventory (LLI) during battery aging processes. It has been
reported that one of the leading causes of lithium-ion battery
capacity degradation is the LLI (Liu et al., 2010; Dubarry et al.,
2011; Han et al., 2014). For LiFePO4 cells, the LLI is mainly reflected
in the IC peak located at the SOC range from about 60% to 90%
(Weng et al., 2013; Riviere et al., 2015). Therefore, the IC curves and
associated IC peaks can be indicators to estimate the actual capacity
or SOH of batteries.

Data-driven methods have emerged as promising tools for
predicting battery performance due to the rapid development of
machine learning techniques (Zhu et al., 2023), and thus they are
usually employed with the features of IC curves to establish a model
for battery capacity or SOH estimation. (Li et al., 2020a) used
Gaussian filter method to polish IC curves and then extracted
features from partial IC curves, which served as the input of a
Gaussian progress regression-based battery capacity degradation
model for battery SOH estimation. (Li et al., 2019) combined the
grey relational analysis and entropy weight methods to extract
health performance indicators from IC curves to establish a
battery degradation model for SOH estimation. She et al.
proposed a radial basis function neural network-based model to
depict the relationship between battery aging levels and its
influencing factors in Ref. (She et al., 2019), wherein the IC peak
indicates the battery aging level. (Zhang et al., 2022) combined
voltage-capacity model-based ICA with support vector regression
(SVR) for battery SOH estimation. (Tian et al., 2018) acquired the IC
curves from battery open circuit voltage, which was identified by a
fractional-order model, and the relationship between the IC peak
and SOH was expressed as a linear function. (Jiang et al., 2020)
developed an adaptive capacity estimation model based on three
features of IC curves considering the influence of battery aging and
charging conditions on the IC curves.

However, curve smoothing algorithms are required in the IC-
based estimation methods to obtain a clear IC curve for easily
identifying IC peaks (Tian et al., 2018; Li et al., 2019; She et al., 2019;
Li et al., 2020a; Jiang et al., 2020; Zhang et al., 2022). These curve
smoothing algorithms not only takes up high computational cost in
embedded BMSs, but also introduce additional errors in data
processing procedures (Zheng et al., 2018). The adjustable

parameters of curve smoothing algorithms influence the result of
IC curve fitting (Feng et al., 2020). Refs. (Li et al., 2020a; He et al.,
2020). presented comparative results of IC curves by using different
filters, and it is suggested that different parameters of filters have a
significant influence on the intensities of IC peaks. Besides, the
correlation between the IC peaks and cell capacities may change with
the cell’s aging levels. In Ref. (Anseán et al., 2017), the authors
presented the discontinuity of the IC peak area during battery aging,
which grew linearly at its early aging stage and then reversed its
tendency to follow a downward trend. In this case, it may lead to
problematic results if the positive relation between IC peaks and
capacity loss is directly employed for battery capacity estimation.
Moreover, there are still some technical difficulties in implementing
the ICA approach, such as the problem of selecting voltage intervals
for yielding robust IC curves (Li et al., 2016). Accordingly, it is
necessary to study the dependency of IC peaks on the voltage
interval, and further develop the smoothing-free ICA technique
for online battery capacity estimation.

This work aims at addressing the issues mentioned above and
developing the ICA-based method for onboard implementation on
battery capacity estimation. Multiple voltage intervals covering
relatively narrow and wide values are first applied to figure out
IC curves using numerical derivation. The voltage interval and cell
aging dependencies of IC peaks are then experimentally analyzed,
followed by proposing a novel method for battery capacity
estimation using a back-propagation neural network (BPNN)
with multi-voltage-interval IC peaks. A five-point moving
window technique is then proposed to capture the multi-voltage-
interval IC peaks for the estimation efficiently. The robustness and
feasibility of the proposed methods are verified for different cells at
various aging levels.

2 Experimental analysis of battery IC
curves

With the differential capacity, the method, known as ICA,
transforms the voltage plateaus on a cell terminal voltage curve
into clearly identifiable IC peaks on an IC curve. The IC curve is
mathematically computed as the gradient of the charged/discharged
capacity (Q) to the terminal voltage (V) using Eq. 1 (Pastor-
Fernandez et al., 2016).

dQ/dV ≈ ΔQ/ΔV (1)

2.1 Technical difficulties of ICA
implementation

One of the significant technical difficulties in implementing the
ICA approaches for onboard applications is the computation task
for obtaining a precise IC curve (Weng et al., 2013; Riviere et al.,
2015; Li et al., 2016; Weng et al., 2016). The numerical derivation is
the most direct method to compute IC values from the original
battery test data, but it is hard to determine a suitable voltage interval
(ΔV) using this method. As reported in (Riviere et al., 2015; Li et al.,
2020a), although the IC curve with a narrow voltage interval can well
depict the peaks profile, it suffers from unavoidable measurement
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noise, thus leading to problems in accurately identifying the IC
peaks. On the contrary, a wide voltage interval can smooth the IC
curve, but it may have other issues, such as peak distortion and
missing meaningful information.

Different curve smoothing algorithms are usually employed in
data processing procedures to address the mentioned-above issue.
But it inevitably results in introducing additional errors and adding
computational efforts. Another problem is that no matter how
smooth the IC curve is, one single voltage interval-based IC
curve employed for estimating battery capacity does not have
enough fault tolerance and may fail in some cases. For instance,
although a smooth and robust IC curve can be obtained by applying
the SVR-based smoothing algorithm in Ref. (Weng et al., 2013),
there are still some outliers in the experimental results.

Accordingly, an effective approach to determine the voltage
interval for enhancing the robustness of IC peaks and an efficient
ICA-based capacity estimator for ease of implementation are highly
required to cope with these technical difficulties.

2.2 IC peaks with multiple voltage intervals

To investigate the voltage interval and cell aging dependencies of
IC peaks, three LiFePO4 cells with a rated capacity of 60 Ah were
tested over 1800 aging cycles. The cycle test was conducted by a
constant current (CC) and constant voltage (CV) charge scheme and
a CC discharge scheme at room temperature (about 25°C). At each
aging cycle, the battery cells were charged at a CC of 0.5 C until a
cutoff voltage of 3.65 V was detected, followed by charging at a CV
of 3.65 V until the loading current decreased to a cutoff current of
0.05 C. The cells’ charge data, including cell terminal voltage,
loading current, and capacity, were exported from a host
computer and then used for IC peak analysis.

A narrow voltage interval may result in a noisy IC curve, but a
wide voltage interval may distort IC peaks. Therefore, one single

voltage interval may not be able to achieve desirable results. In this
paper, multiple voltage intervals covering narrow and wide values
are proposed to simultaneously apply for obtaining various IC
curves, which would have fault tolerance due to the distributed
representation of the information of measurement noise and peak
distortion. The IC peaks are then jointly used for capacity
estimation, which is expected to merge the merits of both the
narrow and wide voltage intervals.

Multiple voltage intervals, including 2 mV, 3 mV, 5 mV, and
8 mV, are employed for yielding different IC curves. Figure 1 shows
the IC curves with various voltage intervals for Cell #1. With
individual voltage intervals, three noticeable can be observed in
the IC curves from Figure 1, consistent with the results presented in
Refs. (Dubarry and Liaw, 2009; Weng et al., 2013; Han et al., 2014; Li
et al., 2016). The staging process in the graphite negative electrode
associated with these peaks was discussed in Refs. (Dubarry and
Liaw, 2009; Dubarry et al., 2011; Han et al., 2014). In Figure 1, it can
also be observed that the intensities of the second and the third IC
peaks vary with different voltage intervals. It is worth mentioning
that when the voltage interval is 2 mV, the IC curve is volatile at the
range of SOC from about 10% to 30% and from 60% to 70% due to
the inevitable measurement noise. However, when the voltage
interval is 8 mV, there are very few IC points in the third IC
peak, which may not truly reflect the entire IC peak. Therefore,
the joint usage of the selected distribution of voltage intervals
(i.e., 2 mV, 3 mV, 5 mV, and 8 mV) may incorporate the
information on noise and peak distortion to some extent.

The third IC peak in the IC curve is typically employed for
estimating battery available capacity. The IC peak in battery IC
curves has been widely proven to be the highest correlation with
battery available capacity using Pearson correlation analysis
algorithm (Li et al., 2020a; Li et al., 2020b; Chang et al., 2021;
Wen et al., 2022). The aging dependency of the third IC peak
necessitates being investigated to achieve desirable estimates at
different cell aging levels. To this end, the test data of three cells

FIGURE 1
IC curves with different voltage intervals.
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loaded over 1800 cycles are used for the following analysis. The
intensities of the third IC peaks of the cells with the voltage interval
of 2 mV, 3 mV, 5 mV, and 8 mV at different aging levels are depicted
in Figure 2.

As can be observed in Figure 2, the intensities of the third IC
peak present a decreasing trend with the increasing cell aging,
although some outliers exist. It is noted that the tendency is not
as clear as the results reported in Refs. (Weng et al., 2013; Riviere
et al., 2015). This is because the intensities of the third IC peaks
depicted in Figure 2 were directly computed using numerical
derivation with the measurement data, which are not polished by
any curve smoothing algorithms in advance.

The intensities of the third ICpeaks are related to the voltage intervals
and battery aging levels. However, the relationship between the fading

capacities and the third IC peak values with multiple voltage intervals are
not explicitly explored. Thus, a back-propagation neural network
(BPNN) is employed to establish the model of battery capacity
estimation, which is elaborated in the following section.

3 Capacity estimation using a BPNN
with multi-voltage-interval IC peaks

Artificial neural networks (ANNs) are nonlinear learning
mathematical models that always exhibit their feasibility in
solving a wide variety of problems, such as nonlinear mapping,
function approximation, and state prediction (Hu et al., 2014; Liu
et al., 2014). ANNs have the ability to learn and approximate the
relationship between the input variables and the output variables
without being explicitly explored. One of the most commonly used
ANNs, the BPNN, using the classical back propagation approach to
update the weights between each layer (Hu et al., 2014), is employed
in this work for approximating the relation between multi-voltage-
interval IC peaks and battery capacities.

A typical three-layer BPNN depicted in Figure 3, consisting of an
input layer, a hidden layer, and an output layer, is employed in the present
study. The third IC peak values under multiple voltage intervals of 2 mV,
3 mV, 5 mV, and 8mV serve as the input vector of the input layer. In the
hidden layer, the number of neurons is set to 12 for equilibrating the
network complexity and estimation accuracy. The estimated battery
capacity is obtained from the output layer. In the hidden and output
layers, the hyperbolic tangent sigmoid function is employed as the
activation function, which is governed by

f u( ) � 2/ 1 + exp −2u( )( ) − 1 (2)
where u is the value of the neuron.

Each of the neurons in the hidden layer computes a weighted
and biased sum of its input and transmits the sum through the
activation function to the output layer. The mathematical expression
of the hidden layer is determined by

hi � f ∑4
k�1

xkwk,i + bi⎛⎝ ⎞⎠ (3)

FIGURE 2
Intensities of the third IC peaks with multiple voltage intervals at
various aging levels: (A) 2 mV, (B) 3 mV, (C) 5 mV, and (D) 8 mV.

FIGURE 3
A schematic of a three-layers BPNN with multi-voltage-interval
IC peaks.
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where k denotes the index of the kth (k = 1, 2, 3, 4.) input node, i the
index of the ith (I = 1, 2, . . . , 11, 12.) hidden node, xk the kth input IC
peak value, wk,i the weight value connecting the kth input node and
the ith hidden node, and bi the bias value of the ith hidden node.

Likewise, the mathematical equation of the output layer is
expressed as

o � f ∑12
i�1
hiwi,o + bo⎛⎝ ⎞⎠ (4)

where wi,o and bo denote the weight value connecting the ith hidden
node and the output node and the bias value of the output node,
respectively, and o denotes the output value.

The proposed battery capacity estimator using a BPNN with
multi-voltage-interval IC peaks has several apparent advantages.

a. One benefit of using multiple voltage intervals covering both
narrow and wide values to obtain various IC peaks is that it has
fault tolerance and enhances the robustness of the proposed
method due to the distributed representation of measurement
noise and peak distortion information.

b. The IC curves are computed directly by numerical derivation
without pre-polishing by any curve smoothing algorithms and
functions, thus efficiently reducing computational efforts and
additional errors in the data preprocessing.

c. The main advantage of the BPNN is achieved by its ease of
understanding and implementation, and therefore, the proposed
method is promising to be applied in practice.

4 Capture method of multi-voltage-
interval IC peaks

The method to accurately capture the multi-voltage-interval IC
peaks is the prerequisite for effective estimation. In this section, a
five-point moving window method is proposed for efficiently
capturing the IC peaks.

During the battery charging process, the input information of
BMSs, which includes cell voltage and loading current, changes with
operating time.With the input data, a BMS should have the ability to

compute IC values at each sampling voltage interval in its program.
Figure 4 depicts the real-timely computed IC values (shown as the
blue symbols) during the battery CC charging process, in which the
voltage interval is 2 mV.

In Figure 4, a five-point moving window shown as the black dash
window is proposed to capture the third IC peak during the battery
charging process. The red arrows shown in the moving window
indicate the changing trend of IC values for capturing the IC peak. If
the IC values of the five points in the moving window satisfy the
constraints of Eq. 5, Point (3) can be considered as the third IC peak.

FIGURE 4
A five-point moving window for capturing the third IC peak.

FIGURE 5
The capture processes of the third IC peaks with different voltage
intervals: (A) 2 mV, (B) 3 mV, (C) 5 mV, and (D) 8 mV.
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Otherwise, the first point will be released, and the moving window
will move to add the next IC value to make a judgment again until it
finds out the IC peak.

Point 1( )<Point 2( )
Point 2( )<Point 3( )
Point 3( )>Point 4( )
Point 4( )>Point 5( )
Point 3( ) ∈ 820, 1500[ ],ΔV � 2mV
Point 3( ) ∈ 800, 1400[ ],ΔV � 3mV
Point 3( ) ∈ 750, 1200[ ],ΔV � 5mV
Point 3( ) ∈ 680, 1150[ ],ΔV � 8mV

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where Point (·) denotes the IC value of the point.
Figure 5 shows the capture processes of the IC peaks with

different voltage intervals, where Point (3) represents the third IC
peak value. By observing Figure 5, the captured IC peak values are
consistent with the results shown in Figure 1. It suggests that the
five-point moving window method has the ability to accurately
identify the third IC peak, which provides a reliable foundation for
subsequent validations.

Based on the mentioned-above description, a block diagram of
the entire proposed method is presented in Figure 6, which includes
battery charge data collection, IC data calculation, IC peak
capturing, and model training and testing.

5 Results and discussion

It is important to adopt an efficient training algorithm to train
the proposed BPNN model for accurate battery capacity estimation.
The Levenberg-Marquardt backpropagation algorithm is considered
as one of the most efficient training algorithms for small and
medium sized patterns (Nawi et al., 2013). It is a derivative of
the Newton method and able to achieve desirable network
parameters identification. Therefore, the Levenberg-Marquardt

backpropagation algorithm is employed as the training algorithm
of the proposed BPNN model.

The BPNN model is trained using Matlab software. The
Levenberg-Marquardt backpropagation algorithm (trainlm) is a
network training function that updates weight and bias values
according to Levenberg-Marquardt optimization. Trainlm is often
the fastest backpropagation algorithm in the toolbox of Matlab, and
is highly recommended as a first-choice supervised algorithm
(MATLAB, 2023).

During the training process, the mean square error (MSE)
measuring the average of the squares of the differences between
the network output values and the target data, as given in Eq. 6, is
applied as the performance function of the BPNN. The training
process seeks to alter the network weights and biases to produce the
correct output within a reasonable error margin (Lahiri and Ghanta,
2008). The training goal of trainlm is to find a set of weights and
biases that minimize the MSE.

EMSE � ∑N
i�1

Q*
i − Qi( )2⎛⎝ ⎞⎠/N (6)

where EMSE denotes the MSE, N the number of the training data, Qi

the ith target capacity value, andQi* the ith estimated capacity value.
For the training stage, about two-thirds of the data sets of multi-

voltage-interval IC peaks and battery capacities were selected
randomly, which cover various cells and the whole range of
aging cycles. The optimal parameters of the BPNN model,
including the weights and biases of the hidden layer and output
layer, can be obtained by the training stage. The BPNNmodel is then
applied to the verifications of battery capacity estimation.

To investigate the feasibility and robustness of the battery
capacity estimation approach, the battery charging data of three
cells at different aging cycles are used for verification. Relative error
measuring the deviation between the estimated capacity and the

FIGURE 6
The block diagram of the entire proposed method.
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referenced value is used for evaluating the performance of the
proposed method, which is determined by

eRE � Q* − Q( )/Q × 100% (7)
where eRE denotes the capacity relative error, Q* the estimated
capacity, and Q the referenced capacity. The referenced values are
obtained from a host computer that records the battery operating
data with high accuracy during battery charge/discharge processes,
which are considered as the real cell capacities.

The capacity estimation results for three cells and their
relative errors are depicted in Figures 7, 8, respectively. As can

be observed in Figure 7, the referenced capacities present a
downward trend with the growing aging levels. The estimated
capacities can track with the referenced values for different cells
at various aging cycles, except for two relatively large erroneous
estimates, which place at the 1600th cycle of Cell #2 and the
1200th cycle of Cell #3.

Relative errors of the estimation results are computed and
presented in Figure 8, where all relative errors are successfully
confined into an error band of ±2%. It is noted that the relative
errors of the two relatively large erroneous estimates stated above are
1.89% and −1.52%, respectively, and most of the relative errors can
be limited in a narrow error band of ±1%, which suggests that the
proposed method can handle various cells and aging levels
quite well.

The proposed capacity estimation and IC peak capturing
methods for LiFePO4 cells in this work are pretty general, and
therefore are promising to provide valuable insight to the
investigations of other types of batteries with various chemistries.

6 Conclusion

In this paper, a novel method using a back-propagation neural
network (BPNN) with multi-voltage-interval incremental capacity
(IC) peaks is proposed for on-board battery capacity estimation. A
relatively reasonable distribution of voltage intervals covering both
narrow and wide values (namely, 2 mV, 3 mV, 5 mV, and 8 mV) is
first proposed for simultaneously yielding different IC curves,
which has fault tolerance due to the representation of
information of measurement noise and peak distortion. Note
that there is no need to employ smoothing algorithms in
numerical derivation, thus reducing computational efforts and
avoiding introducing additional errors. For approximating the
relation between multi-voltage-interval IC peaks and cell
capacities, a three-layers BPNN is then employed in this work,
and the network parameters are trained by using the Levenberg-
Marquardt backpropagation algorithm. With the input vector of
multi-voltage-interval IC peaks, the BPNN is applied for battery
capacity estimation. Moreover, a five-point moving window

FIGURE 7
Capacity estimation results of three cells at different aging cycles:
(A) Cell #1, (B) Cell #2, and (C) Cell #3.

FIGURE 8
Relative errors of the estimated capacities for three cells at
different aging cycles.
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technique is proposed to successfully capture the multi-voltage-
interval IC peaks during the battery charging process for the
estimation. The experimental results demonstrate that
promising capacity estimates with relative errors within ±2% can
be achieved, highlighting the feasibility and robustness of the proposed
approach against different battery aging levels. However, this work has
not considered the temperature influence on the IC peaks and the
estimation. Since ambient temperature significantly impacts battery
charging characteristics, the temperature dependency of IC peaks needs
to be investigated in our future work to enhance the robustness of the
estimation further.
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