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1 Introduction

With the rapid development of the world economy, the energy crisis and environmental
issues have become two important issues facing humanity. Developing and utilizing
renewable and clean energy is an effective way to relieve the pressure of the energy
crisis and environmental issues. The energy received daily from the sun is sufficient to
supply all the energy needed on the earth for a year (Chapo, 2008) and about 80% of the solar
energy reaching the earth is absorbed by the ocean (Malik et al., 2020). Therefore, ocean
energy has attracted wide attention due to its abundant resources, clean and stable
characteristics. Ocean energy can be divided into ocean thermal energy, salinity energy,
tidal energy, current energy and wave energy. The above types of ocean energy have the
potential to be used as alternatives to traditional fossil energy.

Ocean thermal energy is the energy contained in the temperature difference between the
surface warm seawater and the deep cold seawater. Between 25°N and 25°S, the surface
seawater temperature is above 26°C (Nithesh et al., 2016), and the deep seawater temperature
at 900 m below the sea surface is maintained at 4°C–6°C (Yang and Yeh, 2014). The reserve of
ocean thermal energy is second only to wave energy in all ocean energy. Ocean thermal
energy can be utilized in many forms, such as power generation (Rajagopalan and Nihous,
2013), refrigeration (Bian et al., 2019), hydrogen generation (Khanmohammadi et al., 2020)
and desalination of seawater (Park et al., 2014). Ocean Thermal Energy Conversion
(Abbreviated as OTEC) (Rajagopalan and Nihous, 2013) technology utilizes the
temperature difference between the surface warm seawater and the deep cold seawater
to generate electricity through heat exchangers and turbines. If all the ocean thermal energy
is used for power generation, 87,600 TWh of electricity can be generated every year, which is
more than five times the annual global electricity demand (Khan et al., 2017). Due to the
enormous potential of ocean thermal energy in power generation, many coastal countries,
including the United States (Mitsui et al., 1983), China (Yang and Yeh, 2014), and Japan
(Johnson, 1989; Marti et al., 2064) have conducted research on ocean thermal energy
conversion technology.

In this paper, the development status of OTEC technology is introduced in detail, and the
potential challenges and development prospects of OTEC technology in future applications
are discussed, so as to provide reference for the development and utilization of renewable
energy.
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2 Development status of OTEC
technology

The OTEC system can be divided into three basic types: open
cycle, closed cycle (Sherwood, 1995) and hybrid cycle (Heydt, 1993).
The open cycle was first proposed by Georges Claude, who
established an open cycle power generation device with an
output power of 22 kW in 1929 (Claude, 1930). The thermal
efficiency of open cycle was only about 0.7% (Takazawa et al.,
1996) This system consisted of flash evaporator, turbine, electric
generator, condenser and seawater pump, but due to site selection
and construction technology defects, the system failed to achieve net
power output. Figure 1A shows the schematic of the open cycle
system. The surface warm seawater is pumped into the flash
evaporator by a warm seawater pump, where the warm seawater
is vaporized. After vaporization, the steam enters the turbine to drive
the generator for power generation, and then enters the condenser
and is condensed into fresh water by deep cold seawater. The
structure of the open cycle is simple, and seawater is used as the
working fluid, whcih has the advantages of environmental
protection, pollution-free, and can produce fresh water while
generating electricity. However, its disadvantages are also
obvious: the flash evaporator volume is huge and the sea water
pump has high power consumption.

The closed cycle was first proposed by D’Arsonval in 1881
(D’arsonval, 1881), this system consisted of evaporator, turbine,
condenser, electric generator, working fluid pump and seawater
pumps. The thermal efficiency of closed cycle was about 2.1% (Flynn
and Cicchetti George, 1997). Figure 1B shows the schematic of the
closed cycle system. The surface warm seawater is sent into the
evaporator by the warm seawater pump to exchange heat with the
working fluid, and the working fluid is vaporized in the evaporator.

The vaporized working fluid enters the turbine and drives the
electric generator to generate electricity. And then the working
fluid enters the condenser and exchanges heat with the cold
seawater. Finally, the condensed working fluid is pumped into
the evaporator to complete a full cycle. Compared to the open
cycle, the closed cycle has a smaller equipment size and lower
construction costs.

The hybrid cycle was first proposed by Vega et al., in 1989 (Vega,
2002). Figure 1C shows the schematic of the hybrid cycle system.
The thermal efficiency of hybrid cycle was 1.6% (Panchal and Bell,
1987). The warm seawater is pumped into the flash evaporator by
the warm seawater pump, and then flash to generate steam. Steam
enters the evaporator and exchanges heat with the working fluid.
The working fluid is evaporated in the evaporator, while the steam is
condensed into fresh water. The evaporated working fluid enters the
turbine and drives the generator to generate electricity, and then the
working fluid enters the condenser for heat exchange with cold
seawater. The condensed working fluid is pumped into the
evaporator to exchange heat with steam, and the cycle continues
(Heydt, 1993). The advantages of the hybrid cycle are high system
efficiency and the ability to generate fresh water while generating
electricity. However, the hybrid cycle has the disadvantages of too
complex structure and low economy.

Early ocean thermal energy conversion systems were all Rankine
cycles with simple structure, and the closed cycle is the most widely
used system (Chen et al., 2010). However, the thermal efficiency of
Rankine cycle was only about 3% (Kleute et al., 2009), because the
temperature difference between surface warm seawater and deep
cold seawater was only 15–25°C (Jung et al., 2016; Ikegami et al.,
2018). Therefore, the researchers began to conduct further research
and exploration on more efficient ocean thermal energy conversion
technology. Karina cycle was proposed by Karina in 1981 and the

FIGURE 1
Schematic of the (A) open cycle, (B) closed cycle, (C) hybrid cycle, (D) Kalina cycle, and (E) Uehara cycle.
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ammonia-water mixture was used as the working fluid
(ZhangHeZhang, 2012). Compared with the Rankine cycle, the
Karina cycle has an additional subsystem for fractionation.
Figure 1D shows the schematic of the Karina cycle system. The
basic ammonia solution becomes a two-phase mixed working fluid
after absorbing heat in evaporator. After entering the separator, the
two-phase mixed working fluid is divided into ammonia-poor
solution and ammonia-rich vapor. Ammonia-rich vapor drives
the turbine to generate electricity. The low concentration
ammonia-poor solution enters the regenerator to preheat the
mixed working fluid delivered by the working fluid pump, and
then enters the absorber after depressurization through the throttle
valve. Subsequently, the ammonia-poor solution and ammonia-rich
vapor are mixed in the absorber to become a two-phase mixed
working fluid again. Then the two-phase mixed working fluid enters
the condenser and condenses into the basic ammonia solution. The
basic ammonia solution is then pumped by the working fluid pump
into the regenerator to preheat, and finally enters the evaporator to
complete a Karina cycle. Karina cycle uses the ammonia-water
mixture as the working fluid, it can achieves a better temperature
match between the cycle and the heat and cold sources. Therefore,
the output power of the turbine is improved, and the thermal
efficiency of the cycle can be up to 4.5% (Kalina, 1984).

The Uehara cycle was proposed by Haruo Uehara in 1994 and is
also a power cycle system using ammonia-water mixture as the
working fluid (Uehara, 1995). Figure 1E shows the schematic of the
Uehara cycle system. The basic ammonia solution becomes two-
phase mixed working fluid after absorbing heat in evaporator, and
then the two-phase mixed working fluid enters the separator and is
divided into ammonia-poor solution and ammonia-rich vapor. The
ammonia-poor solution enters the high temperature regenerator to
preheat the working fluid pumped by the high pressure working
fluid pump, and then enters the throttle valve for depressurization.
In addition, ammonia-rich vapor drives the first turbine to generate
electricity, and then a part of the ammonia-rich vapor is extracted
into the low-temperature regenerator to heat the working fluid
pumped by the low-pressure working fluid pump, and the
remaining ammonia-rich vapor enters the secondary turbine to
continue generate electricity. The ammonia-rich vapor from the
secondary turbine and the ammonia-poor solution after
depressurization are mixed into a two-phase mixed working fluid
in the absorber. The two-phase mixed working fluid enters the
condenser to release heat and is transported into the low
temperature regenerator by the low pressure working fluid
pump. The working fluid from the low-temperature regenerator
and the ammonia-rich vapor from the first turbine are mixed into
basic ammonia solution in the mixer. The basic ammonia solution is
pumped into the high temperature regenerator by the high pressure
working fluid pump to preheat, and finally enters the evaporator to
complete a full cycle. Compared to the Kalina cycle, the Uehara cycle
is equipped an extraction regenerative cycle, the temperature of the
working fluid entering the evaporator is increased, and the heat
absorption of the system is reduced. Therefore, the thermal
efficiency of the Uehara cycle is higher than that of the Rankine
cycle and the Kalina cycle, and its value can reach 4.97% (Uehara
et al., 1998). However, the disadvantage of the Uehara cycle is also
obvious, the complexity of the Uehara cycle is much higher than that
of the Rankine cycle and the Karina cycle.

3 Opportunities and challenges

With the economic development and population growth, the
energy demand of human will continue to increase, which brings
opportunities and challenges to the application and development of
OTEC technology. Therefore, considering the research status and
practical application requirements of OTEC technology, the
following aspects need to be further studied in the future:

Low energy conversion efficiency is the biggest problem in the
development of OTEC technology. This is because the energy
conversion efficiency of the OTEC technology is limited by the
small temperature difference between cold seawater and warm
seawater (YamadaHoshiIkegami, 2006). The temperature
difference between the surface warm seawater and deep cold
seawater is only about 20°C even in the tropics (Yang and Yeh,
2014; Nithesh et al., 2016). For example, the thermal efficiency
of the Uehara cycle can only reach 4.97%. Therefore, more
attention should be paid to improving the thermal efficiency of
OTEC technology. Ocean thermal energy can be effectively
combined with other forms of low-grade heat sources, such as
solar energy (Yamada et al., 2009) and industrial waste heat (Kim
et al., 2009), to improve the thermal efficiency of the system. Solar
energy and industrial heat can be used to heat the surface warm
seawater, which increases the temperature difference between
warm seawater and cold seawater, thus improving the system
efficiency.

2) At present, OTEC technology has the problem of poor
economy. There are many utilization ways of ocean thermal
energy, such as power generation, refrigeration, hydrogen
production, aquaculture of aquatic products and crops, seawater
desalination. Therefore, the ocean thermal energy can be
comprehensively utilized. According to the principle of cascade
utilization, the surface warm seawater and deep cold seawater
can be fully utilized for power generation, refrigeration, seawater
desalination and deep water aquaculture, which will greatly improve
the economic benefits and play a positive role in reducing carbon
emissions.
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