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This paper aims to combine grey correlation analysis and response surface
method to propose a fast and effective performance optimization method for
PEMFC. First, based on orthogonal test data, grey correlation analysis method is
used to select four variables that have significant influence on PEMFC’s
comprehensive performance from eight common parameters. Secondly, based
on grey correlation analysis, the multi-objective optimization problem is
transformed into a single objective optimization problem about correlation
degree, and applying the response surface method to build the key parameters
and the correlation between the second order prediction model. Therefore, the
current density, system efficiency and oxygen distribution uniformity on cathode
catalyst layer of PEMFC were optimized as a whole. Finally, the optimal parameter
combination was obtained by optimizing the prediction model. The simulation
results show that the optimized operating conditions are significantly improved in
the three performance indexes compared with the basic model, which confirms
the feasibility of this method in solving the multi-objective optimization problem,
and can provide some reference for the optimal design of hydrogen fuel cells.
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1 Introduction

Due to the growing demand for energy, the consumption of fossil fuels and the total
amount of CO2 emissions are rising rapidly, and “clean, low-carbon, safe and efficient”
energy reform has become the general trend (Yang et al., 2023). Fuel cell is a device that
directly converts chemical energy in fuel into electrical energy through electrochemical
reaction without combustion, which has the advantages of high energy conversion efficiency,
no pollution and no noise compared with traditional internal combustion engine, etc. Proton
exchange membrane fuel cell (PEMFC) has become one of the hot spots of research in the
energy field because of its advantages of low operating temperature, fast starting and high
specific power (Kurnia et al., 2019). Many researchers are committed to promoting the
development of hydrogen fuel cell technology from the aspects of improving performance,
extending life and reducing cost (Parekh, 2022). Performance optimization has always been
an important work to promote the development of fuel cells. However, the performance and
stability of fuel cells are closely related to various operating parameters. Improper working
conditions will seriously affect the output performance of the cell and even cause irreversible
degradation inside the cell, thus greatly shortening the cell life. Therefore, it is important to
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study the influence of operating parameters on cell performance and
determine the optimal combination of parameters for efficient and
long-life operation of PEMFC.

So far, this has been studied by a number of scholars and some
results have been obtained. Dehsara et al. showed that increasing
the operating pressure and temperature can improve the net
transport of reactants through the porous layer to the catalyst
layer (CL) and improve the performance of the proton exchange
membrane (Dehsara & Kermani, 2013). Lu et al. divided the
pressure increase into the contribution of increasing the partial
pressure of reactants and the contribution of increasing the water
content of the membrane, further revealing that the improvement
of cell performance is mainly due to the increase in membrane
conductivity rather than enhancing the partial pressure of the
reactants (Lu et al., 2019). Hasheminasab et al. pointed out that
increasing the anode stoichiometric would reduce the water
content of the cathode channel and the cell performance, and
increase the sensitivity of generating power to changes in other
operating parameters. However, increasing the cathode
stoichiometric and temperature would reduce the water
content in the cathode channel and increase the cell power.
The sensitivity of cell power to changes in other operating
parameters is reduced (Hasheminasab et al., 2020). Zhang
et al. indicated that adjusting the relative humidity (RH) is an
important way to influence the water management of fuel cells,
and that the cells have better overall and local response current
density and spatial performance uniformity when the relative
humidity is 70% (Zhang et al., 2016). Xu et al. noted that the cell
output performance is worst at 90°C with both cathode and anode
RH at 90%. Under the condition of high current density, the
lower the RH value is, the better the operation performance is,
and the influence of the change of cathode RH on the cell output
performance is better than that of anode RH (Xu et al., 2021). Xia
et al. noted that increasing GDL porosity improves performance
by increasing flow uniformity and diffusion flux, but effective
electron conductivity decreases with increasing porosity. Since

the cell performance depends on the combination of these three
factors, the final current density will decrease with further
increase in porosity (Lingchao Xia & 2021). Abraham et al.
improved the cell performance by 12.5% by optimizing GDL
porosity and CL porosity, as cells with optimized porosity
increase the membrane water content and promote the
diffusion of reactants, ultimately leading to higher current
densities (Abraham B & Murugavel K, 2021).

Uneven distribution of reaction gases can lead to uneven
current density and temperature distribution, which can reduce
the overall cell performance and even cause local reaction gas
starvation, thus enhancing carbon corrosion and loss of Pt
catalyst layer. Current research on the uniformity of fuel cell
reactant distribution focuses on the effects of different flow field
structures and current densities. Sauermoser et al. summarized
and reviewed many studies in recent years to improve the
uniformity of gas distribution in the catalytic layer and the
uniformity within GDL by optimizing the flow field structure
(Sauermoser et al., 2020). Chen et al. designed a stepped flow
field. Compared with the ordinary parallel flow field, the stepped
flow field can improve the uniformity of gas concentration and
current density distribution, alleviate the water flooding
phenomenon, and increase the net power by 21.5% (Chen
et al., 2021). Zhang et al. the degradation mechanism and
mitigation measures of vehicle fuel cells under the condition
of frequent start-stop are reviewed. It is concluded that the local
gas starvation caused by the uneven distribution of reactive gas is
one of the important reasons for the start-stop degradation of
fuel cells (Zhang et al., 2018). Lim et al. summarized and
reviewed the influence of flow field design on water
management and reactant distribution. They pointed out that
the uniform distribution of reaction gas is one of the main
criteria for improving performance. In addition to the design
of fuel cell pack, operating conditions such as flow rate, pressure,
temperature and humidity also affect the distribution of
reactants (Lim et al., 2016). Cheng et al. proposed the mass

FIGURE 1
Geometric model of PEMFC.
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fraction difference coefficient as a uniformity evaluation index,
and pointed out that hydrogen humidification has a hydrogen
distribution significantly and it is appropriate to control at 25%–

50%, while air humidification has less effect on oxygen
distribution (Cheng et al., 2021). Zhang et al. found that the
concentration distribution of anode gas tends to be more
uniform than that of cathode gas, and the concentration
gradually increases with the increase of channel distance with
a maximum error of 15.6% (Yong et al., 2022). Therefore, it is
important to improve the uniform distribution of the cathode
reaction gas.

Sheila et al. used a weighting method to optimize the fuel cell
system efficiency and size trade-off (Ang et al., 2010). Mehrdad
et al. optimized the cell voltage and power density by response
surface methodology (RSM) combined with non-dominated
sorting genetic algorithm (NSGA ii) using operational
parameters as design variables (Ghasabehi et al., 2021). Zeng
et al. with flow power consumption and output power as
optimization objectives, genetic algorithm (GA) was used to
optimize the width of the bottom and top sides of the flow
channel, and the optimal structure was trapezoidal channel
(Zeng et al., 2017). Liu et al. based on the neural network
proxy model and non-dominated sorting genetic algorithm
(NSGA ii), the porosity of the catalytic layer (CL), the
electrolyte volume fraction (CL) and the gas diffusion layer
(GDL) were optimized to improve the output power density
and reduce the electrolyte volume fraction (Liu et al., 2022).
Liu et al. used a multi-objective genetic algorithm to optimize
both the operating conditions and the channel structure of the
cell, and the results showed that the optimal channel shape under
optimal operating conditions was conical (Liu et al., 2017).

According to the review of previous studies, it is not found
that the combination of gray correlation analysis and response
surface method to achieve multi-objective optimization of
PEMFC, and there is little consideration of the uniformity of
reaction gas distribution in performance optimization, and
almost no research on the effect of operating parameters on
reaction gas distribution. Many scholars often only consider the
improvement of current density or power density when
performing performance optimization, without considering
the influence of gas distribution. However, the uniformity of
reaction gas distribution has an important impact on the

improvement of cell performance and life, so it is not
advisable to improve the output power by losing other
performance indicators.

In view of the above deficiencies, this paper first established a
three-dimensional CFD model of PEMFC with three-channel
serpentine flow fields as the basic optimization model. Secondly,
according to a lot of literature reading, eight common influence
parameters were selected as the initial decision variables, among
which six operating parameters and two diffusion layer structure
parameters were included. Several parameters which have great
influence on the call comprehensive performance were selected
by grey correlation analysis for subsequent optimization. Then
the Box-Benhnken design (BBD) is used to design a simulation
scheme for the key parameters. Based on the gray correlation
theory, the multi-objective optimization about the cell
performance is transformed into a single-objective gray
correlation degree optimization problem, and the response
surface method is applied to construct a second-order
regression model between the key parameters and the gray
correlation degree. Finally, the optimal parameter combination
is obtained by seeking the solution that satisfies the maximum
gray correlation degree, and the feasibility of the optimization
results is verified by simulation.

2 PEMFC model development

2.1 Model description and assumptions

In this paper, a three-dimensional geometric model of PEMFC
was established based on solidworks, as shown in Figure 1. The
PEMFC consists of nine parts: anode and cathode collectors, flow
channels, gas diffusion layers (GDLs), catalyst layers (CLs) and
proton exchange membrane. The flow field type is three-channel
serpentine, and the specific geometric parameters of this model are
shown in Table 1.

Due to the complexity of the actual operating process of PEMFC.
On the premise of fully describing the main reaction process of
PEMFC, several assumptions were made in the numerical
simulations in order to simplify the model and calculations as
follows (Li et al., 2017; Chen et al., 2019; Liu et al., 2022; Yao
et al., 2022).

TABLE 1 Main geometric parameters of PEMFC model.

Parameter Value

Collector thickness 1.5 mm

GDL thickness 0.23 mm

CL thickness 0.01 mm

Membrane thickness 0.025 mm

Channel width 1 mm

Channel height 0.5 mm

Rib width 1 mm

Activated area 73 × 73 mm

FIGURE 2
Simulation accuracy of different mesh numbers.
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1) PEMFC operation state is steady state;
2) The initial temperature of the fuel cell is constant, and the thermal

effect caused by the temperature gradient is not considered;
3) The reactant gases are ideal and incompressible, and the gas flow

in the flow channel is laminar;
4) The gas diffusion layers, catalyst layers and membrane are

homogeneous models with isotropic porous media;
5) Only protons can permeate the proton exchange membrane, but

not the reaction gases.

2.2 Governing equations

2.2.1 Mass conservation equation

z ερ( )
zt

+ ∇ · ερ �u( ) � Sm (1)

ρ, ε, �u, Sm are density, porosity, velocity vector, the mass source term
in that order. For both cathode and anode flow channels and GDLs,
Sm is 0. The mass source term for the anode and cathode CLs can be
expressed as follows:

Sm � SH2 � −MH2

2F
ia (2)

Sm � SH2O + SO2 �
MH2O

2F
ic − MO2

4F
ic (3)

Where M and F represent molar mass and Faraday’s constant,
respectively, ia and ic represent the exchange current density of the
anode and cathode, respectively, which can be calculated by Eqs 10, 11.

2.2.2 Momentum conservation equation

z ερ �u( )
zt

+ ∇ · ερ �u �u( ) � −ε∇p + ∇ · εμ∇ �u( ) + Su (4)

FIGURE 3
(A) Diagram of the overall computing domain (B) Partial diagram of the entrance.

TABLE 2 Parameter Settings of PEMFC numerical model.

Item Value Item Value

Anode References exchange Current density/(A.m-2) 10,000 Cathode References exchange Current density/(A.m-2) 17

H2 References concentration/(kmol.m3) 0.005 O2 References concentration/(kmol.m3) 0.01

Anode concentration exponent 0.5 Cathode concentration exponent 1

Anode exchange coefficient 0.5 Cathode exchange coefficient 1

H2 diffusion coefficient/(m2.s-1) 1.1*10–4 O2 diffusion coefficient/(m2.s-1) 3.2*10–5

H2O diffusion coefficient/(m2.s-1) 7.35*10–5 Other diffusion coefficient/(m2.s-1) 1.1*10–5

GDL porosity 0.78 CL porosity 0.5

CL surface/volume ratio/m-1 200,000 Membrane equivalent weight/(kg.kmol-1) 1,100

Membrane electrical conductivity/ohm.m 1*10–16 Collector electrical conductivity/ohm.m 1000000

Protonic conduction exponent 1 Open-circuit voltage/V 0.92
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p, μ, Su are pressure, viscosity, and the momentum source term,
respectively. Assuming that the source term in the flow channels and
membrane is zero, the momentum equation in the porous electrode
can be expressed as follows:

Su � −εμ
K

�u (5)

Where K is the absolute permeability.

2.2.3 Energy conservation equation

z ερcpT( )
zt

+ ∇ · ερcp �uT( ) � ∇ · keff∇T( ) + SQ (6)

cp, keff, T are the specific heat capacity at constant
pressure, effective thermal conductivity and temperature,
respectively. SQ is the energy source term, including ohmic
heat, chemical reaction heat, gas-liquid phase transition heat
and heat generated by over-potential. It can be expressed as
follows:

SQ � I2Rohm + βSH2Ohreaction + rWhl + ia,cη (7)
Where I is current, Rohm is resistance, β is the ratio of chemical

energy to heat energy, SH2O is liquid water generation rate, hreaction is
the enthalpy of the reaction, rW is the phase transition rate of water,
hl is the enthalpy of the phase transition of water, η is the
overpotential.

2.2.4 Species conservation equation

z εck( )
zt

+ ∇ · ε �uck( ) � ∇ · Deff
k ∇ck( ) + Sk (8)

ck, D
eff
k , Sk are concentration, the effective diffusion coefficient and

the species source term, respectively, and the subscript k represents
each species. The species source term is 0 in the flow channels and

GDLs, and the source term of hydrogen, oxygen and water in the
CLs can be expressed as: SH2 � −(MH2/2F)ia, SO2 � −(MO2/4F)ic,
SH2O � (MH2O/2F)ic.

2.2.5 Current conservation equation

∇ · σe∇∅e + Se � 0 (9)
∇ · σm∇∅m( ) + Sm � 0 (10)

∅e and ∅m are the solid phase potential and the membrane phase
potential, respectively, Se and Sm are the electron current source
term and the proton current source term, respectively, and Se + Sm =
0, σ is conductivity.

The Butler-Volmer equations of anode and cathode in the CLs
can be respectively expressed as follows:

Sa � ja,ref
CH2

CH2,ref

( )γa

e
αaF
RT ηa − e−

αcF
RTηc( ) (11)

Sc � jc,ref
CO2

CO2,ref

( )γc

e
αaF
RT ηc − e−

αcF
RTηa( ) (12)

Where η is overpotential, jref is the reference exchange current
density, Ci is the molar concentration of species, Ci,ref is the
reference molar concentration of species, γ is the concentration
index, α is the exchange coefficient.

2.3 Model verification

2.3.1 Grid independence test
Grid independence test can check whether the simulation results

will be affected by the number of grids, so as to determine the
appropriate number of grids. This paper uses the grid division
software ICEM to divide the PEMFC model with four different
numbers of grids, and then the four models are simulated and
calculated under the same boundary conditions. The error between
simulation results and experimental results is shown in Figure 2.
When the number of grids is 3,470,688 and 5,958,942, the error is
2.4% and below. Considering the time cost and simulation accuracy,
3,470,688 mesh quantities are selected, and the whole calculation
domain is shown in Figure 3.

2.3.2 Experimental verification
The mesh file of the PEMFC model is imported into ANYSY

FLUENT 2020R2 and the add-on PEMFC module is called to solve
the model. The relevant parameters in the model were set as shown
in Table 2. The type of inlet boundary was mass-flow inlet, and the
type of outlet boundary was pressure-out. The inlet mass flow rate
was calculated according to the anode and cathode stoichiometric
ratio of 2, relative humidity of 100%, temperature of 80 °C and
operating pressure of 1atm.The output current density under
different working voltages was calculated under constant
voltage. The structure and numerical simulation conditions of
the PEMFC used in this paper are basically consistent with the
experimental conditions of Li et al. (Li et al., 2017), so the model in
this paper is verified by the experimental data of Li et al. The
comparison between simulation results and experimental results is
shown in Figure 4. At low to medium current densities, the

FIGURE 4
Polarization curves of model simulation and experimental data.
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numerical calculation results agree well with the experimental
data. When the current density increases to 0.9A/cm2, the
simulation results begin to deviate from the experimental
results. And the simulation results are always slightly larger
than the experimental results. This is because this paper uses a
single-phase model for numerical simulation, and the generated
water exists in gaseous form by default. In fact, when the current
density is larger, the liquid water tends to accumulate in the flow
channel, and the liquid water tends to block the pores in the gas
diffusion layer and catalyst layer, thus hindering oxygen transport
and eventually leading to performance degradation at high current
densities. Overall, the numerical simulations are consistent with
the trend of experimental results, and the PEMFC model used can
be considered effective.

3 Research method

3.1 Analysis of significance

In previous parametric optimization studies, people usually
select three to six optimization parameters based on experience,
without stating the reasons for the selection, so it is somewhat
subjective. In this study, we use gray correlation analysis to analyze
the significance of the variables before optimization, and select the
variables that have a greater impact on the optimization target,
which not only can improve the optimization efficiency, but also can
get more accurate results.

Gray correlation analysis, a systematic scientific theory first
proposed by Jurong Deng in 1982, is feasible for analyzing the
degree of influence of multiple variable factors on a specific quality
indicator by analyzing the degree of similarity between the geometry
of the reference sequence and the comparative sequence to
determine the closeness of the association (Yin et al., 2015).
Since the units and ranges of each series are different, the
original data need to be normalized by dimensionless
preprocessing before performing gray correlation analysis. The
normalization process can be performed with the following two
equations depending on the type of quality characteristics (Lian
et al., 2022). If the actual data series has the quality characteristic of
“bigger is better”, then equation (13) is used for preprocessing. If the

TABLE 3 Parameter settings of orthogonal test.

Factors Abbreviation Level 1 Level 2 Level 3

Temperature (°C) T 70 80 90

Pressure (atm) p 1 2 3

Stoichiometric Ratio of Anode ζa 1 3 5

Stoichiometric Ratio of Cathode ζc 1 3 5

Relative Humidity of Anode RHa 30% 60% 100%

Relative Humidity of Cathode RHc 30% 60% 100%

Porosity of anodic GDL εa 0.3 0.5 0.8

Porosity of cathode GDL εc 0.3 0.5 0.8

TABLE 4 L27 (38) Orthogonal test table.

Number T P ζa ζc RHa (%) RHc (%) εa εc

1 70 3 1 1 100 60 0.8 0.5

2 70 2 1 1 60 100 0.5 0.8

3 70 3 5 3 30 60 0.5 0.3

4 70 2 5 3 100 100 0.3 0.5

5 70 1 3 5 100 30 0.5 0.5

6 70 2 3 5 30 100 0.8 0.3

7 70 1 1 1 30 30 0.3 0.3

8 70 1 5 3 60 30 0.8 0.8

9 70 3 3 5 60 60 0.3 0.8

10 80 2 5 5 30 60 0.5 0.8

11 80 1 5 5 100 100 0.3 0.3

12 80 1 3 1 30 100 0.8 0.8

13 80 2 3 1 60 60 0.3 0.5

14 80 3 5 5 60 30 0.8 0.5

15 80 2 1 3 100 60 0.8 0.3

16 80 3 1 3 30 30 0.3 0.8

17 80 3 3 1 100 30 0.5 0.3

18 80 1 1 3 60 100 0.5 0.5

19 90 2 3 3 100 30 0.5 0.8

20 90 3 3 3 30 100 0.8 0.5

21 90 2 1 5 30 30 0.3 0.5

22 90 1 5 1 30 60 0.5 0.5

23 90 1 3 3 60 60 0.3 0.3

24 90 3 5 1 100 100 0.3 0.8

25 90 2 5 1 60 30 0.8 0.3

26 90 1 1 5 100 60 0.8 0.8

27 90 3 1 5 60 100 0.5 0.3
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actual data series has the quality characteristic of “smaller is better”,
then equation (14) is used for preprocessing (Xu et al., 2020).

xi k( )′ � xi k( ) −min xi k( )
max xi k( ) −min xi k( ) (13)

xi k( )′ � maxxi k( ) − xi k( )
maxxi k( ) −min xi k( ) (14)

Where xi(k) is the actual data, min xi(k) is the minimum value
in the ith series, maxxi(k) is the maximum value in the ith series,
and xi(k)′ is the pre-processed comparison sequence, where k = 1, 2,
3 . . . . . . 27; i = 1, 2, 3.

After normalizing the test results, the gray correlation coefficient
ξ corresponding to each comparison sequence and the reference

sequence (all response reference sequence are 1) can be calculated by
(Eq. 15).

ξ xi k( )′, x0 k( )[ ] � Δ min + ςΔ max

Δik + ςΔ max
(15)

Where ς is the resolution coefficient, ςϵ[0, 1], which is generally
taken as 0.5, x0(k) is the reference sequence, Δik is the deviation
sequence, Δik � |x0(k) − xi(k)′|, Δmin is the minimum deviation,
and Δ max is the maximum deviation.

The gray correlation degree is a weighted sum of gray
correlation coefficients, which can be calculated by (Eq. 16),
and here the weight of all three indicators is considered to be
0.3333.

TABLE 5 Results of orthogonal test and grey correlation analysis.

Test results Standardized Grey correlation coefficient Gray correlation degree

i σo2 η/% i σo2 η/% ξ1 ξ2 ξ3

1 0.86551 0.0043189 47.70 0.38142 0.00000 0.90740 0.4470 0.3333 0.8437 0.541,303

2 0.80581 0.0027232 49.42 0.32206 0.44526 0.94497 0.4245 0.4740 0.9008 0.599,728

3 1.29078 0.0033527 7.84 0.80429 0.26960 0.03691 0.7187 0.4064 0.3417 0.488,888

4 1.15217 0.0018796 8.88 0.66647 0.68066 0.05962 0.5999 0.6103 0.3471 0.519,028

5 1.00649 0.0019165 17.31 0.52161 0.67034 0.24372 0.5110 0.6027 0.3980 0.50385

6 1.21748 0.0021428 13.12 0.73141 0.60721 0.15222 0.6505 0.5600 0.3710 0.527,135

7 0.57948 0.0014097 51.94 0.09701 0.81176 1.00000 0.3564 0.7265 1.0000 0.69422

8 0.74750 0.0013269 10.39 0.26408 0.83487 0.09260 0.4046 0.7517 0.3553 0.503,802

9 1.48760 0.0026747 10.25 1.00000 0.45879 0.08954 1.0000 0.4802 0.3545 0.611,507

10 1.09434 0.0018864 7.87 0.60896 0.67875 0.03756 0.5611 0.6088 0.3419 0.503,904

11 0.79032 0.0017373 10.39 0.30666 0.72037 0.09260 0.4190 0.6413 0.3553 0.471,815

12 0.55498 0.0008491 17.31 0.07265 0.96821 0.24372 0.3503 0.9402 0.3980 0.562,782

13 0.77043 0.0025771 16.47 0.28688 0.48604 0.22538 0.4122 0.4931 0.3923 0.432,473

14 1.33319 0.0029804 6.15 0.84647 0.37349 0.00000 0.7651 0.4439 0.3333 0.514,035

15 0.99930 0.0016224 44.38 0.51446 0.75243 0.83490 0.5073 0.6688 0.7518 0.64258

16 0.99318 0.0025716 39.22 0.50837 0.48757 0.72221 0.5042 0.4939 0.6428 0.546,921

17 0.84358 0.0039184 15.90 0.35961 0.11175 0.21293 0.4384 0.3602 0.3885 0.395,658

18 0.74312 0.0013123 51.94 0.25973 0.83896 1.00000 0.4031 0.7564 1.0000 0.719,768

19 1.10602 0.0019825 14.79 0.62058 0.65193 0.18869 0.5686 0.5896 0.3813 0.513,092

20 1.23882 0.0024318 13.07 0.75262 0.52656 0.15112 0.6690 0.5136 0.3707 0.517,725

21 0.99754 0.0018864 39.35 0.51271 0.67875 0.72505 0.5064 0.6088 0.6452 0.586,764

22 0.48192 0.0007351 10.39 0.00000 1.00000 0.09260 0.3333 1.0000 0.3553 0.56281

23 0.73065 0.0010655 17.31 0.24732 0.90783 0.24372 0.3991 0.8443 0.3980 0.54711

24 0.83747 0.0034450 9.54 0.35354 0.24385 0.07403 0.4361 0.3980 0.3506 0.394,896

25 0.71375 0.0025214 9.88 0.23052 0.50158 0.08146 0.3939 0.5008 0.3525 0.415,668

26 0.83387 0.0017981 51.94 0.34996 0.70340 1.00000 0.4348 0.6277 1.0000 0.687,409

27 1.38757 0.0024134 30.74 0.90053 0.53171 0.53702 0.8341 0.5164 0.5192 0.62316
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λ � ∑n
k�1

βkξ (16)

Where βk is the weight, ∑n

k�1βk � 1, and n is the number of
response targets, n = 3.

Eight common operating parameters and gas diffusion layer
structure parameters, namely, temperature, pressure, anode and
cathode stoichiometry, anode and cathode relative humidity,
anode and cathode gas diffusion layer porosity, were selected for
significance analysis to investigate the extent of their effects on three
performance indexes, namely, current density, oxygen distribution
uniformity and system efficiency of the PEMFC. In order to reduce
the calculation time and improve the calculation efficiency, eight
factor and three level tests were designed based on the orthogonal
design method. The setting of factor levels was shown in Table 3.
The three levels of these eight parameters were selected based on the
general range and experience of PEMFC parameters (Öztürk et al.,
2017; Abraham B & Murugavel K, 2021), and the specific test
arrangement is shown in Table 4.

3.2 Multi-objective optimization method

Response surface method is a mathematical statistical
method commonly used to solve multivariate problems, which
can construct a functional relationship between the target and the
variables based on the existing measured data, and further
solving can obtain the best combination of parameters to
satisfy the conditions. Before response surface analysis, the
central combination design or BBD method is usually used to
design the simulation cases and simulate to get certain data. In
this paper, we use BBD method to design simulation cases as
shown in Table 7. This method not only can avoid extreme
conditions at the test point, but also can perform continuous
analysis of the test at all levels. According to the results of
significance analysis, the four key influencing parameters of
cathode and anode stoichiometry, pressure and cathode
relative humidity are used as independent variables, and the

optimization objectives are current density, system efficiency
and oxygen distribution uniformity. Current density could be
directly obtained through simulation calculation, the system
efficiency can be calculated by the following formula:

ηsys �
W −Wprs

Wfuel
(17)

Where W is the output power of PEMFC, Wprs represents the
parasitic power, andWfuel is the inherent power of the fuel. They are
expressed as follows:

W � wA (18)
Wprs � Wcomp +Wothers (19)

Wcomp � cpTe

ηcηmt

P

Pin
( )0.286

− 1⎡⎣ ⎤⎦mair (20)

mair � 3.57 × 10−7ζ ciA (21)
Wothers � 0.05W (22)

Wfuel � ζa
iA

2F
LHV (23)

Where Wcomp is the power consumption of the compressor,
and Wothers is the other power losses. Some parameters in the
above equations are assumed to be constant, but in practice they
may vary with compressor size and full load ratio. However, this
does not affect the optimization process and a similar approach
has been used in other literature (Na & Gou, 2007; Li et al., 2021).
The values of these constants can be found in the literature (Ang
et al., 2010).

The oxygen distribution uniformity is expressed using the
standard deviation of the molar concentration of oxygen at the
interface between the cathodic gas diffusion layer and the catalyst
layer, and its expression can be defined as (Chen et al., 2019):

sdC �
�����������������
n∑n

i�1C
2
i − ∑n

i�1Ci( )2
n2

√
(24)

Where Ci represents the oxygen Mole concentration value at each
point on the catalyst layer.

FIGURE 5
Average grey correlation degree of each parameter level.
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TABLE 6 BBD test arrangement and grey correlation analysis results.

Number ζa ζc P RHc i/A.cm-2 σo2 η/% λ

1 1 3 2 30 0.996,732 0.002081441 44.38 0.629,784

2 1 1 2 65 0.802,702 0.002871944 49.42 0.601,121

3 3 5 2 30 1.018406 0.0021159314 13.12 0.503,459

4 1 5 2 65 0.991,851 0.001567094 39.35 0.646,323

5 3 3 2 65 1.120,158 0.00202,838 14.79 0.535,993

6 3 3 1 30 0.662,398 0.001272287 17.31 0.565,158

7 3 5 2 100 1.234,363 0.001996927 13.12 0.567,831

8 5 3 3 65 1.319,101 0.0030638101 7.84 0.523,428

9 3 1 1 65 0.603,492 0.001193815 17.31 0.574,062

10 3 1 3 65 0.866,141 0.0047093979 15.9 0.377,269

11 1 3 1 65 0.889,993 0.001354796 51.94 0.781,628

12 5 3 2 30 0.921,569 0.001980908 8.88 0.490,753

13 1 3 3 65 0.99359 0.0019819768 39.22 0.601,039

14 5 3 1 65 0.813,987 0.001223425 10.39 0.576,206

15 3 3 2 65 1.112,436 0.002112043 14.79 0.527,077

16 3 3 3 100 1.345,636 0.0029256631 13.07 0.55163

17 5 3 2 100 1.111,258 0.001865607 8.88 0.537,736

18 3 3 1 100 0.828,013 0.001341491 17.31 0.571,762

19 3 3 3 30 1.265,085 0.0033588643 13.07 0.499,071

20 3 5 1 65 0.951,094 0.001862389 17.31 0.523,439

21 1 3 2 100 0.99468 0.001526076 44.38 0.688,264

22 5 1 2 65 0.78824 0.002924677 9.88 0.412,334

23 3 1 2 30 0.771,814 0.0032176832 16.47 0.410,546

24 3 3 2 65 1.130,049 0.0019544 14.79 0.545,057

25 3 3 2 65 1.130,207 0.00195,102 14.79 0.545,408

26 3 5 3 65 1.45988 0.0027087119 10.25 0.627,619

27 5 5 2 65 1.220,229 0.002686816 7.87 0.505,073

28 3 1 2 100 0.798,285 0.002786262 16.47 0.433,602

29 3 3 2 65 1.112,479 0.00212,392 14.79 0.526,119

TABLE 7 Results of variance analysis of regression model.

Source Degrees of freedom Sum of squares Mean square F Value p-Value

Model 12 0.1903 0.0159 39.09 <0.0001

Residual 16 0.0065 0.0004

Cor total 28 0.1968

R-Sq = 96.7% R-Sq (adj) = 94.23%

Frontiers in Energy Research frontiersin.org09

Wu and Luo 10.3389/fenrg.2023.1206418

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1206418


The sub-objectives of multi-objective optimization problems are
often contradictory to each other. It is impossible to make multiple
sub-objectives reach the optimal value together at the same time,
only coordination and compromise between them, and the
optimization solution is not unique. If a final solution is to be
sought. The relative importance degree of each objective, namely,
the weight, can be decided in advance. Based on this, the algorithm
converts the multi-objective problem into a single-objective problem
for solving. For different practical applications, each objective has
different weights. In this study, the three indicators are considered
equally important. The multiple responses of current density, system
efficiency and oxygen distribution uniformity are first transformed
into a single objective gray correlation based on gray correlation
analysis. Then a second-order prediction model between the Key

influencing parameters and the gray correlation is constructed, and
the final optimized solution is obtained by solving for the solution
that satisfies the maximum gray correlation.

4 Results and discussion

4.1 Key influence parameter selection

The results of the three performance indexes are listed in Table 5 by
simulating 27 different sets of working conditions in the orthogonal
design. Then according to Eqs 13–16, the grey correlation analysis is
carried out on the statistical results, and the grey correlation coefficient
and correlation degree are calculated, as shown in Table 5.

According to the grey correlation analysis theory, the greater the
grey correlation degree, the closer the corresponding target sequence is
to the optimal (Guo et al., 2019). Figure 5 shows the average grey
correlation degree of each parameter level. It can be seen from Figure 5
that the parameter combination with the maximum grey correlation
degree, that is, the parameter combination close to the better cell
performance, is:T = 70,p = 1, ζa = 1, ζ c = 5,RHa = 30%,RHc =
60%, εa = 0.5, εc = 0.8. In addition, the range of the average grey
correlation degree of the influencing parameters reflects the influence of
the parameters on the multi-objective response. The larger the
difference, the more significant the influence of the independent
variable on the dependent variable (Wang & Li, 2021). It can be
seen from Figure 5 that the comprehensive influence degree of eight
influencing parameters on current density, oxygen distribution
uniformity and system efficiency is ranked as: ζa (0.140,776)> P
(0.06883) > ζc (0.04778)> RHc(0.03822)> RHa (0.03572)> εa
(0.0268)> T (0.02216)> εc (0.01309). Therefore, in order to improve
the optimization efficiency, four key parameters, ζa, ζc,P and RHc,
which have a large impact on the comprehensive performance of the
cell, are selected for the next optimization study. While the
remaining four variables, which have a smaller impact, are
fixed at a better level and kept constant:T = 70 °C, RHa =
30%, εa = 0.5, εc = 0.8.

FIGURE 6
Comparison of model predicted value and test value of grey
correlation degree.

FIGURE 8
Comparison of polarization curves between the basic model and
the optimized model.

FIGURE 7
Residual diagram of grey relational degree model.
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4.2 Optimization model building and
verification

In this section, the optimization model between the key
parameters and the response target is mainly combined with the
gray correlation analysis method and the response surface method,
and the model is validated. In order to reasonably select the test site,

BBD was used to design the four-factor and three-level test
arrangement, as shown in Table 6. According to the test
arrangement, the three performance indicators were numerically
simulated and calculated, and then the grey correlation degree was
calculated by using the above grey correlation analysis method. The
results were collected in Table 6. In order to obtain the optimal
parameter combination, it is necessary to accurately construct the

TABLE 8 Performance comparison between the optimization results and the base model.

ζa ζc P RHc (%) i σo2 η

Base model 2 2 1 100 0.762,076 0.001150605 25.97%

Optimization results 1 2.113 1 79 0.792,395 0.001156882 51.94%

FIGURE 9
Current density distribution nephogram at the m-cl interface of cathode: (A) Basic model; (B) The optimization model.

FIGURE 10
Oxygen distribution nephogram at the gdl-cl interface of cathode (A) Basic model; (B) The optimization model.
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mapping relationship between the grey correlation degree and the
key influencing parameters. Therefore, Design-expert software is
applied to construct the second-order regression model between the
response value of the grey correlation degree and the input variables
by using the response surface method. The response function is
shown in Eq. 25.

λ � 1.098 − 0.162898ζa + 0.007019ζc − 0.330919P + 0.001188 RHc

+ 0.002971ζa × ζc + 0.015976ζa × P + 0.037622ζc × P

+ 0.000328P × RHc + 0.01407ζ2a − 0.011274ζ2c + 0.02861P2

− 9.57546E − 6( )RHc2

(25)
Applying the resulting regression model for data prediction, the

results of comparing the experimental and predicted values of gray
correlation degree are shown in Figure 6. As shown in the figure, the
model predicted values and calculated values are in high agreement,
and the average relative error is only 2.23%. Figure 7 is the residual
diagram of the prediction model. All data points in the figure are
randomly distributed around the 0 value, indicating that the predicted
value has a good fit with the sample value. Meanwhile, the ANOVA
results of the regression equation in Table 7 show that p < 0.0001,
indicating that the prediction model is very significant. R-Sq indicates
the fit between the established model and the experimental data, R-Sq
of the establishedmodel is 96.7%, indicating that the predictionmodel
fits the experimental data very well. R-Sq (adj) is the adjusted R-Sq.
R-Sq (adj) = 94.23% is very close to R-Sq, indicating that the
prediction model is very reliable. In summary, the regression
model established based on gray correlation analysis has a good
fitting goodness and predictive ability, and can be solved by the
next step of parameter optimization.

4.3 Optimization results and verification

The influence of key parameters on different targets is reflected by
the change of grey correlation degree, so the overall optimization of
different targets can be achieved by optimizing the grey correlation
degree. The response surface optimizer in Design-expert software is
used to optimize and solve the established second-order prediction
model within the range of each parameter, and the optimal solution is
λ = 0.773. The corresponding parameter combination is as follows:
ζa = 1, ζc = 2.113, p = 1, RHc = 79%. The optimized operating
conditions were numerically simulated and compared with the
performance of the basic model. The comparison results are
shown in Table 8. Compared with before the optimization, the
current density increased by 3.8%, the system efficiency increased
by 25.97%, and the standard deviation of oxygen concentration was
almost unchanged.

The polarization curve comparison before and after optimization is
shown in Figure 8 It can be clearly seen from the figure that the output
current density of the optimized model is higher than that of the basic
model in the whole voltage range. Performance improvement is more
obvious under low pressure conditions, with better polarization
performance. Under the condition of high current density, obvious
concentration polarization appears in the basic model, but this
phenomenon is not obvious in the optimized model, mainly
because the optimized model has a higher concentration of

reactants in the catalytic layer, resulting in less concentration
polarization loss.

Figure 9 shows the current flux nephogram of the cathode
membrane interface before and after optimization. It can be seen
from the figure that the optimized model has a higher current
density. This in turn confirms the results of Figure 8. Figure 10
represents the cloud plot of oxygen distribution at the cathode
GDL-CL interface of the two models. From the figure, it can be
seen that the oxygen distribution uniformity of the optimized model
is almost the same as that of the basic model, but the molar
concentration of oxygen in the optimized model is higher than that
of the basic model. This is mainly because the cathode inlet air
stoichiometric increases, and more reactants are added to the cell.
Moreover, the mass fraction of oxygen increases with the decrease of
relative humidity, resulting in more oxygen being transported to the
catalyst layer. Thus enabling the optimized model to generate more
current, which is also consistent with Figure 9. On the basis of ensuring
the uniformity of oxygen distribution on CL, increasing the molar
concentration of oxygen can not only improve the output performance
of the cell, but also alleviate the aging of PEMFC. The system efficiency
increases because the anode stoichiometric decreases while the output
power increases, which can be deduced from equations 17–23.

5 Conclusion

In this paper, a multi-objective performance optimization design
method of PEMFC based on gray correlation analysis and response
surface method is proposed with current density, oxygen
distribution uniformity and system efficiency as optimization
objectives. Firstly, the parameters that have significant influence
on the comprehensive objectives are selected as decision variables by
using gray correlation analysis. Then the influence of key parameters
on different objectives is reflected as a whole through the gray
correlation degree by assigning weights. The second-order model
between the key influence parameters and the gray correlation
degree is constructed by applying the response surface method,
so as to seek the optimal combination of parameters. The following
conclusions are drawn.

1) The influence of the eight influencing parameters considered in this
paper on the comprehensive performance of PEMFC is ranked as:
ζa (0.140,776)> P (0.06883) > ζ c (0.04778)> RHc(0.03822)> RHa
(0.03572)> εa (0.0268)> T (0.02216)> εc (0.01309). Among them,
anode and cathode stoichiometric, pressure and cathode relative
humidity are the main parameters that affect the optimization
objective. Selecting these four key parameters as control variables
can reduce the space of optimization design.

2) The established gray correlation predictionmodel shows byANOVA
that its prediction accuracy is high and can better describe the
response of the gray correlation degree on the design variables.

3) The optimal combination of operating parameters was obtained
as: ζa = 1, ζc = 2.113,P = 1,RHc = 79%. The overall performance
of the PEMFC was verified by numerical simulation to be much
improved compared with that before optimization, in which the
current density was improved by 3.8%, the system efficiency was
improved by 25.97%, and the oxygen distribution uniformity
remained basically the same.
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4) The optimizationmethod combining grey correlation analysis and
response surface method can transform multi-objective
optimization into single-objective optimization, and quickly
find a suitable unique optimal solution. It can provide a better
reference for the optimization of PEMFC parameters because the
multi-objective optimization solution is unique and the overall
performance is improved compared with previous studies.
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