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With the increasing demands for battery safety management, data-driven method
becomes a promising solution for highly accurate battery state of health (SOH)
estimation. However, the data-driven method faces problems of poor
interpretability and high dependence on input features. This paper proposes a
SOH estimation method that integrates data-driven model and signal analysis
method. Specifically, the differential thermal voltammetry (DTV) analysismethod is
used to analyze aging characteristics to obtain features strongly related to battery
aging and solve the problem of poor interpretability of data-driven methods. The
use of local linear embedding method (LLE) for feature extraction has improved
model efficiency. A data-driven model is constructed with the Bi-directional long
short-term memory (Bi-LSTM) as the core, and the attention mechanism (AM) is
added to focus on important parts of the sequence to further improve the
accuracy of the model. The proposed method is validated based on the
Oxford battery degradation dataset, and the results show that the proposed
method achieves high accuracy and strong robustness in SOH estimation with
a root mean square error (RMSE) maintained at about 0.4%. This method has the
potential to be employed on cloud platforms or end-cloud collaboration systems
for online implementation.
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1 Introduction

As the development of clean energy becomes a research hotspot due to the issue of
sustainable development, lithium-ion batteries have gradually become the core energy
storage devices widely used in various industries, such as smartphones, electric vehicles
(EVs) and spacecrafts (Pang et al., 2021; Zhang L. et al., 2022). Lithium-ion batteries have
advantages such as high energy density, low self-discharge rate and long cycle life (Hua et al.,
2021; Lin et al., 2021; Mou et al., 2022; You et al., 2022). However, with the use of batteries
and the passage of time, the degradation of lithium-ion batteries will happen and the
performance will deteriorate, while the rated capacity will also decrease. The accurate battery
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SOH estimation is crucial for the safe use and timely replacement of
lithium-ion batteries (Gao et al., 2021; Liu et al., 2022; Zhou et al.,
2022). Currently, SOH estimation methods of lithium-ion batteries
can be divided into direct measurement methods, model-based
methods, and data-driven methods (Xiong et al., 2023).

Direct measurement methods use the coulomb countingmethod
to calculate battery capacity or measure battery impedance to
estimate the SOH of the battery. However, this method requires
the battery to rest, and the coulomb counting method requires a
complete battery charging and discharging process. Therefore, this
method is usually not applicable in practical applications and is only
suitable for use in laboratories.

Model-based methods estimate the SOH of batteries by
constructing battery models such as empirical models, equivalent
circuit models (ECM), and electrochemical models. The empirical
model-based method constructs a function relationship between
easily measured macroscopic signals such as SOH and battery cycle
number, and maps the battery SOH by obtaining the numerical
value of the macroscopic signal in practical applications. The
equivalent circuit model-based method simulates the battery’s
working process with circuit elements such as resistance and
capacitance, and identifies model parameters such as resistance
through model parameter identification algorithms to estimate
the SOH of the battery. The electrochemical model-based method
builds the battery’s electrochemical model based on the battery’s
internal reaction electrochemical mechanism to estimate the SOH of
the battery. Hosseininasab et al. (Hosseininasab et al., 2022) realized
the estimation of battery resistance and capacity simultaneously
based on the pseudo 2D (P2D) model and observer method, and an
iterative approximation method was used to improve the accuracy.
Li et al. (Li et al., 2022) proposed a multi-ECM-based SOH
estimation method, using electrochemical impedance
spectroscopy (EIS) data and the least squares method to identify
ECM parameters, achieving high-accuracy SOH estimation
considering the effect of environmental temperature. Zhang et al.
(Zhang et al., 2021) further improved the estimation accuracy based
on a dual-exponential empirical model combined with an extended
Kalman particle filter and an autoregressive model. Although
model-based methods can obtain high-accuracy SOH estimation
results, they tend to face the challenge of model universality, and
high-accuracy estimation model is often only applicable to specific
batteries under specific operating conditions. Moreover,
constructing a high-accuracy battery model is usually difficult
and requires a lot of complex electrochemical knowledge.
Additionally, the accuracy of the battery model is directly related
to its complexity, and high-complexity models are difficult to be
implemented for online calculation in on-board BMS with limited
computing power.

In recent years, with the development of hardware, computing
power has made significant leaps, and various databases have
emerged with the development of data acquisition technology
(Ma et al., 2022a; 2023). Data-driven methods have become
significantly popular. The core of data-driven methods mainly
includes two parts: the first part is to extract high-quality features
from macroscopic signals that are highly correlated with battery
degradation, and the second part is to construct a data-driven model
to learn and capture the mapping relationship between features and
battery degradation (Ma et al., 2022b).

In terms of feature extraction, it can be divided into direct
features and indirect features. Direct features directly use signals
such as current, voltage, or temperature as features, or extract some
key information from them as features. Gou et al. (Gou et al., 2021)
achieved high-accuracy SOH estimation by using extreme learning
machine (ELM) and equidistant charging time intervals as features.
Lin et al. (Lin et al., 2023) divided the charging voltage range into
25 equal sections and used the charging time of each section as a
feature, and realized the SOH estimation of lithium-ion batteries
based on Gaussian process regression (GPR). Wang et al. (Wang
et al., 2021a) used local tangent space alignment (LTSA) technology
for dimensionality reduction and feature extraction of current data,
and achieved high-accuracy SOH estimation based on LSTM with
an adaptive sliding window. Deng et al. (Deng et al., 2022a) extracted
a random capacity increment sequence as a feature based on the
random partial charging process and conducted SOH estimation
based on the sparse Gaussian regression process, considering real-
world applications. Indirect features usually use signal analysis
methods as auxiliary means to extract high-quality features.
Common methods include incremental capacity analysis (ICA)
and DTV. Li et al. (Li et al., 2020) used the ICA method to
extract peaks and valleys from the ICA curve as features and
further constructed features to propose a multi-time scale
framework for the battery SOH estimation. The phase transition
inside a battery is often accompanied by a change in energy, which
can be further reflected as a change in heat. Compared to other
signal analysis methods, DTV analysis method fully utilizes
temperature information and can more fully reflect micro phase
transitions through macroscopic signals. Wang et al. (Wang et al.,
2021b) used the DTV analysis method based on this framework and
achieved high-accuracy estimation of SOH based on the GPR
algorithm.

For model construction, many machine learning methods have
been widely used for SOH estimation of batteries. Jin et al. (Jin et al.,
2023) proposed an evolutionary framework-based GPR model that
can automatically adjust the kernel function to obtain higher-
accuracy SOH estimation. Lin et al. (Lin et al., 2022) used the
random forest algorithm to fuse three machine learning algorithms
including support vector machine (SVM), multiple linear regression
(MLR) and GPR, and further improved the estimation accuracy and
robustness through multi-model fusion. Wang et al. (Wang J. et al.,
2023) improved feature engineering in machine learning by
developing a feature engineering framework that achieves high-
precision and robust SOH estimation based on three classic machine
learning methods: Support Vector Regression (SVR), Gaussian
Process Regression (GPR), and Elastic Net Regression (ENR).
Zhao et al. (Zhao et al., 2023) used parameter optimization
technology on the traditional machine learning algorithm,
optimized the extreme learning machine (ELM) through particle
swarm optimization (PSO), and realized the high-precision
estimation of the SOH of the vehicle battery pack in the real
world. In recent years, with the rapid development of deep
learning models, many deep learning methods have also been
used to estimate the SOH of batteries. Eddahech et al. (Eddahech
et al., 2012) used recurrent neural network (RNN), which is good at
solving time series problems, to estimate the SOH of lithium
batteries. For the problem of long-term dependence, RNN has
the problems of gradient disappearance and explosion. Tong
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et al. (Tong et al., 2021) used LSTM, a variant of RNN, and
introduced dropout technology and Bayesian optimization
technology to estimate the SOH of lithium-ion batteries. Shen
et al. (Shen et al., 2020) based on deep convolutional neural
networks and introduced transfer learning and ensemble learning
methods to achieve more accurate and stable SOH estimation with a
small amount of data. Many variants of deep learning models have
also been proposed to address some of the difficulties in battery state
estimation. Deng et al. (Deng et al., 2022b) further improved the
estimation accuracy by identifying degradation patterns based on
early battery aging data and applying Transfer learning with LSTM
network. Wang et al. (Wang et al., 2022) proposed an improved
feedforward LSTM to achieve high-precision full life cycle battery
SOC prediction by considering changes in input features. Wang
et al. (Wang S. et al., 2023) proposed an improved anti-noise ada-
ptive LSTM that achieves high-precision RUL prediction by
considering changes in multiple influencing factors, combined
with multi feature collaboration and adaptive feedback correction
methods. Gao et al. (Gao et al., 2023) proposed a Hierarchical
Feature Coupled Module LSTM to solve the problem of insufficient
utilization of information in the data. Data-driven methods are
completely based on data and can establish a mapping relationship
between measurable macro signals and battery degradation to
achieve nonlinear dynamic modeling while avoiding complex
electrochemical mechanism knowledge, which is easier to achieve
high-accuracy SOH estimation. Although data-driven methods have
many advantages, there are also many problems. The estimation
results of data-driven methods are highly dependent on data quality,
and the correlation between the extracted features and battery
degradation directly determines the estimation accuracy of data-
driven methods. Although signal analysis methods can assist in
extracting features strongly correlated with SOH, it often requires
very cumbersome data preprocessing to obtain high-quality features.
At the same time, there are various choices for features. Too many
features may contain more detailed information but increase the
training cost of the model, while too few features may result in
missing information. At the same time, it is also crucial to construct
a data-driven model that can more effectively mine the time-series
information contained in the features. For the time-series problem
of battery degradation, the importance of the information contained
in different sequences often varies, and data-driven models usually
have the problem of attention dispersion, which leads to a decrease
in estimation accuracy.

In response to the aforementioned problems, this paper
proposes a SOH estimation method that combines signal analysis
methods with data-driven methods. The input features of the deep
learning model are extracted through DTV analysis method. DTV
analysis can establish the relationship between micro and macro
levels during battery degradation process. Feature extraction using
DTV analysis can obtain features strongly related to battery aging,
and the extracted features have interpretability, thereby improving
the accuracy of deep learning models. The LLE method is used to
further reduce the number of features and improve feature quality,
thus enhancing model efficiency. The LLE method is an
unsupervised dimensionality reduction method that is specifically
designed for nonlinear data. It can more effectively extract potential
features embedded in the data compared to traditional linear
dimensionality reduction methods such as principal components

analysis (PCA). The data-driven model is built on the Bi-LSTM
model, which can capture time-series features in long-term
dependency problems better than other models used to solve
time-series problems such as RNN and LSTM. The Dropout
technique is added to the model to prevent overfitting, and
model hyperparameters are automatically optimized using
Bayesian optimization techniques. At the same time, AM is
added to the model to assign weights, enabling the model to
focus on the important parts of the sequence, further improving
estimation accuracy. Finally, the proposed method is validated and
error analysis is performed using the Oxford University battery
degradation dataset. The method proposed in this article can achieve
high accuracy and strong robustness in SOH estimation, with a more
concise data processing flow and higher model efficiency. In the
cyber hierarchy and interactional network (CHAIN) framework, it
has the potential for online application in practical scenarios based
on a cloud platform (Yang et al., 2020; 2021; Zhang L. S. et al., 2022).

The remaining sections of this article are arranged as follows:
Section 2 describes the battery degradation dataset and feature

extraction process.
Section 3 describes the principles and framework of the model

and algorithm used in this article.
Section 4 validates and performs error analysis on the proposed

method.
Section 5 summarizes the main conclusions of this article.

2 Degradation data and preprocessing

2.1 Degradation data

The battery degradation dataset from Oxford university is used
in this paper (Birkl, 2017a; Birkl, 2017b). There are eight batteries
which are labeled from #1 to #8. Battery #2, #5 and #6 have problems
such as a sudden drop in battery voltage, and these three batteries are
finally discarded. Therefore, batteries #1, #3, #4, #7 and #8 are
selected for our research. The specific battery test experiment and
material information are listed in Table 1 and Figure 1.

2.2 Differential thermal voltammetry and
data preprocessing

DTV is a signal analysis technology that can mine information
related to battery degradation through the change of entropy (Wu et al.,
2015; Merla et al., 2016b; Merla et al., 2016a). It is used to judge the
battery condition by calculating the differential value of temperature
and voltage. It is used to judge the battery condition by calculating the
differential value of temperature and voltage. The voltage signal
corresponds to the phase transition type. The temperature signal
corresponds to the magnitude of energy change, which can reflect
the degree of phase transition. The DTV can be calculated as follows:

DTV �
dT
dt
dV
dt

� dT

dV
(1)

Where dT represents the differential value of temperature and dV
represents the differential value of voltage.
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When collecting signals such as voltage and temperature, noise
occurs inevitably. Therefore, data preprocessing is performed first,
including fixed sampling intervals and filtering. The sampling

interval is selected as the 20 s, while the filter selected is an
Savitzky-Golay (SG) filter, which is good at capturing peaks and
valleys in the curve and is suitable for application in DTV analysis.

The SG filter can be described as follows:

y i( ) � ∑j�p
j�−p

1
Nc

Cjx i + j( ) (2)

Where y(i) represents the smoothed signal, Cj the coefficient of the
SG filter and x the original signals.

Figure 2A shows the original DTV curve and the DTV curve
after data preprocessing. It can be seen that after resampling, the
DTV curve has undergone significant denoising. However, there is
still some noise in the curve, which can cause interference during
feature extraction. After filtering with SG filter, a smooth DTV curve
was obtained, which can ensure the accuracy of feature extraction.
Figure 2B shows the trend of the DTV curve as the battery ages. It
can be seen that there are two obvious peaks and one valley in the
DTV curve, which are closely related to the microscopic phase
transition during battery degradation. As the battery ages, the peak
value of the DTV curve gradually decreases and the peak position
gradually shifts towards high potential. The valley value gradually
increases, and the valley level gradually shifts towards low potential.
It can be seen that there is a significant correlation between the

TABLE 1 Test environment and technical specifications of the tested battery.

Technical specifications Test environment

Test subjects 8x Kokam CO Ltd. Battery tester Bio-logic MPG-205

Cathode material LCO/NCO Environmental chamber Binder thermal chamber

Anode Material Graphite

Nominal capacity [mAh] 740 environmental temperature 40°C

Voltage variation range [V] 2.7-4.2 Charge test 2C-rate charge

Nominal voltage [V] 3.7 Discharge test Artemis drive cycle discharge

Weight [g] 19.5 ± 0.5

FIGURE 1
Capacity degradation curve and characterization of 8 batteries.

FIGURE 2
DTV curve (A) Data processing process. (B) Degradation evolution characteristics of DTV curve.
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evolution of the curve and battery degradation. Therefore, based on
DTV analysis methods, features strongly related to battery
degradation can be extracted.

2.3 Feature extraction

In this section, different features are extracted based on DTV
analysis, and the feature extraction are described in detail below. The
correlation analysis method can test whether there is a significant
correlation between the variables, thus helping to select the features.
The Pearson correlation analysis can be described as follows:

rxy � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (3)

where x and y are the variables.
The peaks and valleys in the DTV curve are closely related to the

microscopic phase transitions in the battery reaction, and there will

be significant shifts as the battery ages. In DTV analysis, the usual
choice is to focus on the information of peaks and valleys, and often
feature the values of peaks and peak positions. We extracted the
information of two peaks and one valley in the DTV curve as
features and extracted a total of six features. The correlation analysis
results are shown in Table 2.

It can be seen that the correlation between the features extracted
from the peak and valley of DTV and SOH is very high. Considering
the average value of variance and correlation coefficient, peak2_
voltage, peak2_dtv and valley_dtv are selected as peak-valley
features.

Although the features extracted fromDTV peaks and valleys can
establish a good relationship with battery degradation and
combining them with data-driven methods has the potential to
achieve high-accuracy estimation, the extraction of peak-valley
features requires a large amount of data preprocessing and
multiple filtering to obtain high-quality features, which leads to
overly cumbersome and complex data processing processes. At the
same time, the number of extracted features is large, and selecting a

TABLE 2 Absolute Pearson correlation coefficient between peak-valley feature values and SOH.

Battery peak1_voltage peak2_voltage valley_voltage peak1_dtv peak2_dtv valley_dtv

#1 0.911 0.995 0.969 0.989 0.992 0.995

#3 0.939 0.990 0.993 0.970 0.994 0.991

#4 0.967 0.989 0.997 0.967 0.987 0.981

#7 0.962 0.986 0.949 0.952 0.993 0.959

#8 0.910 0.992 0.954 0.981 0.996 0.988

Average 0.9378 0.9904 0.9724 0.9718 0.9924 0.9828

Mean variance 0.0242 0.0030 0.0196 0.0126 0.0030 0.0127

FIGURE 3
Process schematics of the locally linear embedding method.
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small number of features from them can lead to the loss of
information, while multiple features can significantly increase the
training cost of the model, resulting in reduced model efficiency.
Therefore, this paper proposes a method for extracting features
using LLE technology, which can obtain high-quality features
containing important information through simple data
preprocessing, while also reducing the number of features to 1,
greatly improving the efficiency of the model.

LLE is a nonlinear reduction method that maps high-
dimensional data into low-dimensional space while preserving
local structural information of the data. And even if the data is
linear, LLE can better capture the structure of the data by preserving
the local relationships between the data, thus achieving better
dimensionality reduction. The process schematics of the LLE
method is shown in Figure 3.

The specific calculation process of LLE is as follows:

Ni � knn xi, k( ), Ni � x1i, . . . , xki[ ] (4)
expression 5-9 is the process of solving the weight matrix:

argmin
w

∑N
i�1
|xi −∑k

j�1
wjixji

∣∣∣∣2 (5)

∑k
j�1
wji � 1 (6)

Zi � xi − xj( )T xi − xj( ) (7)

wi � Z−1
i 1k

1TkZ
−1
i 1k

(8)
w � w1, w2, . . . , wN[ ], k × N (9)

Corresponding to the second to m + 1 smallest eigenvalues of M,
the eigenvector M � (y2, y3, . . . ym + 1) is usually selected to obtain
the final low-dimensional sample set matrix Y:

J Y( ) � ∑m
i�1
|yi −∑m

j�1
wijyj

∣∣∣∣22 � tr YMYT( ) (10)

M � I − w( ) I − w( )T (11)
where Ni is a set of k-adjacent points for xi, w is the weight matrix, Zi

is the local covariance matrix, and 1k is the column vector of k, x and
1 for all elements of the element. J(Y) is a loss minimization function
and is a trace function. Set M to the dimension of descending
dimension.

In LLE, the number of nearest neighbors k is an important
parameter that determines the size of the neighborhood used in
calculating local linear relationships. Choosing an appropriate
value of k allows the data after dimensionality reduction to retain
more information about the original data and thus better reflect the
essential characteristics of the data. The empirical method often used
to determine k values suggests setting k at 10%–20% of the sample size
of the original data. This range generally avoids over-fitting while
preserving data information. Alternatively, visualization methods are
a commonly used method for determining k values. Correlation
analysis can be used to observe the effect of data dimensionality

FIGURE 4
Results of correlation visualization of different dimension
reduction methods.

FIGURE 5
Pre-processing and down-dimensional flowchart of high-dimensional data.
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reduction at different k values and select the most appropriate k value.
The process is shown in Figure 4.

PCA and singular value decomposition (SVD) are two
commonly used data dimensionality reduction and feature
extraction techniques. PCA is often based on eigenvalue
decomposition, and is a linear data dimensionality reduction
technique. SVD is a matrix decomposition technique based on
singular value decomposition, which can effectively extract
features containing a large amount of information, remove
unwanted noise, and greatly reduce the number of features.

Section 4.2 compares the effect of feature extraction using LLE
with that using PCA and SVD techniques.

Figure 5 shows the feature extraction process. First, screen out
the Outlier in the DTV data, and complete the data by interpolation
to make the DTV data of each cycle have the same length. Then, the
DTV data of each cycle is used as input for feature extraction using
data dimensionality reduction methods. The data dimensionality
reduction methods used LLE, SVD and PCA methods, respectively.
Finally, through LLE and SVD methods, a unique feature can be
extracted from the data in each cycle, that is, the information in each

FIGURE 6
BiLSTM overall framework and specific LSTM cell structure.

FIGURE 7
Attention mechanism diagram.
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cycle is compressed to a single value. The PCA method requires
obtaining three features to ensure correlation. In Section 4, a
comparison will be made between the estimation results using
features extracted through data dimensionality reduction
methods and the estimation results using peak valley information
as features.

3 Methodology

3.1 Bi-directional long short-term memory

Bi-LSTM is an improvement of the traditional LSTM. LSTM
belongs to the category of recurrent neural networks, which are
capable of processing sequential data and capturing sequential long-
term dependencies. LSTM has a memory unit as its core, which
contains input gates, forgetting gates, and output gates that control
the flow of information. Bi-LSTM is composed of forward LSTM
and backward LSTM which can consider both past and future
information of the input sequence. The forward LSTM processes
the input sequence in forward time order and the backward LSTM
processes the input sequence in backward time order. At each time
step, both the forward LSTM and the backward LSTM output a
vector, and these two vectors are concatenated as the output of the
Bi-LSTM.

The structure of the LSTM and Bi-LSTM are shown in Figure 6.
The weights and biases of the BiLSTM are the forward LSTM,

the backward LSTM, and the bias of the output layer, respectively.
The final output vector is computed as the weight of the hidden
states. Specifically, let the input sequence be x � (x1, x2, . . . , xt), the
computational process of BiLSTM can be expressed as:

yt � ht; h̃t[ ] (12)
ht � L xt, ht−1( ) (13)

h̃t � L xT−t+1, h̃t+1( ) (14)

where ht is the hidden state of forward LSTM, h̃t is the hidden state
of backward LSTM, and L indicates the LSTM computational
process.

3.2 Attention mechanism

The importance of features at different locations in the feature
sequence on the results varies. AM distinguishes the importance of
different positions in the sequence by assigning weights, and learns
and integrates the attention levels corresponding to different
sequences during model training. The diagram of AM is shown
in Figure 7. The expression for calculating AM is given by:

ut � tanh Wwht + bw( ) (15)
at � softmax uT

t , uw( ) (16)
z � ∑ atht (17)

where Ww denotes the weight coefficient, bw denotes the bias
coefficient, ut denotes the energy value determined by ht, at is
the weight coefficient of the size of the weight of each hidden
layer state in the new hidden layer state, uw is the attention matrix
denoting random initialization and continuous learning during the
training process, and z is the output vector after the attention
mechanism.

3.3 Overall architecture of Bi-LSTM-AM

The structure of the SOH estimation model is shown in Figure 8.
The model mainly consists of input layer, Bi-LSTM layer, dropout
layer, Bi-LSTM layer, dropout layer, attention layer and output layer.
The data is first constructed into a time series format. Firstly, construct
the input data into a two-dimensional matrix based on a certain time
series length L, and then construct M two-dimensional matrices into a
three-dimensional tensor, where M is the batch size. The constructed
three-dimensional tensor is a time series. The time series is input
through the input layer, and then is extracted through a two-layer Bi-
LSTM for temporal features. Dropout technology is added to prevent
overfitting. Dropout technology deletes nodes in the network and
their connections with other nodes with a certain probability, so as to
avoid excessive weight of a node and prevent overfitting. Then,
attention levels at different sequence positions in the feature are
learned through the attention layer. Finally, the final estimation
result is output through the output layer. The output layer is
composed of a dense layer, and the sigmoid is added as an
activation function. During the training process, the RMSprop
algorithm is used to train the model to accelerate convergence
speed and estimation accuracy and the bayesian optimization
technique is used to automatically optimize model
hyperparameters. Bayesian optimization technology is a commonly
used hyperparameter automatic optimization technology. The
objective of Bayesian optimization technology is to find the
extreme point of the objective function. Each time a new

FIGURE 8
Overall architecture of the data-driven model. (A) Time series
construction. (B) Structure of the data-driven model.
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hyperparameter is tried, it will refer to the results of the previous time.
Compared with grid method, it can greatly improve the training
efficiency of the model and the performance of the model. The
optimized hyperparameter include the number of nodes of the
BiLSTM layer, learning rate and drop out rate. In practical
applications, the model is first trained through a large amount of
data, and the training is done offline. The trained model can be
applied online, and the collected signals can be used for online
estimation. At the same time, this model can also be combined
with the deployment of end cloud collaborative systems on the
cloud side for online estimation, ensuring real-time performance.

4 Result and discussion

In this section, the accuracy and robustness of the proposed
method are validated and error analysis is performed. The dataset is
split into 50% for training and the remaining 50% for testing. Firstly,
the proposed model is compared with other models that are good at
handling time series problems. Then, the LLE method used for
feature extraction in this study is compared with the peak-valley
feature method and other feature extraction methods. Finally, the
proposed method is validated on all batteries and the robustness of
the method is tested by setting different start cycles. The mean

FIGURE 9
Comparison with different deep learning models based on battery #1. (A) RNN (B) GRU (C) 1d-CNN (D) LSTM (E) Bi-LSTM (F) Bi-LSTM-AM.

TABLE 3 RMSEs and MAEs of SOH estimation results for different deep learning models.

Model RNN GRU 1d-CNN LSTM Bi-LSTM Bi-LSTM-AM

RMSE (%) 0.505 0.457 0.289 0.273 0.265 0.258

MAE (%) 0.395 0.392 0.225 0.224 0.214 0.190
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absolute error (MAE) and RMSE are used as the evaluating
indicator.

4.1 Estimation result with different deep
learning models

In this subsection, the proposed model is compared with other
models that are good at handling time series problems, including
RNN, LSTM, gate recurrent unit (GRU) and 1D-convolutional
neural network (1d-CNN). The features used are the peak-valley
information in DTV. Figure 9 shows the comparison between the
estimated results and the true values, where the scatter plot
represents the true SOH values and the line plot represents the
estimateed results. Table 3 summarizes the estimation errors. The
RMSE of all models’ estimations is below 0.5%, and the MAE is
below 0.4%, indicating that the DTV analysis method can effectively
reflect the micro-phase change in the battery degradation process on

a macroscopic scale and has a strong correlation with battery
degradation. RNN has the worst accuracy, with RMSE and MAE
of 0.5% and 0.39%, respectively. This is because RNN has certain
flaws in dealing with long sequence problems, which can lead to
gradient vanishing and explosion problems. LSTM and 1D-CNN
have similar estimation results, with RMSE andMAE of about 0.28%
and 0.22%, respectively, which is about 44% better than the error of
ordinary RNN. LSTM, as a variant of RNN, has a huge advantage in
dealing with long sequence problems compared to ordinary RNN.
GRU is a simplification of LSTM, sacrificing some accuracy but
improving the training efficiency of the model. Bi-LSTM is a further
optimization based on LSTM, with stronger ability to mine time
series features. The Bi-LSTM model performs better than other
models, with RMSE andMAE of 0.27% and 0.21%, respectively. The
addition of AM can further improve the accuracy, with RMSE and
MAE of 0.25% and 0.19%, respectively, and error improvement of
7.4% and 9.5%, respectively. This indicates that the addition of AM
can focus the model on the more important parts of the sequence

FIGURE 10
Comparison with different feature extractionmethods based on battery #1. (A) Peak-valley (B) PCA (C) SVD (D) LLE (E) LLE on preprocessed data (F)
Histogram of RMSE and MAE results for different feature extraction methods.
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and better mine the information related to battery degradation
contained in the features.

4.2 Estimation result with different feature
extraction methods

In this subsection, the feature extraction method proposed in
this paper is compared with other feature extraction methods.
Figure 10 shows the comparison results of different feature
extraction methods and the SOH estimation model selected
Bi-LSTM-AM with the best performance proved in Section
4.1. It can be seen that using the LLE method for feature
extraction has significantly higher accuracy compared to the
PCA and SVD methods. The estimation errors of using PCA
and SVD are both over 0.5%, while the RMSE and MAE of using
LLE are 0.3% and 0.24%, respectively. This indicates that LLE, as
a nonlinear dimensionality reduction method, can more
effectively capture key information in the data, and compared
to the other two methods, LLE can maximize the preservation of
local structure information. It is also noted that the estimation
accuracy of using LLE to extract features is slightly inferior to that

of using peak-valley information as features. This is because LLE
is directly used for feature extraction of the raw DTV signal
without data preprocessing, while peak-valley feature extraction
involves more data preprocessing. However, the RMSE and MAE
of the two methods only differ by 0.05% and 0.06%, respectively,
which is a very small difference. If LLE is applied to DTV data
that has undergone the same tedious data preprocessing as peak-
valley feature extraction, the difference would be reduced to only
0.003%. This indicates that although there is inevitable
information loss in using the LLE method for feature
extraction, the difference in accuracy is minimal, and it can
significantly reduce the number of features and simplify the
data preprocessing process, thereby greatly improving the
efficiency of the entire model.

4.3 Estimation results for all batteries and
validation of robustness

In this subsection, the proposed method is validated on all
batteries and the robustness of the method is tested on all
batteries. Robustness refers to the ability of a model to
maintain its performance stability under abnormal conditions.
In actual application, complete battery data may not be available,
and some data may be missing. The robustness experiment in this
paper uses different starting points to estimate SOH throughout
the entire lifespan, in order to simulate the deviation of actual
input and training feature distributions, and thus verify the
robustness. The specific approach is to artificially remove the
first 20% of the data to simulate different startup cycles. Figure 11

FIGURE 11
Validation results of SOH estimation on other batteries. (A) Battery #3 (B) Battery #4 (C) Battery #7 (D) Battery #8.

TABLE 4 RMSEs and MAEs of SOH estimation results for different batteries.

Battery #3 #4 #7 #8

RMSE (%) 0.536 0.383 0.436 0.424

MAE (%) 0.452 0.328 0.377 0.332
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shows the verification results of the proposed method on other
batteries and the RMSE and MAE are shown in Table 4. It can be
seen that the proposed method achieved high estimation
accuracy on all batteries, with RMSE and MAE of around
0.4%. Note that the estimation error of Battery #3 is relatively
large compared to other batteries, which is caused by the
inconsistency of the battery. Figure 12 shows the results of the
robustness verification. It can be seen that the proposed method
has stable and reliable performance under different start cycles,
with RMSE and MAE of around 0.3% and 0.2%, respectively.
Compared with the situation of 0 start cycles, the estimation error
of RMSE and MAE is only about 0.05%, which indicates that the
proposed method has stable and reliable performance under
different battery start cycles.

Overall, the proposed method can achieve high-accuracy SOH
estimation on the basis of greatly reducing the number of features
and simplifying the data preprocessing process, while having
strong robustness, excellent estimation accuracy and higher
efficiency.

4.4 Verification on other battery materials

In this subsection, the proposed method is validated using the
battery aging dataset from MIT–Stanford–Toyota Research Center.
The battery material system used in this data set is Lithium iron
phosphate system, which is different from the ternary system used in
the Oxford University battery aging data set, and can better verify
the generalization performance of the method proposed in this
paper. Batteries with battery numbers # 22, # 36, and # 44 were
selected for validation. # 36 and # 44 batteries have the same aging
life, while # 22 has different aging life. Figure 13 shows the estimated
results. It can be seen that the method proposed in this paper still
achieves high estimation accuracy on the battery of Lithium iron
phosphate material system, and the RMSE and MAE of the
prediction results are within 0.8% and 0.7% respectively.
Specifically, for battery 36, the predicted RMSE and MAE are
both within 0.3%, the estimation accuracy is significantly higher
than that on the other two batteries, which is due to inconsistency
between the batteries. In this subsection, the calculation time of the

FIGURE 12
Validation of robustness. (A) Estimation result for battery #1. (B) Estimation result for battery #3. (C) Estimation result for battery #4. (D) Estimation
result for battery #7. (E) Estimation result for battery #8. (F) Histogram analysis of RMSE and MAE for five batteries.
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FIGURE 13
Validation of lithium iron phosphate battery. (A) Estimation result for battery #22. (B) Estimation result for battery #36. (C) Estimation result for
battery #44. (D) Histogram analysis of RMSE and MAE.

TABLE 5 RMSE of SOH estimation result.

Method Data split portion Feature RMSE (%)

#1 #3 #4 #7 #8

Ours 5:5 DTV-LLE 0.301 0.536 0.383 0.436 0.424

AB CNN-GRU (Liu et al., 2023) Train: #1 - #4 RFS-Voltage and RFS-Temperature - - - 0.629 0.541

Test: #5 - #8

NARX (Bamati and Chaoui, 2023) Train: #2, #3, #4, #7, #8 Voltage-EMA 0.47 - 0.56 - -

Test: others Temperature-EMA

PRPCG-BLS (Gu et al., 2022) Train: #1 Equal voltage interval charging time - 0.28 0.91 0.71 0.98

Test: Others

Stacking-based ensemble
learning model (Xu et al., 2023)

Leave-one-out cross validation Voltage 0.72 0.62 0.42 0.53 0.45

Temperature

IC

LSTM-BP (Gong et al., 2022) Leave-one-out cross validation Voltage 0.22 0.27 0.3 0.29 0.25

Fusion model of SVM Leave-one-out cross validation Voltage 0.7 0.57 0.42 0.51 0.51

MLR GPR (Lin et al., 2022) Temperature

IC

Frontiers in Energy Research frontiersin.org13

Wang et al. 10.3389/fenrg.2023.1205165

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1205165


algorithm proposed in this article is also summarized. Based on
A100-PCIE-40GB GPU, the Bayesian optimization time is
24,571.68634 s, the model training time is 623.9118 s, and the
estimated time is 1.9719 s. The training time of the model is
relatively long, and in practical applications, the training is based
on offline completion. The estimated time is within 2 s, which can
meet the real-time requirements of online applications.

4.5 Comparison with other methods

Table 5 summarizes the comparison between the work in this
article and other works, all of which were completed based on the
Oxford University dataset. It can be seen that in most cases, the
method proposed in this article has higher accuracy. Liu et al. (Liu
et al., 2023) estimated SOH based on reconstructed feature series
(RFS) and combined with Attention based CNN GRU (AB CNN-
GRU) network. Bamati et al. (Bamati and Chaoui, 2023) further
integrated the extracted features using the exponential moving
average method and estimated SOH based on the non-linear
autoregressive with exogenic input (NARX) network. Xu et al.
(Xu et al., 2023) extracted features based on the Stacking based
ensemble learning model using voltage, temperature, and IC curves.
Lin et al. (Lin et al., 2022) fused three classic machine learning
models, SVM, MLR, and GPR, and conducted SOH estimation
based on multi feature analysis of voltage, temperature, and IC
curves. The prediction results of these works have higher errors than
the methods proposed in this paper. The Polak-Ribière-Polyak
conjugate gradient (PRPCG) algorithm optimized broad learning
system method used by Gu et al. (Gu et al., 2022) achieved better
results on battery #3, but the predicted results on other batteries had
much higher errors than the method proposed in this article, which
was caused by the inconsistency of the batteries. Gong et al. (Gong
et al., 2022) extracted features based on voltage and estimated SOH
using LSTM-back propagation (BP) neural network. The accuracy of
this work is higher than that of the method proposed in this paper.
This is due to the work was validated through cross validation, while
this article was trained using half of the data from a battery. The
training data volume for this work is much higher than that used in
this article. Overall, compared to other works, the method proposed
in this article has higher accuracy. Meanwhile, most of the work is
more complex in feature extraction and model complexity.
Compared to this, the method proposed in this paper has a
simpler process and higher efficiency.

5 Conclusion

This paper proposes a data-driven method for highly accurate
SOH estimation of lithium-ion batteries. Feature extraction is
conducted based on DTV analysis. After data cleaning, fixed
sampling intervals, and filtering, the peak-valley information is
extracted as features and then the Pearson correlation analysis is
used for feature selection. The LLE method is used for feature
extraction directly on the raw DTV data without any data
preprocessing. The selected features are constructed in a time series
format and input into a deep learning model for training. The deep
learning model includes two Bi-LSTM layers and dropout technology

is applied to prevent overfitting. Hyperparameters are automatically
optimized through Bayesian optimization technology. AM is added to
assign different weights to the sequence. Finally, the proposed method
is validated and error analysis is performed based on the Oxford
University dataset. The results show that the proposed method can
achieve high-accuracy and strong robustness SOH estimation while
simplifying the data processing flow and improving model efficiency.
The RMSE and MAE of the estimation results are around 0.4%.

Themain contributions of this paper are as follows: 1) The signal
analysis method and the data-driven method are integrated, and
high-quality features are extracted based on the signal analysis
method and input into the deep learning model to achieve high-
precision SOH estimation. 2) The DTV analysis method can make
full use of the entropy change information accompanying the
microscopic phase change inside the battery, and establish the
connection between the microphase change and the macroscopic
signal of battery degradation. High-quality features that are highly
correlated with battery degradation can be obtained through DTV
analysis. 3) The method based on DTV analysis and LLE feature
extraction can extract high-quality features through simple data
preprocessing while reducing the number of features and further
improving model efficiency. And the attention mechanism is added
to the deep learning model to assign weights to the important parts
of the features. 4) The model has high accuracy and robustness, with
the RMSE of estimation results within 0.5%, and has stable and
reliable performance under different start cycles. The proposed
method can achieve high-accuracy SOH estimation, with a
simpler data processing flow and higher model efficiency.

In combination with the CHAIN framework, cloud BMS and
end-cloud collaboration framework, the proposed method has the
potential for further online application and achieving high-accuracy
and real-time battery SOH estimation in practical applications. The
Feature engineering in this paper is not fully automated, and some
manual operations are not conducive to online applications. At
present, the implementation platform of the entire method is a
computer. In the future, algorithms will be further optimized based
on practical applications, and algorithms will be ported to embedded
systems for more comprehensive method validation.
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