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Wind power is one of the most representative renewable energy and has attracted
wide attention in recent years. With the increasing installed capacity of global wind
power, its nature of randomness and uncertainty has posed a serious risk to the
safe and stable operation of the power system. Therefore, accurate wind power
prediction plays an increasingly important role in controlling the impact of the
fluctuations of wind power to in system dispatch planning. Recently, with the rapid
accumulation of data resource and the continuous improvement of computing
power, data-driven artificial intelligence technology has been popularly applied in
many industries. AI-based models in the field of wind power prediction have
become a cutting-edge research subject. This paper comprehensively reviews the
AI-based models for wind power prediction at various temporal and spatial scales,
covering from wind turbine level to regional level. To obtain in-depth insights on
performance of various prediction methods, we review and analyze performance
evaluation metrics of both deterministic models and probabilistic models for wind
power prediction. In addition, challenges arising in data quality control, feature
engineering, and model generalization for the data-driven wind power prediction
methods are discussed. Future research directions to improving the accuracy of
data-driven wind power prediction are also addressed.
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1 Introduction

Along with the rapid advancements in both the economy and technology, human
demand for energy is also on the rise (Wang Y. et al., 2019). However, overconsumption of
fossil fuels will result in energy depletion, and the issue of environmental pollution is
escalating rapidly. Therefore, the global must promote the conservation and sustainable use
of fossil fuels and develop renewable energy vigorously. Wind energy is a typical
representative of renewable energy and has characteristics of large reserves and easy
development, it has been developed on a large scale and with high quality in recent
years. Depending on the Global Wind Report 2023 (Williams et al., 2022), the global
installed capacity of new wind power (WP) is 78 GW in 2022 (as shown in Figure 1),
resulting in a total installed capacity of 906 GW in 2022. This represents a 9% increase
compared to the previous year.

Currently, wind power has been a crucial contributor to electricity generation in
numerous countries around the world. However, as wind power expands on a massive
scale, its randomness and intermittent will bring great challenges for maintaining the
stability of the power system. A promising solution for addressing the aforementioned
challenges is to predict future WP accurately. In addition, the penalty mechanism for wind

OPEN ACCESS

EDITED BY

Juan P. Amezquita-Sanchez,
Autonomous University of Queretaro,
Mexico

REVIEWED BY

Ning Li,
Xi’an University of Technology, China
Srete Nikolovski,
Josip Juraj Strossmayer University of
Osijek, Croatia
Kaiping Qu,
China University of Mining and
Technology, China

*CORRESPONDENCE

Qiuzi Han Wen,
qz_wenhan@qny.chng.com.cn

RECEIVED 12 April 2023
ACCEPTED 30 May 2023
PUBLISHED 12 June 2023

CITATION

Liu Y, Wang Y, Wang Q, Zhang K, Qiang W
and Wen QH (2023), Recent advances in
data-driven prediction for wind power.
Front. Energy Res. 11:1204343.
doi: 10.3389/fenrg.2023.1204343

COPYRIGHT

© 2023 Liu, Wang, Wang, Zhang, Qiang
and Wen. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Review
PUBLISHED 12 June 2023
DOI 10.3389/fenrg.2023.1204343

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204343/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204343/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1204343&domain=pdf&date_stamp=2023-06-12
mailto:qz_wenhan@qny.chng.com.cn
mailto:qz_wenhan@qny.chng.com.cn
https://doi.org/10.3389/fenrg.2023.1204343
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1204343


power prediction (WPP) errors by the electricity regulation
department will affect the profits of wind farms. Therefore,
accurate WPP is beneficial to relieve the peak load of the power
system, ensuring reliable management of the power system,
reducing the abandoned wind, and improving the wind farms’
revenue.

1.1 Literature review

In recent years, many scholars have proposed in-depth research
and many approaches on WPP. According to classification
standards, WPP models can be divided into several groups.
According to the prediction types, they can be divided into
deterministic models and probabilistic models. Depending on the
prediction process, they can be grouped into two-phase models and
end-to-end models. The two-phase models are to first predict wind
speed (WS), and then get the WP depending on the WP curve.
However, the end-to-endmodels are to predict theWP directly. This
paper focuses on the end-to-end models.

Depending on the prediction time scale, they can be grouped
into four types: ultra-short-term, short-term, medium-term, and
long-term. According to the prediction space scale, they can be
divided into three groups: the wind turbine, single wind farm, and
regional wind farms.

Compared to WPP for single wind farm and regional wind
farms, WPP for wind turbine has been studied earlier. In the
prediction process, the model needs to pay attention to the
operating status and data of the wind turbine itself, as well as
micro meteorological data. The accurate WPP for the wind
turbine can help characterize the power output of a single wind
turbine. However, accurate prediction requires providing high-
resolution micro meteorological data for each wind turbine,

which makes it costly and almost impossible to achieve in
practical engineering. Currently, the resolution of numerical
weather prediction (NWP) data used in research is generally
coarse. For example, Sobolewski et al. (2023) used historical
turbine data collected by SCADA system, meteorological
reanalysis data, and NWP data to predict power of wind turbine,
but the spatial resolution of NWP data was 0.25°, which affected the
prediction accuracy. In addition, with the development of wind
power industry, wind farms have gradually developed into
centralized and large-scale, so in the past few years, the demand
for WPP for wind turbine gradually decreased. Based on the above
reasons, there has been relatively little research on WPP for wind
turbine in recent years, and there has been no significant
breakthrough in related technical routes and methods. The
research on methods is relatively less in-depth and cutting-edge,
and most of them are relatively early traditional machine learning
methods and deep learning methods, such as support vector
machine (SVM), decision Tree (DT), recurrent neural network
(RNN), long short-term memory (LSTM), etc. However, with the
increasing attention paid to distributed wind turbines in recent
years, the research on WPP for wind turbine can contribute to the
development of distributed wind turbines (Riahy and Abedi, 2008;
Zhang et al., 2019).

At present, most of the research on WPP worldwide is focused
on the prediction for wind farm, so compared with WPP for wind
turbine, research in this area is more in-depth, and related research
methods and technical routes are also more diverse and cutting-
edge. For example, some advanced methods proposed in recent
years, such as attention mechanism (AM), Transformer, and its
variants, have been applied to WPP for wind farms. Moreover,
unlike WPP for wind turbine, the prediction for wind farm needs to
pay attention to the overall information of the wind farm, and
integrates information from multiple individual wind turbines to

FIGURE 1
Wind power global capacity and annual additions, 2012–2022.
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predict the overall power generation of the wind farm (Bigdeli et al.,
2013; Yan et al., 2017b), so the WPP for wind farm is more difficult.
One technical route for predicting the power of a wind farm is to
draw on the technical route and methods of WPP for wind turbine.
Firstly, the power of each wind turbine in the wind farm is predicted,
and then the power of the entire wind farm is obtained by summing
up. However, as the scale of wind farms increases, this technology
route has high costs and low computational efficiency. Therefore, in
most literature on WPP for wind farm, models generally do not
finely analyze the information of each wind turbine, but rather pay
more attention to the overall power of the wind farm, meteorological
observation information and prediction information of the wind
farm area. For example, Zhang et al. (2020c) used the NWP data and
historical wind of actual wind farm as the input.

With the increase of wind farm scale, WPP for wind farm cannot
meet the needs of power system scheduling. In addition, wind power
are getting more deeply involved in electricity market transactions in
recent years. Therefore, WPP for regional wind farms has also
received increasing research. Unlike WPP for wind turbine and
wind farm, the prediction for regional wind farms needs to analyze
the information of multiple wind farms from both time and space
perspectives comprehensively, and it places emphasis not only on
the precision of point prediction but also on the accuracy of the
overall prediction trend, so it is the most difficult type (Zhang
J. et al., 2021; Pei et al., 2022). And the technical route of regional
power prediction is not quite the same as that of WPP for wind
turbine and wind farm. It is generally divided into accumulation
method, upscaling method and spatial resources matching method.
Moreover, in the literature on the prediction for regional wind
farms, the models need to focus on the spatio-temporal
dependencies between multiple wind farms, so methods that are
good at extracting important spatial and spatiot-emporal
information are often used, such as convolutional neural network
(CNN), graph conventional network (GCN), stacked denoising
auto-encoder (SDAE), convolutional LSTM (ConvLSTM),
convolutional gated recurrent unit (ConvGRU), etc.

Based on the modeling theory, they can be classified into four
types: physical models, traditional statistical models, AI-based
models, and hybrid models.

The modeling processes of the physical models are complex and
it is challenging to acquire the model parameters. When dealing with
physical models, experts need to have rich professional knowledge.
Since traditional statistical models have limited capability in
nonlinear fitting and processing high-dimensional data, physical
models and they are less welcomed now.

In recent years, AI technology with data-driven as the core has
developed rapidly, gradually from shallow traditional machine
learning to deep learning (Sun et al., 2021). Therefore, AI-based
WPP models have developed rapidly and become a hot spot
currently. Many previous research have demonstrated that AI-
based models have superior prediction performance when
compared to traditional statistical models. These models are
expected to break through the technical bottleneck of WPP and
achieve significant improvement in prediction accuracy.

AI-based WPP models include traditional machine learning
models, such as traditional artificial neural networks (ANNs),
SVM, extreme learning machine (ELM), DT, etc. As AI
technology advances, it has led to the increased adoption of deep

learning models in WPP. These models, such as deep belief network
(DBN), auto-encoder (AE), LSTM, CNN, gated recurrent unit
(GRU), AM, and Transformer, are highly effective in solving
complex nonlinear problems. Their advanced capabilities have
made them a top choice for WPP applications. And the
advantages and disadvantages of some major AI-based methods
are shown in Table 1. Hybrid models can be built by combining
various model types, including time series and traditional machine
learning, or traditional machine learning and deep learning, or a
combination of all of them, to thoroughly describe various facets of
WP variation (Shi et al., 2012).

1.2 Contributions and paper organization

In recent years, a large number of scholars have reviewed the
WPP methods. Lei et al. (2009) introduced physical models,
traditional statistical models, spatial correlation models, and AI
models for WPP. Shi et al. (2012) reviewed ARIMA, ANN, SVM
and the hybrid models that combines them, and compared the
prediction performance of models. Tascikaraoglu and Uzunoglu
(2014) comprehensively surveyed hybrid models including data pre-
processing, parameter selection and optimization, and error
processing. Yan et al. (2015) analyzed the sources of prediction
uncertainty and reviewed the WPP models in terms of model input,
modeling principle, express way and prediction time-scale. Liu et al.
(2020) reviewed the multi-objective optimization technologies in the
field ofWPP. González-Sopeña et al. (2021) proposed an overview of
the performance evaluation methods used for assessing the
prediction accuracy of short-term statistical WPP models. In
addition, as AI technology has been widely studied in the field of
WPP in recent years, some scholars have reviewed the AI-based
WPP models. Sawant et al. (2022) gave a detailed overview of AI-
based wind power prediction models from ultra short, short and
long-term perspectives. Wang Y. et al. (2021) reviewed the deep
learning models used for WPP, including the processes of data
processing, feature extraction, and relationship learning. Zhu et al.
(2023) discussed the base principle of AI technology in the
application of renewable energy power prediction, and
systematically summarized the application of AI technology in
wind power and photovoltaic power prediction. However, the
more popular and cutting-edge methods in the field of WPP in
the past few years, such as AM, Transformer and its variants, are
rarely mentioned in the previous review. Moreover, it can be seen
from the above that there are great differences in the technical route
and research depth of WPP methods in different prediction space
scales, but the previous review literature gave scant attention to the
AI-based WPP methods from the perspective of different prediction
space scales. Thus, the main contribution of this paper is to
comprehensively review the AI-based models for WPP at various
spatial scales, covering from wind turbine level to regional level. The
following are the key points of the contributions.

This paper systematically reviews the AI-based WPP models
based on different prediction space scales, including some popular
and cutting-edge models in recent years, such as AM, Generative
adversarial networks (GAN), Transformer and its variants, And the
advantages, disadvantages and the prediction performance of
various methods are comprehensively discussed.
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The performance evaluation metrics of deterministic models
and probabilistic models for WPP are also reviewed and discussed,
in order to gain comprehensive understanding of the performance of
different prediction methods.

This paper discusses the challenges arising in data quality
control, feature engineering, and model generalization for the
data-driven WPP methods, and addresses the future work to
improving the accuracy of data-driven WPP.

This review provides researchers with an understanding of the
current research status and differences of AI-based methods in
different prediction space scales, and the challenges and future
work of data-driven WPP methods, thereby giving valuable
guidance for researchers committed to developing optimized
models for WPP.

The rest of the paper is structured as follows. Section 2, 3, and 4
are dedicated to reviewing the AI-based WPP models used for the
different prediction objectives: the wind turbine, single wind farm,
and regional wind farms. Section 5 presents the performance
evaluation metrics of WPP. Section 6 provides the discussion and
future work in WPP. Section 7 offers tentative conclusions of the
paper.

2 AI-based wind power prediction
models for wind turbine

Wind turbines can be divided into the off-grid wind turbine and
grid-connected wind turbine. The WPP accuracy of off-grid wind
turbines is required to be high in distributed WP generation, which
will affect the reliability of wind turbines directly. For grid-
connected wind turbines, the WPP error of a single wind turbine

impacts the WPP of the whole cluster multiply (Peng et al., 2016).
Thus, whether it is off-grid or grid-connected, the WPP accuracy is
important for the popularity of WP (Guo et al., 2020). A single wind
turbine covers a small area and can be disturbed or destroyed by
meteorological conditions or local random disturbance factors
easily. It is difficult to predict WP accurately (Li and Pan, 2017).
Therefore, the research on WPP for a single wind turbine becomes
particularly important, but in practice, the cost of WPP for every
wind turbine in the whole wind farm is high, and many
meteorological variables such as wind speed in the same range
are highly similar, so at present, there are few types of research on
AI-based WPP models for a wind turbine. Among these literature,
traditional machine learning models including tree-based models,
SVM, and traditional ANNs, are widely used; deep learning models
include RNN and LSTM, but some of the more advanced methods in
recent years, such as AM, GAN, and Transformer, have not been
thoroughly studied. Overall, AI-basedWPPmodels for wind turbine
in the research are not very in-depth and there are no significant
breakthroughs in recent years. However, with the increase in the
demand for accurate and fast power supply of distributed wind
turbines, AI-basedWPPmodels for a wind turbine which will attract
more attention.

2.1 Traditional machine learning models

Machine learning models have become increasingly popular in
WPP because of their strong capability to learn complex nonlinear
relationships among data. There are three distinct categories of
machine learning models: Supervised learning, Unsupervised
learning, and Semi-supervised learning. For predicting the WP of

TABLE 1 Advantages and disadvantages of some major AI-based methods.

Method Advantages Disadvantages

SVM 1) strong generalization ability the selection of kernel functions depends on experience

2) better solve small sample problem

GBDT strong generalization ability not in parallel training data

BPNN 1) good nonlinear fitting ability 1) slow learning speed

2) parameters and structure can be adjusted flexibly 2) easy local optimization

CNN 1) proficient in handling high-dimensional data 1) high computational complexity

2) automatic feature extraction 2) easy to encounter gradient dissipation

LSTM, GRU 1) long-term memory 1) not in parallel training data

2) suitable for processing time series 2) multi-step prediction error accumulation

3) multivariable inputs

Attention + Encoder-Decoder 1) multivariable inputs 1)not in parallel training data

2) medium and long sequence prediction 2)multi-step prediction error accumulation

Transformer 1) multivariable inputs 1)quadratic time complexity

2) long sequence prediction 2)high memory usage

3) process sequence data in parallel

4) fast training speed
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a single wind turbine, a wide range of supervised traditional machine
learning models are applied, such as Regression Analysis (Rashid
et al., 2020; Demir and Tasci, 2021; Sobolewski et al., 2023), SVM
(Shi et al., 2010; Wang., 2013), Tree-based models, and traditional
ANNs (Li et al., 2001; Nielson et al., 2020; Metodieva and Bozhkov,
2022).

Tree-based models include DT, random forest (RF), AdaBoost,
gradient boosting decision tree (GBDT), etc. They have been applied
to tackle the problem ofWPP for wind turbines. Generally speaking,
the disadvantage of DT is that it has a large variance, and subtle
changes in data distribution may lead to significant differences in
tree structure, so compared with other tree-based models, its
performance is generally the worst. Demir and Tasci (2021)
confirmed this viewpoint in their research work. They used seven
different regression algorithms to get theWPP of wind turbines. The
algorithms included DT, AdaBoost, RF, GBDT, etc. According to the
evaluation of R2, AdaBoost had the best performance and DT had
the worst. RF is suitable for large datasets and has good
computational efficiency and prediction accuracy, however, the
prediction performance has some dependence on the quality of
the original data. Rashid et al. (2020) used RF to predict the power of
wind turbines. The capacity factor for real power output and annual
affected power output was used to estimate the performance of wind
turbines. GBDT has shown excellent performance in regression
prediction problems with its efficient training speed and low
memory consumption. Sobolewski et al. (2023) applied GBDT to
WPP first. Compared with other AI-based models, such as LSTM,
DT, and RF, theWPP accuracy based on GBDT was the highest, and
with the increase in prediction time, the advantages of GBDT
became more and more obvious.

SVM (Cortes and Vapnik, 1995) is a kernel-based machine
learning model, which can better solve the small sample problem in
practice. SVM has a simple structure, strong generalization ability,
and is easy to be trained. It has achieved a better prediction effect
than traditional ANNs in solving nonlinear and large-dimension
problems. Some scholars have studied improved SVM to improve
prediction accuracy. For example, Shi et al. (2010) proposed a WPP
model based on wavelet SVM for a wind turbine. In wavelet SVM,
the radial basis function (RBF) kernel function was replaced by the
wavelet kernel function. However, the theory of SVM is quite
complex, and its prediction effect is intricately linked to the
choice of kernel functions and parameters. Therefore, some
scholars have utilized some data-driven algorithms to optimize
the parameters of SVM. For example, Wang., 2013 proposed to
use genetic algorithm (GA) to optimize the parameters of SVM. This
proposed model was more accurate and had better generalization in
short-term WPP. But the selection of kernel functions has not been
well supported by theory and mainly depends on experience so far,
so it has certain randomness.

ANN has a good nonlinear fitting ability, and its parameters and
structure can be adjusted flexibly, so it is widely used in WPP
(Shuang et al., 2011). Common traditional ANNs include back
propagation neural network (BPNN), radial basis function neural
network (RBFNN), general regression neural network (GRNN), etc.
Among them, BPNN is the most classic. Nielson et al. (2020) used
BPNN to establish multi-parameter input models to predict the WP
of the wind turbine, and the performance of BPNN in different
atmospheric stability regimes was discussed. But the learning speed

of BPNN is slow and cannot guarantee convergence to the global
optimum. In addition, the prediction performance of traditional
ANNs is greatly affected by the parameters of the models, resulting
in unstable prediction accuracy. In recent years, with the exponential
growth of AI technology, deep learning models based on traditional
ANNs have attracted more attention in the field of WPP.

2.2 Deep learning models

Over the past few years, deep learning models have become the
most popularly used machine learning models, owing to their
intricate structures and potent nonlinear mapping capabilities.
And they are increasingly being employed in a variety of
applications, including WPP. Compared to traditional machine
learning models, deep learning models can perform well on a
relatively small dataset and in less time (Qin et al., 2016).
Bhardwaj et al. (2022) compared the WPP performance of
traditional machine learning models and deep learning models
for a wind turbine. The polynomial regression and LSTM were
used, and the polynomial regression could not predict the WP
accurately, while the accuracy of LSTM could reach 96%.

Since RNN has the ability of short-term memory, it has good
performance when solving time series problems. RNN is widely used
in WPP for a wind turbine, due to its structure, it is prone to the
problem of gradient disappearance or explosion. LSTM is a variant
of RNN and its base steps are shown in Figure 2A. LSTM introduces
gating mechanism on the basis of RNN, replacing common neuron
modules with special memory neuron modules, so it has the ability
of long-term memory which perfectly fits our need to predict power
for wind turbines (Yu et al., 2018). LSTM can achieve satisfactory
results in multi-step WPP of wind turbines, but as the prediction
time scale increases, the prediction accuracy will gradually decrease.
In addition, some data-driven technologies are used to optimize the
hyperparameter of LSTM, thus improving the prediction accuracy.
For example, Li Z. et al. (2022) proposed amodel combining isolated
forest (IF), squeeze wavelet transform (SWT), aquila optimization
(AO), and LSTM for WPP of new wind turbines. The WPP model
was built based on LSTM, and its parameters were optimized by AO.

To sum up, there are few types of research on deep learning
models for the WPP of a single wind turbine at present. Most of
them are combined with outlier detection methods, noise reduction
methods and optimization algorithms to further improve the
accuracy and generalization ability of the models. This may be
due to the small size of the single wind turbine samples and the
decreasing application scenarios of WPP for a wind turbine.

2.3 Hybrid models

WPP is affected bymultiple factors, and using a single prediction
model may lose some useful information, resulting in low robustness
and weak generalization of the model. In order to give full play to the
advantages of different algorithms and make the most of all useful
information, Bates and Granger (2001) first proposed the hybrid
predicting theory in 1969. Hybrid models effectively overcome the
inherent limitations of a single prediction model and reduce the
probability of scenarios with large prediction errors (Tascikaraoglu
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and Uzunoglu, 2014). Therefore, as soon as they were proposed, they
received extensive attention and research. With the continuous
development of hybrid predicting theory, hybrid models have
been divided into two categories: serial models and parallel
models. In addition, with the rapid development of machine
learning, ensemble learning has emerged. And the boosting
algorithm and bagging algorithm are both widely used ensemble
learning algorithms, which can be used to design hybrid models for
WPP. Some hybrid models in the literature are showed in Table 2.

2.3.1 Serial models
In serial models, there is a strong dependency relationship

between each prediction model or prediction process, and serial
models include boosting algorithm in ensemble learning and fusion
prediction models. Figure 3 shows their structures.

In Boosting algorithm, a series of weak learning models can be
promoted to strong learning models and a sequential process is used.
In addition, each subsequent model will be corrected and improved
based on the previous model to improve the prediction accuracy. For
example, An et al. (2021) established a WPP model that combined
the Adaboost algorithm with particle swarm optimization-extreme
learning machine (PSO-ELM) to improve the prediction
performance and generalization ability of the model. A series of
PSO-ELM weak predictors containing different hidden layer nodes
were constructed with Adaboost. Finally, each weak predictor was
weighted and fused into a strong WPP model. The results showed
that Adaboost-PSO-ELM could better learn the variation trend of
WS and wind direction in every season.

Fusion prediction models combine the processes of feature
extraction, relationship learning, error correction, etc., which
form the entire process of WPP. Each process uses a different
model, which can give full play to the expertise of different
technologies and achieve higher prediction accuracy. Zhang
(2022) predicted the short-term power of wind turbines based on
historical data. Compared to BPNN, RBFNN had a better prediction
effect and was selected as the preliminary prediction model. Then
the Bayesian dynamic linear model was used to predict the
prediction error of RBFNN to achieve error correction, thereby
improving the WPP accuracy.

2.3.2 Parallel models
In parallel models, there is no strong dependency relationship

between each model, and model construction and training can be
carried out simultaneously. Parallel models mainly include bagging
algorithm in ensemble learning and weight-based models, and
Figure 4 shows their structures.

In the Bagging algorithm, several training sub-samples are
constructed by extracting input data with playback. Then several
sub-learning models are built in parallel, and the results of the sub-
models are combined by means or weights to get the final prediction
results. Currently, there are few studies on WPP for wind turbines
based on the Bagging algorithm.

Unlike the Bagging algorithm, one way of weight-based models
is to use the same training set for each model, and the final
prediction results are got by weighting each model. At present,
these models are commonly used in WPP for wind turbines.

FIGURE 2
Base steps of LSTM and GRU. (A) Base steps of LSTM. (B) Base steps of GRU.
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TABLE 2 Some AI-based WPP models for wind turbine in the literature.

Type Article Method Evaluation metric Evaluation value

Traditional Machine Learning Demir and Tasci (2021) DT, AdaBoost, RF, GBDT R2 0.8304, 0.8612, 0.9022, 0.9182

Rashid et al. (2020) RF MSE 8,712.0145

MAE 30.012

Sobolewski et al. (2023) GBDT RMSE 76.18

MAE 54.87

Shi et al. (2010) Wavelet-SVM MRE 12.07%

Wang. (2013) GA-SVM MAE 11.13%

MSE 4.71%

Nielson et al. (2020) BPNN MAE 30.5

Deep Learning Bhardwaj et al. (2022) LSTM Accuracy 96%

Li et al. (2022b) SWT-IAO-LSTM RMSE 1.4077

MAE 1.2344

MAPE 121.6862

NSE 0.99417

R2 0.99823

Lin et al. (2020) IF + DLNN MSE 0.003

Serial Models An et al. (2021) Adaboost-PSO-ELM MSE 1308.6

RMSE 36.1751

MAPE 0.0180

MAE 24.9379

MBE 0.1356

RMBE 0.0864

R2 0.9959

Zhang (2022) BPNN, RBFNN, Bayesian method MAE 123.927

103.621

101.725

RMSE 51.396

38.537

28.453

Parallel Models Netsanet et al. (2018) ANN, ANFIS, SVM MAE 34.53

43.59

32.97

NMSE 1.65

3.17

1.65

Wang (2019) NARX-MLP, SVM RMSE 0.1046

0.1435

MAE 0.0918

(Continued on following page)
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Netsanet et al. (2018) further divided the weight distribution
methods into three categories: Simple Averaging, Regulation, and
Outperformance. Simple averaging is the simplest hybrid method,
and the final prediction result is the arithmetic average of all
prediction results. It is very popular in many studies, especially
in business prediction (Clemen, 1989). Although it is easy to
implement and explain simple averaging, it has a disadvantage in
that it assigns predefined weights to a single model, regardless of the
relative performance of the models. Regression considers the
prediction performance of a single model. It assigns optimal
weights to the models by ignoring their Sum of squares due to
error (SSE), which ensures that models with larger prediction errors
receive smaller weights, and vice versa. In the Outperformance
method, the relative past performance of the hybrid models is
measured based on the square of the loss function, and the
models are weighted based on this.

Overall, the AI-based methods currently used in the field of
WPP for wind turbine are mainly traditional machine learning
methods and a few early deep learning methods, including RNN
and LSTM. The main hybrid models used are fixed weight-based
models with the same training set. Therefore, the research on AI-
based methods for predicting the power of wind turbines is not in-
depth and cutting-edge, and there is significant room for
development and research.

3 AI-based wind power prediction
models for wind farm

Compared to power prediction for wind farms, the cost of power
prediction for each single wind turbine is very high. Therefore, there
is currently less research on AI-based WPP models for the single
wind turbine, andmore research focuses on the wind farm. Thus, the
research on models and technical routes in WPP for wind farm are
more in-depth and cutting-edge. For example, some improved
traditional machine learning models, as well as the hot
traditional machine learning and leading-edge deep learning
methods in recent years, such as ELM, AE, AM, GAN, etc., have
been studied inWPP for wind farm, but are less involved inWPP for
wind turbine. Next, the application of traditional machine learning
models, deep learning models, and hybrid models to WPP for the
wind farm will be introduced.

3.1 Traditional machine learning models

K-means, hierarchical clustering, Gaussian mixture model
(GMM), and Self-organizing maps (SOM) are widely used
unsupervised algorithms in WPP for the wind farm, which are

often applied to pattern recognition of prediction scenarios.
K-means is a classical algorithm, and Sun et al. (2019) used
K-means to split the data into an ensemble of components with
a similar fluctuant level of each sub-layer. Wang et al. (2020)
combined SOM clustering and K-fold cross-validation. And the
training samples were classified according to data distribution
characteristics, improving the prediction ability of different basis
learners in WPP models.

The classical supervised learning models used in WPP for the
wind farm are similar to those used for the wind turbine, such as
traditional ANNs (Fan et al., 2008; Hu et al., 2022), SVM(Liu et al.,
2009; Wu and Peng, 2016; Zhang H. et al., 2020), GBDT (Ren et al.,
2022), and RF (Lahouar and Slama, 2017). Besides, some other
methods which are rarely used for a wind turbine in the literature,
such as GP, ELM, and Bayesian method, are usually used for wind
farms.

As mentioned in Section 2.1, SVM is a commonly used and
efficient algorithm. Compared with WPP for wind turbine, the
research on SVM in WPP for wind farm is more in-depth. The
improved SVM including piecewise support vector machine
(PSVM) (Liu et al., 2009), least absolute shrinkage and
selection operator (LSSVM) (Zhang H. et al., 2020), v-support
vector regression with Gaussian noise (GN-SVR), and Noise-
SVR, were proposed to improve the precision of WPP. For
example, LSSVM has improved in terms of computational
efficiency and convergence accuracy. Wu and Peng (2016)
proposed a WPP model by combining LSSVM, principal
component analysis (PCA), and bate algorithm (BA). And the
proposed model had been demonstrated to outperform other
models through comparative analysis. GN-SVR is optimal only
when the noise follows a Gaussian distribution, while the noise of
wind power usually follows a beta distribution, Laplace
distribution, etc., but does not follow a Gaussian distribution.
To solve this problem, Noise-SVR (Hu et al., 2014) was proposed
to determine the loss function according to the probability
distribution of noise.

ELM is a NN with a single hidden layer and can quickly obtain
the optimal solution by optimizing the weights of input layer and the
threshold of hidden layer; However, ELM is also prone to overfitting.
Kernel ELM (KELM) is an improved ELM, which adds the kernel
function to ELM, so KELM enhances the generalization and has a
more stable performance, while also having the same solution speed
as ELM. In research, optimization algorithms such as PSO and GA
are often used to optimize the parameters of ELM and KELM, in
order to avoid blindly training the model. For example, Shan et al.
(2022) utilized the improved artificial bee colon to optimize the
parameters of KELM. Then the model was used to predict short-
term wind power. The optimization of parameters could effectively
improve the prediction accuracy.

TABLE 2 (Continued) Some AI-based WPP models for wind turbine in the literature.

Type Article Method Evaluation metric Evaluation value
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MAPE 4.984

6.411
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FIGURE 3
Structure of serial models. (A) Structure of Boosting algorithm in ensemble learning. (B) Structure of Fusion prediction model.

FIGURE 4
Structure of parallel models. (A) Structure of Bagging algorithm in ensemble learning. (B) Structure of Weight-based models with the same training
set. (C) Weighted-based models with signal processing methods.
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The Bayesian method adds the prior information of parameters
to the likelihood function, so it makes full use of the prior
information of model parameters in addition to the sample
information, thus improving the prediction accuracy. In addition,
the Bayesian method show good robustness when processing small
sample problem, so it is commonly used in the probabilistic
prediction of WP for wind farms. Yang et al. (2017) constructed
the Rough Set-PSO-Naive Bayesian model for WPP. A Naive
Bayesian classifier was built to obtain the prediction power class.
PSO was applied to optimize the output weight of Naive Bayesian.

Gaussian Process (GP) is a method based on Bayesian theory
and statistical theory. It is a non-parametric model, and its
parameters can be independently obtained during the learning
process (Yan et al., 2017a). Therefore, compared to many other
machine learning methods, a significant advantage of GP is that it
can integrate many machine learning tasks, including model
training, parameter estimation, and uncertainty estimation, so the
regression process of GP has been greatly simplified, and the
outcomes are less influenced by subjectivity and more
interpretable. Moreover, it has a strong generalization ability for
nonlinear, high-dimensional, especially small sample complex
problems. Liu et al. (2018) used GP to provide a new approach
for short-term WPP under the missing data scenario. GP models
were established to evaluate the performance of various missing
patterns in WPP in the literature.

In summary, traditional machine learning models can
adaptively learn the characteristics of data and predict nonlinear
WP data accurately. Compared with physical models and traditional
statistical models, it has a better prediction performance. However,
these models have limitations in expressing complex data and fully
reflecting the characteristics of data (Wei et al., 2023).

3.2 Deep learning models

In recent years, with the rapid development of big data
technology, deep learning methods have demonstrated great
potential in modeling and predicting. Many advanced models
based on deep learning have emerged, and related technologies
have become a hot spot in WPP for wind farms. Compared with the
deep learning models used inWPP for wind turbines, these for wind
farms are studied more deeply in the literature and have been
applied in many processes of WPP, such as feature extraction
and relationship learning. Deep learning models for wind farms
mainly include AE-based models, RBM-based models, CNN-based
models, RNN-based models, and Transformer, which will be
introduced separately. And some traditional machine learning
and deep learning WPP methods for wind farm in the literature
are shown in Table 3.

AE is one of the most popular DNNs used in unsupervised
learning. It compresses the original data into latent spatial features,
and then reconstructs the output. Currently, the original form of AE
is rarely employed for feature extraction inWPP for wind farms, and
many variants of AE have been commonly used, such as stacked
auto-encoder (SAE), stacked sparse auto-encoder (SSAE), SDAE,
and so on. There are two major processes for training the variants of
AE for feature extraction: unsupervised layer-wise pre-training and
supervised fine-tuning (Khodayar et al., 2017). SAE is a deep

multilayer NN formed by stacking multiple AEs (Jaseena and
Kovoor, 2020). By extracting important information from
features through SAE, the WPP results of models are more
stable. For example, Jiao et al. (2018) established an SAE to
extract features from the data sequence samples and used the
subsequent loss function to obtain the optimal initial connection
weights of the NN. SSAE has a structure in which different sparse
AEs are stacked. Using the sparse constraint, SSAE can generate
features that are both sparse and succinct, so it can obtain suitable
features for WPP. Li D. et al. (2022) used SSAE to extract the spatial
independent features of multi-dimensional WP, which were used as
prediction objects to predict separately. Finally, the results of feature
prediction were reconstructed and decoded to obtain the power
prediction results of multiple wind farms. DAE adds noise to the
input data of AE, and then DAE learns to denoise and regenerates
undamaged input data to obtain more robust feature
representations. By stacking several DAEs, SDAE is constructed.
SDAE can simulate spatial correlation and interdependence among
wind farms, improving NWP accuracy for WPP (Peng et al., 2020).

Restricted boltzmann machine (RBM) is an energy-based NN
and has a strong capacity for unsupervised learning (Huang et al.,
2018). DBN is a probability-generation model formed by stacking
several RBMs. Every RBM in DBN is a feature extractor, so DBN can
be employed for high-dimensional feature extraction and is also
often used in WPP for wind farms. The training process of a DBN is
similar to that of AE-based models. Besides, dropout can be used to
prevent over-fitting in the training stage (Hinton et al., 2012). Some
scholars have studied the improved DBN to improve the prediction
accuracy. For example, Shuai et al. (2021) added Gaussian function
to RBM and created the improved DBN to correct WS.

CNN has a powerful ability to extract features, and has been
used for feature extraction and relationship learning inWPP for the
wind farm. CNN models can be divided into 1D-CNN, 2D-CNN
and, 3D-CNN. The kernels used in these networks move in one,
two, and three directions, respectively. 1D-CNN is mainly used for
vectors. Xue et al. (2019) proposed an ultra-short-termWPP model
based on CNN and GRU. 1D-CNN was utilized to reduce the
output of the calculation model and overcome the problem of
gradient explosion and disappearance during training. Unlike 1D-
CNN, the input and kernel of 2D-CNN are both matrices, so many
methods have been proposed to formmatrix inputs (Yu et al., 2019;
Yu et al., 2020). A 3D-CNN can extract useful features from tensors.
Therefore, the information obtained from 3D-CNN is more
comprehensive than that got from 1D-CNN and 2D-CNN.
Kazutoshi et al. (2018) proposed a model based on 3D-CNN to
automatically extract the spatio-temporal features of NWP data.
However, 2D-CNN extracts spatial features and 1D-CNN extracts
simple pattern features from the data. But the training of 3D CNN
incurs a higher computational cost compared to 1D-CNN and 2D-
CNN (Hong and Satriani). Besides, some studies use CNN for
relationship learning in WPP (Sheng et al., 2023). In recent studies,
it has been found that some simple CNN-based models such as
Temporal convolutional network (TCN) (Wang, 2021) and
residuals-based CNN (Yildiz et al., 2021) are more effective than
RNNs such as LSTM in different sequence modeling tasks.
However, most of the above prediction models are still one-step
predictions for WPP, and the results are insufficient to support
practical applications (Wu et al., 2022).
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TABLE 3 Some traditional machine learning and deep learning WPP methods for wind farm in the literature.

Type Article Method Evaluation metric Evaluation value

Traditional Machine Learning Sun et al. (2019) K-means MRE 0.007

RMSE 688.97

PMRE 50.00

PRMSE 29.29

Wang et al. (2020) SOM MAPE 10.7260

RMSE 50.0437

Wu and Peng (2016) LSSVM RMSE 4.9528

MAE 4.4376

MAPE 36.72%

Ren et al. (2022) LightGBM MAPE 1.276%

RMSE 0.0105

Lahouar and Slama (2017) RF MAE 1.8900

RMSE 2.9989

MXE 28.2117

NMAE 3.5000

MAPE 16.5648

MASE 0.8243

R2 0.9726

Shan et al. (2022) KELM MAE 0.3384

MAPE 1.0554

RMSE 0.5436

Liu et al. (2018) GP Regression RMSE 1.7362

MAE 0.9610

Yang et al. (2017) RS-PSO-NBC PICP 90.45

PINAW 271.6239

Deep Learning Jiao et al. (2018) SAE MAE 110.73

RMSE 141.12

MAPE 15.96

Li et al. (2022a) SSAE RMSE 8.51

MAPE 4.79%

Shuai et al. (2021) GBRBM-DBN RMSE 4.0315

MAPE 0.3251

MAE 5.0028

Wang et al. (2018) DBN NMAE 0.0389

NRMSE 0.0475

Xue et al. (2019) 1D-CNN RMSE 1.248

Yildiz et al. (2021) residuals-based CNN MAE 0.0376

RMSE 0.0499

(Continued on following page)
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Similar to WPP for wind turbines, LSTM is also widely used for
wind farms. LSTM can well solve the long-term dependence
problem of sequences, and many studies (Yuan et al., 2019;
Ewees et al., 2022) have shown that compared to other
prediction methods, LSTM has a higher accuracy in WPP,
verifying that LSTM is feasible and valid in WPP for wind farms.

Some scholars have proposed methods to optimize LSTM in order to
overcome its shortcomings and improve the accuracy of WPP. For
example, Ewees et al. (2022) used heap based optimizer (HBO) to
optimize the super parameters of LSTM. To overcome the
disadvantage of LSTM not being able to capture the correlation
of long sequences well, the structure of RNN-skip was proposed in

TABLE 3 (Continued) Some traditional machine learning and deep learning WPP methods for wind farm in the literature.

Type Article Method Evaluation metric Evaluation value

SMAPE 0.2532

R (Correlation Coefficient) 0.9744

Ewees et al. (2022) HBO-LSTM MAE 0.032507

RMSE 0.045809

R2 0.962618

MARE 0.786838

Xiong et al. (2023) BiLSTM MAE 1.2344

RMSE 1.4077

MAPE 121.6862

R2 1.2344

Farah et al. (2022) GRU MAE 44.017

RMSE 97.69

Yu et al. (2023) RF-WOA-VMD-BiGRU-Attention MAE 0.4954

RMSE 0.6513

MAPE 4.57%

R2 0.9987

MSE 0.4242

Wang et al. (2019a) two-stage AM + Encoder-Decoder MAE 131.11

MAPE 2.66

IR 86

AIW 215.88

Meng et al. (2021) TA + GRU MAE 0.58084

RMSE 0.77918

R2 0.85647

Zhang et al. (2020b) AM + Seq2Seq MAE 81.1

RMSE 129.3

Wang et al. (2023) Generative transformer ECP 93.74%

AW 0.552

Sw 0.732

Zhang et al. (2022) C-DCGAN MAE 1.35

RMSE 1.17

R2 0.69

Hu et al. (2020) DeepESN RMSE 0.1378

MAPE 0.28
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the LSTNet model (Lai et al., 2018). Moreover, other common types
of RNNs, such as GRU, bidirectional LSTM (BiLSTM), and
bidirectional GRU (BiGRU), are also used in WPP for wind
farms. BiLSTM has two distinct hidden layers, which process
sequential data in both forward and backward directions. By this
structure, BiLSTM considers both past and future information from
the time series, so generally speaking, it has better prediction
performance than LSTM but requires more computational costs.

GRU is a variant of LSTMand its base steps are shown in Figure 2B,
which also can solve the problem of gradient disappearance and
explosion. And compared with LSTM, GRU does not have a
dedicated memory cell, so GRU has a simpler structure, making it
be trained faster than LSTM. But LSTMhas a better performance for the
dataset with longer sequences. Besides, the variants of GRU such as
BiGRU and convolutional GRU (ConvGRU) have also been used in
WPP for wind farms. BiGRU has a structure that is similar to that of
BiLSTM. Besides, ConvGRU changes the calculation method of
activation function δ and tanh from full connection to convolution,
which can extract and utilize spatio-temporal information at the same
time (Sun et al., 2022). Thus, ConvGRU is also suitable for power
prediction for regional wind farms. Despite RNN and their variants can
deeply mine and predict long-series WP, most of them are unable to
efficiently remember important information of long-series historical
data, leading to a decrease in accuracy of multi-step WPP. Thus, AM
was proposed and studied by many scholars.

The common structure of AM is shown in Figure 5A. AM can
focus on crucial information with a significant weight, ignore

insignificant information with a low weight, and continuously
adjust the weight to make it possible to facilitate the
prioritization of relevant information in varied conditions, so AM
has higher scalability and robustness (Hao et al., 2019). In recent
years, AM has been widely used in various prediction tasks. In the
field of WPP, AM is often combined with RNN, LSTM, GRU and
their variants, and Encoder-Decoder. To effectively extract the long-
term dependencies of multivariate data from NWP data, the
Attention-GRU model (Niu et al., 2020) and multi-source and
temporal attention network (Zhang H. et al., 2021) were
proposed to improve the accuracy of multi-step WPP, but this
led to new problems such as spatial complexity. In order to well deal
with the nonlinear mapping relationship between WP and multiple
meteorological factors and strengthen the trend characteristic of
wind power, Wang X. et al. (2019) established a short-term WPP
model based on two-stage AM and Encoder-Decoder. A feature AM
was used in the Encoder and a temporal AM was applied in the
Decoder. Some scholars combine AI technology to optimize model
parameters. For example, Meng et al. (2021) combined Temporal
attention (TA) and GRU to accelerate the early mining of the
temporal correlation of input sequences. And Dynamic chatic
crisscross optimization (DCCSO) was proposed to optimistic the
initial weights and thresholds of TA-GRU. Considering the issue of
excessive features from NWP data and historical wind data, Zhang
Y. et al. (2020) used t-distributed stochastic neighbor embedding
(t-SNE) to reduce the feature dimension. Then Encoder-Decoder
with AM was built for each cluster for WPP. And the structure of

FIGURE 5
Structure of AM and encoder-decoder. (A) Attention common structure. (B) Encoder-Decoder common structure.
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Encoder-Decoder is shown in Figure 5B. Recent years, one of the
representative models for multi-step WPP is Encoder-Decoder with
AM, which can enhance the screening ability and memory level of
important information over long distances, thereby improving the
accuracy of multi-step WPP. Thus, the model is suitable for ultra-
short-term and short-term WPP in practice. However, its training
efficiency is low because the model cannot support parallel
operations. To overcome the limitations of the aforementioned
models, Transformer was proposed.

As shown in Figure 6, Transformer has the self-attention
mechanism. By utilizing it, Transformer can fully utilize the
dependency structure of the time series data, perceive global
information, and achieve effective encoding of input sequences.
This can preserve more effective information and improve training
efficiency through parallel operations, so compared with LSTM and
GRU, Transformer can model the time series features of both long-
term and short-term, which has become a research hotspot in the
multi-step WPP (Pan et al., 2022; Ye et al., 2023). Wang et al. (2023)
proposed a conformal asymmetric multi-quantile generative
transformer to obtain the Prediction intervals (PIs) of WP. The
model effectively utilized the historical and future information by
the Encoder-Decoder structure and reduced the prediction error by
the generative output. However, Transformer still has some
shortcomings in predicting long time series, such as quadratic
time complexity, inherent limitations of Encoder-Decoder
architecture, and high memory usage. Regarding these issues,
Informer was proposed, which has sparse AM to reduce time
complexity and spatial memory overhead, and the improvements
of Encoder-Decoder architecture can enable the model to handle
longer time series inputs and improve computational efficiency. For
example, Wei et al. (2023) used Informer for ultra-short-term WPP
in the big data environment and confirmed that Informer had higher
prediction accuracy and computational efficiency than Transformer.

Considering the superiority of Informer in long sequence prediction,
Wang WG. (2022) proposed Informer for medium to long term
WPP and combined GCN to capture the spatio-temporal
dependencies of the data.

In addition to the popular DNN models above, some other deep
learning models have also been employed for WPP. GAN is
currently a hot spot in NNs for data generation. Its essence is the
game learning of generators and discriminators, which makes the
distribution of generated data approximate to the real data gradually
until ‘false and true’ (Shao et al., 2023). GAN can perform well even
with incomplete original data, but its generator is prone to
generating multiple distributed data. In order to solve this
problem, Yoon et al. (2018) proposed generative adversarial
imputation nets (GAIN), which added “hints” to the GAN to
provide additional information for the discriminator, so it can
fully explore the distribution characteristics of the original data.
However, GAIN does not consider the temporal characteristics
between data, so it is not suitable for wind data. To address this
issue, TimeGAN was proposed. It combined with an autoregression
model, so the model can capture the progressive dependencies
presented in real data, thereby preserving the dynamic time
series dependency of the data (Yoon et al., 2019). Moreover, Luo
et al. (2018) proposed GAN based on GRU for generating
multivariate temporal data to address this issue.

In summary, AE-based models, RBM-based models, and CNN-
based models are widely used for feature extraction inWPP for wind
farms. CNN-based models only have one supervised training
process, while AE-based models and RBM-based models have
unsupervised layer-wise pre-training and supervised fine-tuning.
Besides, various variants of RNNs, AM, and Transformer are usually
used for relationship learning in WPP. LSTM and GRU are more
commonly used for WPP in RNNs. And in practice, LSTM is more
suitable when better prediction accuracy is desired, whereas GRU is
preferable when less memory usage but the faster calculation speed
is needed. AM is usually used to combine with different types of
RNNs and Encoder-Decoder, which can improve the accuracy of
multi-step WPP. With the development of AI technology,
Transformer has the advantage of RNNs and improves training
efficiency. It and its variant will be a hot spot in future research on
multi-step WPP for wind farms.

3.3 Hybrid models

Similar to the hybrid models for the wind turbine, these for wind
farm are also divided into serial models and parallel models. But the
methods and technical routes have been studied more widely and
deeply. For example, some dynamic weight-based models and
weight-based models with signal processing are often used in
WPP for wind farm, but are rarely used in WPP for wind
turbine. And Some hybrid WPP methods for wind farm in the
literature are shown in Table 4.

3.3.1 Serial models
The Boosting algorithm in ensemble learning is also included in

the serial models for wind farms. Hu et al. (2017) proposed a WPP
model based on improved AdaBoost.RT and KELM, to enhance the
performance of weak learning algorithms effectively. And the

FIGURE 6
Structure of transformer.
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TABLE 4 Some hybrid WPP methods for wind farm in the literature.

Type Article Method Evaluation metric Evaluation value

Serial Models Hu et al. (2017) AdaBoost.RT + BA-KELM NRMSE 7.945

Chen (2022) AdaBoost + RF NMAE 33.94%

NRMSE 24.90%

Ding et al. (2022) XGBoost + RF NMAE 9.23

Ma and Mei (2022) Time2Vec + CNN + AM + BiLSTM MAE 3.75393

RMSE 5.8807

MSE 3.46694

R2 0.97497

Han et al. (2019) Copula + LSTM MAPE 14.87%

RMSPE 17.94%

Parallel Models Tahmasebifar et al. (2020) WT + ELM + PSO RMSE 0.95

MAE 0.71

ACE 1.43

PINAW 6.79

Zhang et al. (2016) BFITC-GPR RMSE 142.77

MAE 0.21

Zhong et al. (2022) cross-entropy + gray correlation + ELM + LSTM RMSE 0.0902

MAE 0.0551

Wang (2022a) GIOWA + VMD-3LSTM + VMD-5LSTM RMSE 5.84

MAE 4.55

R2 0.962

Lu et al. (2021b) variance strategy + ELM + LSSVM + ICS NMAE 7.31

NRMSE 10.67

AR 89.33

QR 97.58

Lu et al. (2021a) VMD-WPE + CNN + LSTM NMAE 3.72

NRMSE 4.19

AR 91.05

R 0.9104

Shao et al. (2022) SSA + ARFTCAN RMSE 0.0085

MAPE 0.0305

R2 0.9975

He and Wang (2021) EEMD-LASSO-QRNN MAE 40.63

RMSE 57.92

MAPE 4.82

PINAW 18.50%

PICP 100

CRPS 365.07
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prediction results proved excellent accuracy and generalization
performance of the proposed approach. But the NWP data input
to the model only included WP, WS, and temperature. To address
this issue, Chen (2022) considered various wind meteorological
characteristics and proposed a two-layer structure consisting of
four clustering algorithms in the first layer and AdaBoost in the
second layer for WPP. And the RF was utilized as a weak learner for
AdaBoost.

Fusion prediction models for wind farms are more widely
studied than those for wind turbines (Han et al., 2019; Ding
et al., 2022; Ma and Mei, 2022; Xiang et al., 2022; Yin and Liu,
2022). In research, the process of error correction is often in the
fusion prediction models, and statistical methods and machine
learning methods are often used for error estimation. For
example, Zhang et al. (2014) used Markov to modify the
prediction results of fuzzy neural networks; Ding et al. (2022)
first established a WPP model with XGBoost, then trained RF
separately with WPP errors of different wind speed bands, and
finally obtained short-term WPP results based on error correction.
The process of error correction can quantify the magnitude of model
error and the uncertainty of data noise, thereby improving the
prediction accuracy. With the development of AI technology, hybrid
deep learning models including different DNNs are widely studied,
in which every DNN specializes in a specific aspect of the prediction
task in order to optimize its unique strengths. Thus, hybrid deep
learning models can integrate and streamline the laborious
decomposition process, thereby improving the prediction
accuracy and computational efficiency. For example, Ma and Mei
(2022) combined Time2Vec, CNN, AM, and BiLSTM to propose a
hybrid deep learning model for WPP, and the simulation
demonstrated the validity and applicability of the proposed model.

3.3.2 Parallel models
Compared with the parallel models for a wind turbine, the

classification of the models for the wind farm is similar but also has
some differences.

The Bagging algorithm in ensemble learning is more used in
WPP for wind farms. Tahmasebifar et al. (2020) established a
Bagging ensemble model by combining WT and ELM to get
prediction points and PIs of WP. Zhang et al. (2016) proposed a
hybrid model based on GP and Bagging for WPP. And fully
independent training conditional (FITC) was introduced to
improve GP.

Weight-based models with the same training set are also widely
used for wind farms. The challenge lies in determining the weight
coefficients for each model. As described in Section 2.3, most
weight-based models used for wind turbines are fixed weight-
based models, while the models for wind farms not only include
fixed weight-based models but also include dynamic weight-based
models. For the fixed weight-based models for wind farms, not only
some methods similar to those used for wind turbines have been
adopted, but also optimal weight selection has been achieved
through the application of rough set theory (Yan, 2021) and
intelligent optimization approaches (Heng, 2020). Although fixed
weight-based models can improve the accuracy of WPP to some
extent, they cannot adjust the weights of hybrid methods in time and
have certain limitations. In dynamic weight-based models, the
weight assigned to each individual base prediction model is

dependent on the data being analyzed. And the cross-entropy
theory (Chen et al., 2012) and GIOWA (Wang S., 2022) have
been used in the models. For example, Zhong et al. (2022) used
historical similarity, the cross-entropy theory, and the gray
correlation algorithm to allocate the weights of ELM and LSTM
in the hybrid models for WPP.

In WPP for wind farms, in addition to the weight-based
models with the same training set, it is also a common technical
route to decompose the original sequence first, then model and
predict the WP separately for different sub-sequences, and finally
weight them. And Figure 4C shows the structure. In this technical
route, wavelet decomposition (WD), variational modal
decomposition (VMD), EMD, and singular spectrum analysis
(SSA) are usually used. For example, Lu et al. (2021a) used VMD-
Weighted permutation entropy to decompose the WP sequence
and then input sub-sequences into four independent CNN-LSTM
networks for deterministic prediction. In order to get more
comprehensive and reliable outcomes for probabilistic
prediction; He and Wang (2021) used ensemble empirical
mode decomposition (EEMD) to decompose intricate original
data and combined LASSO and quantile RNN (QRNN). So as to
extract features automatically and obtain stable and robust
performance for long sequence prediction, Shao et al. (2022)
used SSA to decompose the WP sequence and integrated adaptive
receptive field (ARF) into temporal convolutional attention
network (TCAN).

In summary, hybrid models can integrate the characteristics of
different prediction methods, making them widely used in WPP for
wind farms. And hybrid models have many different structures.
Serial models need higher computational expenses, while parallel
models need less.

From the above description, it can be seen that there are various
types of AI-basedmethods forWPP, but currently there is no unified
optimization selection method and standard. In addition, there are
differences in the construction time, geographical factors, and
historical data accumulation of different wind farms, so it is easy
to choose the prediction model improperly in practice. To address
this issue, it is necessary to conduct experiments based on multiple
methods and select appropriate methods based on the prediction
results. However, preliminary selection of methods can be made
based on wind data characteristics and different requirements for
the prediction accuracy, computational cost, computational
efficiency, etc. In practice, if the size of the dataset is small, more
attention needs to be paid to the generalization of the prediction
model. Therefore, the traditional machine learning models can be
prioritized to predict the wind power. SVM and GBDT generally
show better generalization ability, thus may have better prediction
performance when the dataset is not sufficiently large. When the size
of the dataset is large enough, different deep learning models and
hybrid models can be selected. Generally speaking, Encoder-
Decoder with AM, Transformer and Informer can achieve good
prediction results in multi-step WPP. Therefore, in ultra short and
short-term prediction, if there is a demand for fewer computational
costs, Encoder-Decoder with AM can be prioritized, while the neural
networks in Encoder and Decoder can prioritize GRU; if better
prediction performance and computational efficiency are desired,
priority can be given to Transformer, Informer, and hybrid models
that combine them with other methods. In medium to long term
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prediction, Informer can have better prediction accuracy, so
Informer and hybrid models that combine Informer with other
methods can be given priority consideration.

4 Wind power prediction methods for
regional wind farms

With the rapid development of wind power, the distribution
scale of wind farms has gradually developed from small-scale and
decentralized to large-scale and regional (Liu et al., 2014), and the
demand for WPP will also gradually evolve from farm-based to
regional. Although the WPP for regional wind farms can refer to the
power prediction experience and method practice of wind turbines
and wind farms, there are still special requirements and optimal
practice methods for its power prediction.

Compared with wind turbines and wind farms, WPP for regional
wind farms requires more data to support model training and prediction
analysis. Because of the increasing number of wind turbines, the spatial
dependence between different wind farms is more complex, so it is
necessary to make a comprehensive analysis from the perspective of time
and space to further improve the prediction accuracy. For the
characteristics of power data, the regional data has good smoothness,
while the power data of wind turbines have relatively large fluctuation. In
terms of prediction accuracy, regional power prediction not only focuses
on the accuracy of point prediction but also pays more attention to the
accuracy of the overall prediction trend, which is more in line with the
load distribution and scheduling arrangements of the power system
(Gang et al., 2016). The WPP for regional wind farms is more
challenging.

The methods and practices in WPP for regional wind farms are
analyzed in detail in this section. The methods for regional wind
farms mainly include the accumulation method, upscaling method,
and spatial resources matching method (Ye and Zhao, 2014; Zhao
and Ye, 2015; Peng X. et al., 2017) The upscaling method can be
grouped into the physical upscaling method and statistical upscaling
method, as shown in Figure 7.

4.1 Accumulation method

The accumulation method is the most classical in WPP for
regional wind farms. The WPP results of wind turbines and wind
farms are directly used, and the power prediction results of each
wind farm are added to obtain the power prediction result of the
regional. The WPP methods for wind turbines and wind farms can
be directly used in the accumulation method. The process of the
accumulation method is shown in Figure 8. Bai et al. (2010) used the
accumulation method to study the problem of regional power
prediction in Inner Mongolia. But the experiment showed that
the prediction results had a strong dependence on the data
quality, and the results were not satisfactory.

The accumulation method has obvious limitations (Wang et al.,
2017). A separate WPP model for each wind farm needs to be
established in the method, so when the regional scale is large, the
storage of modeling data and model training consumes huge
resources. Independent modeling of each wind farm has more
stringent requirements on data quality, which requires each wind
farm to have sufficient modeling data. Therefore, when wind farms
have insufficient data, such as new wind farms or wind farms with

FIGURE 7
Wind power prediction models for regional wind farms.
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poor data quality, the WPP models can not be established normally.
In addition, the WPP results of regional wind farms are closely
related to the WPP accuracy of each wind farm. The disturbance of
any wind farm at any time will affect the fluctuation or mutation of
the WPP results for regional wind farms, which leads to poor
robustness of regional prediction results. Table 5 shows the
advantages and disadvantages of the accumulation method for
regional power prediction.

4.2 Upscaling method

To overcome the limitation of establishing one or more WPP
models for each wind farm in the accumulation method, the
upscaling method came into being. The core idea of the
upscaling method is to establish fewer WPP models for a single
wind farm and to obtain the accurate WP of the region through the
mapping relationship between theWPP results of these fewer typical
wind farms and the regional predicted power. In this way, the
requirements for the data quality of each wind farm in the region
and the accuracy of each prediction model are reduced. Therefore,
when the data quality and performance of the WPP model are good
in the wind farm, it can be selected as a typical wind farm.
Furthermore, more accurate WPP results can also be obtained if
the region contains wind farms with incomplete data (new wind
farms) or substandard data quality.

The upscaling method is divided into a physical upscaling
method and a statistical upscaling method (Tarroja et al., 2011;

Wang et al., 2017; Wang K. et al., 2021). The physical upscaling
method has a strong spatial dependence and generally requires the
construction of a WS/WP prediction model for a typical wind
turbine. Then, the WS/WP of multiple wind turbines is
calculated according to the topography, spatial information, and
wind turbine arrangement. Finally, the WPP result of the region is
obtained. The physical upscaling method requires accurate spatial
information, and the complexity of the algorithm increases with the
increase of regional scale. Therefore, the Statistical upscalingmethod
is more widely used.

The statistical upscaling method is divided into the direct
prediction method and the sub-region prediction method. In the
direct prediction method, the NWP data of a region are calculated by
the downscaling method, and then the mapping relationship
between the NWP data and the regional wind power is constructed.

The key to the direct prediction method is to establish the
temporal and spatial correlation between different wind farms, to
improve the prediction accuracy of the adjacent wind farm.
Benefiting from the rapid development of deep learning, the
model structure is constantly optimized and the model capacity
is constantly increasing, so it can learn the spatiotemporal
characteristics of different wind farms very efficiently. In
addition, some methods that are good at capturing spatio-
temporal information are more frequently used, such as spatio-
temporal convolutional network (STCN), GCN, ConvLSTM,
ConvGRU, etc. For example, Fan et al. (2020) studied WPP for
regional wind farms based on GCN, then used multiple historical
features as input and future regional power as a target to build a
prediction model. Dong et al. (2022) proposed STCN based on the
directed graph convolution structure. And it was formed by
combing GCN and TCN and could better learn the spatial and
temporal characteristics of multiple wind farms.

The detailed process of the sub-region prediction method is as
follows and shown in Figure 9: 1) By dividing the region into sub-
regions, the regional scale is further narrowed; 2) A typical wind
farm is selected from each sub-region as a reference wind farm; (3)
Building WPP models for the reference wind farm of each sub-
region; 4) According to the correlation between the reference wind
farm and each wind farm in the sub-region, the WPP result of each

FIGURE 8
Accumulation method for regional power prediction.

TABLE 5 Analysis of advantages and disadvantages of accumulation method.

Types Description

Applicable scope Small-scale regional

Calculated amount Larger

Data quality High dependency

Robustness Unstable
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sub-region is obtained by referring to the WPP result of the
reference wind farm; 5) The WPP results of each sub-region are
summed to obtain the WPP result of the whole region.

By the above process, more accurate WPP results for regional
wind farms can also be obtained when there are new wind farms in
the region. When the data of each wind farm in the region is
sufficient, the WPP models for each sub-region can be directly
carried out. Therefore, the problem that it is difficult to determine
the scaling factor in the process of getting the power of the sub-
region through the power of the target wind farm can be avoided. Yu
et al. (2022) divided the region into sub-regions based on the spatio-
temporal correlation of the region and then used the 1D-CNN-
BiLSTMmodel to predict theWP of each sub-region. After theWPP
results of the sub-regions were obtained, theWPP result of the whole
region was further obtained. Liu et al. (2021) used the regional
hierarchical clustering algorithm to determine the sub-regional
division of the region. And the local mode of the wind area was
considered to select the optimal partition, which further improved
the accuracy of region prediction.

Different from the direct prediction method, the sub-region
prediction method needs to construct multiple models, and the
number of models is determined by the sub-region division results.
Although the sub-region division brings more modeling costs, the
whole region can be managed more precisely through it, which
reduces the difficulty of model training. In addition, when the region
is large, the corresponding meteorological observation data are
difficult to fully cover the entire region. And it has a certain
impact on the accuracy of NWP data after downscaling. Through
the sub-regional division, the wind farm which is close to the
meteorological observation stations and has sufficient data can be
selected as the reference wind farm, which increases the accuracy of
the WPP models.

In addition, the sub-region prediction method has been
improved in the studies, which is further divided into static sub-
region prediction method and dynamic sub-region method (Yang
et al., 2021; Tu et al., 2022; Yang et al., 2022). And the key difference
is the sub-region division stage. The historical data are used to divide
sub-regions in the static sub-region prediction method. The general
division principles include the capacity of wind power,
administrative region, geographical location, wind resource

characteristics, etc. The sub-regions are divided according to the
above characteristics, and remain unchanged after division
Figure 10. The prediction data such as WS, wind direction, and
temperature in the NWP data are used to divide sub-regions in the
dynamic sub-region prediction method. That is to say, sub-regions
are divided into the prediction stage, and then the reference wind
farm selection and model training are started. Therefore, in the
dynamic sub-region prediction method, the sub-region division
results in the first prediction may be different from those in the
second prediction, so model training needs to be carried out in the
prediction stage. And it increases the frequency of model training
and limits the application prospects of the dynamic sub-region
prediction method. However, with the wide application of
transfer learning, it is expected to reduce training frequency
through transfer learning. Firstly, a whole model is trained, and
then the model is fine-tuned after the dynamic sub-regions are
obtained. On the premise of ensuring the accuracy of the model, the
training speed of the model is accelerated, and then the bottleneck of
the model training is broken through.

4.3 Spatial resources matching method

The spatial resources matching method was first proposed by
Lobo and Sanchez (2012), and its basic assumption is that under the
same spatial scale and similar wind resources, the WP of regions is
also similar. The spatial resources matching method compares the
similarity of wind resource characteristics of the region between the
prediction period and the historical period. Then, the power with
high similarity in the historical data is extracted, and the weights are
assigned to the power according to the similarity. Finally, the WPP
result of the region is obtained through the weighted summation
method. The spatial resources matching method is a popular region
prediction method in recent years. This method requires less
computational resources and has high accuracy, but it is difficult
to optimize model parameters. Peng XS. et al. (2017) proposed an
improved method, which considers the parameter of the historical
wind power output. And the selection method of equivalent
measurement power and the optimization method of the model
was proposed.

FIGURE 9
Sub-region prediction method.
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In summary, the main methods for regional power prediction
include the accumulation method, upscaling method, and spatial
resources matching method. Among them, the statistical upscaling
method is widely used. The spatial resources matching method is
newer andmore popular in recent years. In practice, if the distribution
of regional wind farms is sparse, the scale and capacity are small, and
the data quality is good, the accumulation method can be prioritized;
If the scale and capacity of the regional wind farms are large, priority
can be given to the statistical upscaling method. In addition,
employing dynamic spatio-temporal correlation analysis to cluster
regional wind farms and developing precise spatio-temporal
prediction models for sub-region can be effective strategies to
predict regional power output. And some methods that are good
at capturing spatio-temporal information can be prioritized, such as
STCN, and convolutional structures or CNN, combined with LSTM,
GRU, and their variants.

5 Performance evaluation metrics
of WPP

As can be seen from the above, the new algorithms and models
for WPP emerge endlessly at present, and there are various
performance evaluation metrics for deterministic models and
probabilistic models. And assessing the validity of a WPP model
is a crucial stage in its evolution. The performance evaluation
metrics of WPP which are most commonly used for
deterministic and probabilistic methods are shown below.

5.1 Accuracy of deterministic models

Many different kinds of performance evaluation metrics are
used in the literature to evaluate the prediction accuracy of
deterministic models. The most commonly used metrics are
shown below.

1. Mean absolute error (MAE)

MAE is the fundamental assessment metric of regression tasks.

MAE � 1
N

∑N
i�1

yi
∧ − yi

∣∣∣∣∣∣ ∣∣∣∣∣∣ (1)

Where y is the actual WP value, y
∧
is the predictedWP value, N is

the number of samples.

2. Root mean square error (RMSE)

RMSE is also a primary metric commonly used in the field of
WPP. In addition, NMAE and NRMSE are also usually used in the
literature.

RMSE �

�������������
1
N

∑N
i�1

yi
∧ − yi( )2

√√
(2)

3. Mean absolute percentage error (MAPE)

MAPE is defined as a percentage of the error but results in
disproportionately high values when the actual values approach
zero, and is not applicable when the actual value is zero. In order
to correct this disadvantage, improved versions of the MAPE
have been proposed and they are shown down below.

MAPE � 1
N

∑N
i�1

yi
∧ − yi

yi

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ · 100% (3)

4. Symmetric mean absolute percentage error (SMAPE)

SMAPE is based on the percentage errors to evaluate the
prediction accuracy, and it has prevented the shortcomings of
MAPE.

SMAPE � 1
N

∑N
i�1

2 · yi − yi
∧

∣∣∣∣∣∣ ∣∣∣∣∣∣
yi

∣∣∣∣ ∣∣∣∣ + yi
∧
∣∣∣∣∣∣ ∣∣∣∣∣∣ · 100% (4)

FIGURE 10
The process of spatial resources matching method.
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5. Mean arctangent absolute percentage error (MAAPE)

MAAPE (Kim and Kim, 2016) is another improved version of
MAPE. Based on the arctangent function, MAAPE has retained the
distinguishing features of MAPE while surmounting its
shortcomings.

MAAPE � 1
N

∑N
i�1

AAPEi( ) (5)

AAPEi � arctan
yi − yi

∧

yi

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣⎛⎝ ⎞⎠ (6)

6. Coefficient of determination (R2)

R2 is used to describe the characteristics of data changes. The
closer it is to 1, the better the model-fitting effect is.

R2 � 1 −
∑N
i�1

yi − yi
∧( )2

∑N
i�1

yi − y
−( )2 (7)

Where y
−
is the mean value of the real values.

7. Standard Deviation Error (SDE)

SDE refers to the fluctuation amplitude of errors over a period,
which can reflect the dispersion degree of the data.

SDE �

����������������
1
N

∑N
i�1

yi − yi
∧ − ε

−( )2

√√
(8)

Where ε
−
is the average value of the errors.

5.2 Accuracy of probabilistic models

Probabilistic models are also a hot spot in WPP. However, it is a
more challenging task to assess the prediction performance of
probabilistic models, as the prediction values cannot be
straightforwardly compared to the actual values, and multiple
criteria, including various properties of the prediction values, need
to be considered to evaluate the reliability of such models. The most
common evaluationmetrics for probabilisticmodels are shown below.

1. Prediction interval nominal confidence (PINC)

PINC � 1 − α( ) · 100% (9)
Where α is the significance level.

2. Prediction interval coverage probability (PICP)

PICP measures exclusively the reliability of the PI. It accounts
for the average of target values covered by the interval.

PICP � 1
N

∑N
i�1
ci (10)

ci � 1, if yi ∈Iai
∧

0, otherwise

⎧⎨⎩ (11)

Iai
∧ � Ua

i

∧ − La
i

∧
(12)

Where Ua
i

∧
and Lai

∧
are the upper and lower boundaries of the PI

respectively.

3. Prediction interval normalized averaged width (PINAW)

PINAW represents the average of the PI width and also can be
used as the primary measure for assessing the reliability of the
prediction model.

PINAW � 1
NR

∑N
i�1
Iai
∧

(13)

Where R is the range of the target variable.

4. Coverage width based criterion (CWC)

CWC ismerged by the PICP and the PINAW. η和 γ in Eq. 14 are
two controlling hyper-parameters that determine the extent to
which invalid PIs are penalized.

CWC � PINAW 1 + γ PICP( )e−η PICP−μ( )[ ] (14)

Where γ(PICP) is a piecewise-defined function that is determined
by the values of PICP and μ.

γ PICP( ) � 0, if PICP≥ μ
1, if PICP< μ

{ (15)

5. ACE (Average coverage error)

ACE is a measure of the reliability of a PI, with lower values
indicating a higher degree of reliability. This metric adds an extra
layer of insight beyond the PICP, as a larger PICP does not always
correspond to a more optimal PINC (Pinson, 2010).

ACE � PICP − PINC (16)
In summary, MAE and RMSE are always used in the

deterministic models, and NMAE, NRMSE, and MAPE are
usually used. But MAPE has obvious shortcomings, so many
variants of MAPE have been studied and proposed. In the
probabilistic models, PICP and PINAW are always applied in the
recent literature, and they provide direct information regarding
coverage and width.

6 Discussion and future work

Over the past few decades, demand for more accurate WPP has
driven more and more research work, and there is no sign that this
trend is slowing down. It was observed that in recent years, the
research on AI-based WPP models has focused on a single wind
farm and regional wind farms, while the research on WPP for wind
turbines is relatively few, which cannot meet the needs of accurate
and fast power supply for the distributed wind turbine. For wind
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turbines and wind farms, hybrid models for WPP will be the hot
research direction in the future. It can combine various advanced
prediction models based on existing methods, improving the
accuracy of WPP in different time scales and different
environments. For regional wind farms, the prediction accuracy
of the models for WPP needs to be analyzed from both time and
space perspectives, and the main methods include the accumulation
method, upscaling method, and spatial resources matching method.
Among them, the statistical upscaling method is commonly used in
WPP for regional wind farms. Besides, according to the performance
evaluation metrics of WPP, MAE and RMSE are commonly used for
deterministic models, while PICP and PINAW are often used in
probabilistic models to evaluate the prediction accuracy of the
model.

At present, there are still some problems in AI-based WPP
models.

1. Poor quality of original data: AI technology is data-driven, so
data quality determines the prediction performance of AI-based
models. But in practical applications, the data obtained from
wind turbines and farms may be incomplete due to various
factors such as measurement errors, sensors malfunction, and
operational errors. Hence, it is challenging to address the issue of
WPP in the presence of missing data (Liu et al., 2018). In
addition, the current NWP-based WPP models have become
the mainstream, but it is difficult to provide accurate micro-
meteorological data for each wind turbine and the wind farm in
real practice, which results in poor prediction accuracy of the
models;

2. Insufficient feature engineering:In real practice, the fluctuations
of WP may be caused by many factors. But currently, WPP
models always utilize WS, often wind directions, and sometimes
temperature, air pressure, and humidity as the meteorological
inputs in the literature, while more factors, such as the turbulence
or stability measures, are rarely considered as input, but the
impact that these factors have on the electricity generation of
turbine and wind farm has been well documented in the literature
(Martin et al., 2016);

3. Poor generalization of WPP models: Currently, although a large
number of WPP models have been proposed, they tend to be
highly dependent on data and prediction scenarios, and have
poor robustness. When the environmental parameters and
operating conditions of a wind turbine or wind farm change
significantly, the prediction accuracy of the models may
significantly reduce;

4. Lack of standardized validation methods for AI-based WPP
models: As can be seen from the above, there are many
different AI-based WPP models in the current research, but
the datasets used in the models are different. And the prediction
scenarios and evaluation metrics are also inconsistent, and the
performance of the models may be over-fitted. Therefore, it is
difficult to compare the actual generalization effects of prediction
methods, and it is urgent to establish a unified evaluation
standard.

Therefore, potential future research direction of AI-based WPP
models can arise from the following aspects.

1. Data quality control: Because direct use of the original data for
model training increases the uncertainty of the results, the
original data needs to be processed before building the WPP
models. In addition, it is necessary to consider as many prediction
meteorological data sources as possible, realizing real-time
prediction and using data assimilation techniques to improve
the accuracy of input data, thereby reducing the error of
prediction results;

2. More comprehensive feature engineering: many studies show
that the choice of variables is very important, so exploring more
candidate features that impact WP variations, such as
topographical and meteorological features, will beneficial to
improve the accuracy of WPP. To obtain this information,
appropriate sensors can be installed at the wind turbine and
wind farms for data collection;

3. Adaptive learning of WPP models: With the development of
large data and AI technology, WPP models can adjust the
parameters and structure of models adaptively and
dynamically based on technologies such as automatic
feature engineering and automatic machine learning, to
keep high prediction accuracy even when the environment
changes unexpectedly. For example, by introducing dynamic
optimization algorithms such as reinforcement learning, the
real-time interaction between model parameters and the
environmental condition can be achieved. And the strategy
of the models can be adjusted in time according to the
feedback of the scene and the parameters can be
dynamically learned, which will be a new research hotspot
in the future;

4. Establishment of standardization validation methods for AI-
based WPP models: Up to now, there is no more scientific
method to test the generalization of the WPP models in the
research, which is not beneficial to the rapid promotion of
advanced models and methods in academia to the industry.
Therefore, it will be an important direction in the future to
establish standardization validation methods for WPP
models. It can be used to validate and compare the actual
prediction performance and generalization of various
prediction models, to achieve standardized validation of
prediction models.

Above all, this paper presents an overview of AI-based WPP
models. Compared with other WPP models, AI-based WPP
models have developed rapidly and gained more attention. The
classification of WPP models in this paper is according to the
spatial scale of the prediction problem. For wind turbines and wind
farms, traditional machine learning models represented by
traditional ANNs, SVM, and DT, deep learning models, and
hybrid models combining multiple AI algorithms have been
studied. And according to the literature, recent developments
tend to favor hybrid models, which can generally have high
performance; for regional wind farms, the application of the
accumulation method, upscaling method, and spatial resources
matching method are discussed. In addition, this paper analyzed
the challenges and future development trends of AI-based WPP
models. This review provides valuable guidance for researchers
committed to developing optimized models for WPP.
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