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A large amount of renewable energy resources are integrated into electricity
transmission networks. For efficient operation, transmission networks should be
smart, in which it is necessary to have the function of estimating the state of the
power system. This function determines bus voltage magnitude and phase, which
are used for monitoring, operating, and controlling transmission networks.
Transmission network state estimation is developed to estimate bus voltage
magnitude and phase by many methods, which include genetic algorithms.
Published articles have not mentioned in detail how to apply genetic
algorithms to estimate the state of large transmission networks, and the
application is limited to small networks. Therefore, this work seeks to estimate
the state of large transmission networks by genetic algorithms. Strong decoupling
was observed between active power and the voltage phase, as well as between
reactive power and voltage magnitude, while a weak coupling, between active
power and voltage magnitude, as well as between reactive power and voltage
phase; voltage magnitude has a value of around 1.0 p.u, and the voltage phase has
a value of around 0.0. This paper proposes a novel approach to genetic algorithms
for estimating the state of smart transmission networks. In this novel approach,
voltage magnitude and phase are separately estimated at each iteration of genetic
algorithms. The approach is validated on IEEE 14-, 30-, and 118-bus networks.
Results show that our approach can use phasor measurement unit data to
estimate the state of large smart transmission networks by genetic algorithms.
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1 Introduction

Today, the increasing energy demand and the integration of renewable energy sources
into the power system make it more and more complex. To operate a power system
effectively and securely, we need a smart grid. Therefore, the energy management system
(EMS) and wide-area measurement system (WAMS) are implemented. One of the functions
of these systems is to estimate the state of the system to prevent any eventual danger and
faults. The input parameters of the state estimation problem are measured values of
supervisory control and data acquisition (SCADA) and phasor measurement unit
(PMU), such as the voltage/current amplitude, voltage/current phase angle, active power,
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and reactive power. The output parameters are estimated values of
the state variables as the bus voltage magnitude and voltage phase
angle.

The objective function of the power system state estimation
(PSSE) problem can be performed using the weighted least squares
(WLS) model (Abur and Gómez Expósito, 2004), the weighted least
absolute value (WLAV) model (Celik and Abur, 1992), or the
weighted linear least square (WLLS) model (Mahaei and Navayi,
2014).

This problem can be solved by classical algorithms or heuristic
search algorithms. The classical methods have complex objective
functions, constraints, and algorithms, and the choice of initial
values has a great influence on the convergence of the problem.
The application of Newton’s method requires semidefinite
programming (SDP) techniques to create initial values for
improving the solution accuracy (Weng et al., 2012). There are
many published articles that used the WLS algorithm to solve the
PSSE problem. Xiaoli et al. (2015) used the WLS algorithm and
changed the value of the weights in the objective function for each
type of measurement. Madtharad et al. (2003) used singular value
decomposition to solve the problem with a linear weighted least
squares model, but the computation time was much slower than that
when using conventional WLS methods. With the WLS algorithm
taking into account the PMU’s measurement, Rabha et al. (2015)
converted phasor measurements from polar to Cartesian form,
whereas Korres and Manousakis (2011) only used rectangular
coordinates in the first iteration and transformed current
measurements into polar form to use in the next steps. Jin and
Shen (2018) included both data from SCADA and PMU systems for
the input of the WLS algorithm. In this algorithm, Jacobi’s matrix
consists of partial derivatives of both SCADA and PMU
measurement functions. Li and Li (2009) converted the state
variables measured by the PMU into branch current
measurement values for Jacobi’s matrix. Ni et al. (2011) also
estimated the state by the WLS algorithm, which considers PMU
measurement values as equality constraints. This increases the size
of Jacobi’s matrix. The aforementioned techniques may not
converge in the case that the number of measurements increases
so much that the matrix may have an ill-condition number and the
solution is local (Khoa et al., 2004). Therefore, heuristic search
algorithms are developed for the power system state estimation, such
as the particle swarm optimization algorithm (Tungadio et al.,
2016), (Hussein and Sultan, 2018), gravitational search algorithm
(Vedik and Chandel, 2015), genetic algorithm (GA) (Khoa et al.,
2004), (Hossam-Eldin et al., 2009), a hybrid method using cellular
computational network (CCN) and genetic algorithms (Rahman
and Venayagamoorthy, 2017), or artificial fish swarm optimization
algorithm (AFSOA) (Salkuti, 2020). Compared with classical
algorithms, the advantages of these algorithms are that they only
need objective functions and constraints, the algorithm is not very
complicated and can find the global solution. However, these studies
mostly published the results of small grids. Concretely, the number
of nodes is not greater than six in the studies by Khoa et al. (2004),
Hossam-Eldin et al. (2009), and (Salkuti, 2020); 14 and 30 nodes in
the study by Vedik and Chandel (2015); and 68 nodes in the study by
Rahman and Venayagamoorthy (2017). The genetic algorithm is a
search heuristic that is inspired by the process of natural selection.
This is a strong algorithm for optimization problems. However, the

application of this one to power system state estimation is actually
limited. The existing publications only apply to power grids with up
to 14 nodes. In particular, Khoa et al. (2004) presented two
algorithms; one of them is the parallel genetic algorithm applied
to state estimation for a 5-bus grid. Hossam-Eldin et al. (2009) used a
genetic algorithm to estimate the power system state. However, it
could only solve the problem of the systems, having nomore than six
buses. Tran and Kieu (2021) studied the 5-bus and 14-bus systems
and suggested the best choice of selection operator for GA.

Using GA, these aforementioned papers include both bus
voltage magnitude and phase in every individual. Consequently,
the voltage magnitude and phase are updated simultaneously by
selection, crossover, and mutation operators in the GA. However,
because the change of the voltage magnitude value has a great
influence on the reactive power variation while the voltage phase
angle variation has a large effect on the active power change (Saadat,
1999), the simultaneous update of both of them may not be a
convenient way. Therefore, this paper proposes to decouple voltage
magnitude and phase angle calculation in every loop of the genetic
algorithm for transmission system state estimation. In each loop, the
voltage phase angle is estimated, and then, the voltage magnitude is
estimated. When estimating the voltage phase angle, the best-
estimated voltage magnitude is used. For the first iteration, the
voltage magnitude is taken as 1 p.u. When estimating the voltage
magnitude value, the best-estimated voltage phase is used. Such an
iterative process will stop when the convergence condition of the
problem is satisfied. The proposed approach is implemented in
MATLAB 2016Rb software and validated by the IEEE 14-bus, 30-
bus, and 118-bus transmission systems using both conventional and
PMU measurements. The simulation results of the proposed
approach are compared with those of previous articles and the
genetic algorithm, in which the individual includes both V and θ
simultaneously.

2 Problem formulation and proposed
approach

Before proposing a novel approach of the genetic algorithm to
solve the PSSE problem, some terms, such as gene, individual, and
population, are introduced as follows:

• A gene presents the solution to one variable of the problem. In
the PSSE problem, a gene can be a bus voltage magnitude or
phase angle.

• An individual is a set of genes or a possible solution to the
problem.

• A population is known as a set of individuals. The population
is improved through the iterative processes of three major
operators: selection, crossover, and mutation. In each iteration
(or generation), every individual in the population is evaluated
using their fitness values, which are known as objective
function values.

Among the three operators used in this paper, the selection
operator is Roulette wheel selection because it is most suitable for
PSSE problems (Tran and Kieu, 2021). The two others are heuristic
crossover and uniform mutation.
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The output of the power system state estimation (PSSE) problem
includes voltage magnitude and phase angle values, which are
decimals. In order not to transform decimals into binary and
vice versa, the continuous variable genetic algorithm is used in
this study. Section 2.1 presents the objective function of the problem.
The proposed approach of the continuous variable genetic algorithm
is presented in Section 2.2.

2.1 Objective function of the power system
states the estimation problem

Selecting an objective function model for a heuristic search
optimization algorithm is a matter of concern because the search
direction is mainly based on the objective function value. Tungadio
et al. (2016) and Hussein and Sultan (2018) used two types of objective
functions: the weighted least square (WLS) and the weighted least
absolute value (WLAV). Their simulation results show that using the
weighted least squared model shows better results. In this paper, the
weighted least squared model is concerned with state variables limited
to the search space domain. Since the genetic algorithm searches based
on the orientation of the objective function value, the constrained
optimization problem is transformed into the unconstrained
optimization problem by adding a penalty function to the objective
function. Therefore, the objective function will have an additional
component P(x), which is a penalty function, to evaluate the
individuals whose variable value exceeds the search interval.

We consider an N-bus system that includes m set of
measurements zi:

z � h x( ) + e, (1)
where z is a set of measurement values, h(x) is the nonlinear function
related to the measurement type, x represents the state variables, and
e is the error of the measurements that are independent and
distributed, following the Gaussian probability density.

In power system state estimation, the state variables x consist of
the voltage magnitude and phase angle. The measurement data can
be taken from SCADA or PMU systems. These measurements can
be active/reactive power injected into a bus, active/reactive power or
current flowing through transmission lines, voltage magnitude, and
phase angle of a bus. Corresponding to each measurement, the
function h(x) is as follows:

h x( ) � Pi

� Vi .∑n

j�1Vj.Yij . cos θi − θj − φij( ) for active power injected into the bus i,
(2)

h x( ) � Qi

� Vi .∑n

j�1Vj.Yij. sin θi − θj − φij( ) for reactive power injected into the bus i,
(3)

h x( ) � Pij

� V2
i gsi − V2

i Yij cosφij

+ ViVjYij cos θi − θj − φij( ) for line active power, (4)
h x( ) � Qij

� V2
i bsi + V2

i Yij sinφij

+ ViVjYij sin θi − θj − φij( ) for line reactive power, (5)

h x( ) � Iij

�
�������
P2
ij + Q2

ij

√
Vi

for current f lowing through the transmission line ij.

(6)
Consider the complex form of branch current as Iij = Iij.re +

i.Iij.im:

h x( ) � δij � arctan
Iij.im
Iij.re

( ) for line current angle, (7)

h x( ) � Vi for voltagemagnitude of bus i, (8)
h x( ) � θi for voltage phase angle at bus i, (9)

where Vi, Vj, θi, and θj are voltage magnitude and voltage phase at
bus i and bus j, respectively. Yij is the ij-th element of the bus
admittance matrix, φij is the angle of Yij, and Ysi = gsi + jbsi is the
shunt admittance of branch ij on the side of bus i.

The unconstrained objective function is formed as in Eq. 10
(Tungadio et al., 2016):

F x( ) � J x( ) + P x( ), (10)
J x( ) � ∑m

i�1w
2
i zi − hi x( )( )2 � ∑m

i�1
1
σ2i
e2i , (11)

P x( ) � λ∑n

i�1 max 0, xi − xi
max( ){ }2 + λ∑n

i�1 max 0, xi
min − xi( ){ }2,

(12)
where F(x) is the unconstrained objective function (fitness function)
of GA, J(x) is the constrained objective function, wi � 1

σ i
, σi is the

standard deviation of the ith measurement, which expresses the
expected meter accuracy, P(x) is the penalty term that checks the
condition of the state variable, and xi

min and xi
max are two bounds

of the state variable xi.

2.2 Proposed approach

Consider a power system consisting of N nodes. On the
application of the genetic algorithm for the estimation,
published studies use individuals of (2N–1) genes, where N
genes are values of N voltage magnitudes V and (N-1) genes
are (N-1) values of voltage phase θ (one node is selected as a
reference node, and its phase value is set to 0). Applying the
existing general process of continuous GA provided in the study
by Haupt and Haupt (2004) for the state estimation problem, the
CGA algorithm of estimating V-θ simultaneously can be
described as follows:

Step 1: Set the parameters of the algorithm, including the number
of individuals in the population (nbrIn), the selection rate, the
probability of mutation and crossover, and the maximum
number of iterations.

Step 2: Initialize the population, including nbrIn individuals. Each
individual has (2N–1) genes.

Step 3: Calculate the value of the objective function of every
individual in the population.
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Step 4: Perform elitism to keep some chromosomes, which have
good value of the objective function.

Step 5: Perform selection, crossover, and mutation operations to
create a new population.

Step 6: Check convergence conditions. If satisfied, perform step 7.
If the convergence condition is not satisfied, repeat step 3 for further
calculation. The convergence condition is usually the maximum
number of iterations or when the objective function of m
consecutive iterations has values that do not change much.

Step 7: Print the estimated results of voltage magnitude and phase
and stop.

The flowchart of the aforementioned steps is shown in Figure 1.
In the way of estimating V-θ simultaneously, as described earlier,

some good individuals are kept for the next population through elitism.
The crossover and mutation operators change the voltage magnitude
and phase of the parents simultaneously to produce offspring. The
reactance/resistance (X/R) ratio of the transmission line is large, and
voltage phases are relatively small in most operations. Hence, there is a
strong coupling between real power and voltage phase, as well as
between reactive power and voltage magnitude, while there is a weak
coupling between real power and voltage magnitude, as well as between
reactive power and voltage phase. Moreover, the values of voltage
magnitude and phase angle are very different (voltage magnitude
usually has a value of around 1 p.u, while the voltage phase usually
has a value of around 0). Therefore, the simultaneous estimation of V
and θ, as presented earlier, can be an inappropriate approach. Hence,
this paper proposes a novel approach to the GA algorithm for PSSE. In
this novel approach, the voltage magnitude and phase are separately
estimated in every loop. Specifically, when estimating the voltage phase
value, the voltage magnitude value will remain constant and vice versa.
Thus, in the PSSE problem, there will be two types of individuals. The
first type, x1, includes (N–1) genes corresponding to (N–1) voltage
phase values, and the second type, x2, includes N genes corresponding
to N voltage magnitude values. First, the population of x1 will be
estimated, and then, the best individual of this populationwill be used to

estimate the new population of x2. After creating a new population of x2,
the best individual of this population is again used to estimate the next
population of x1. This iteration process continues until the stopping
condition is satisfied. The proposed approach includes the following
steps:

Step 1: Set the parameters of the algorithm, including the number
of individuals in the population, the selection rate, the probability of
mutation and crossover, the maximum number of iterations.

Step 2: Initialize the population of x1 consisting of (N–1) genes
corresponding to voltage phases. Initialize the population of x2
consisting of N genes corresponding to voltage magnitudes.

Step 3: Calculate the value of the objective function of every
individual in the population of x1.

Step 4: Perform elitism to the population of x1.

Step 5: Perform selection, crossover, and mutation operations to
create a new population of x1.

Step 6: Check convergence conditions of the population. If satisfied,
perform step 7. If not satisfied, repeat step 3 for further calculation. The
convergence condition is usually the maximum number of iterations or
when the objective function of m consecutive iterations has values
which do not change much.

Step 7:Use the best individual obtained from step 6 to calculate the
objective function value of every individual in the x2 population.

Step 8: Perform elitism to the population of x2.

Step 9: Perform selection, crossover, and mutation operations to
create a new x2 population.

Step 10: Check the conditions of population convergence x2. If
satisfied, perform step 11. If not satisfied, repeat step 7 for further
calculation. The convergence condition is usually the maximum
number of iterations or when the objective function of m
consecutive iterations has values that do not change much.

Step 11: Check the convergence condition of the problem, which
can be the maximum number of iterations. If satisfied, stop. If not
satisfied, repeat step 2. When returning to the second step, a number
of the best individuals of x1 and x2 are kept and passed to step 2. In
our approach, we keep 10% of the best individuals.

The flowchart of the aforementioned steps is shown in Figure 2.
To verify the effectiveness of the aforementioned

proposed algorithm, the two calculation approaches are
programmed in MATLAB and applied to the IEEE 14-, 30-, and
118-bus grids. Input data are conventional and PMU measurements.

3 Results and discussion

The proposed approach is applied to estimate the state of IEEE 14-
bus, 30-bus, and 118-bus power grids. The measurement data consist of

FIGURE 1
Flowchart of the CGA algorithm for simultaneous V-θ estimation.
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both conventional and PMU data. The conventional data consist of N
active power injection,N reactive power injectionmeasurements, and one
voltage magnitude measurement. The data of PMUs include voltage
magnitude, voltage phase, branch currentmagnitude, and branch current
phase. If a PMU is installed on a bus, the currentmagnitude and phase of
all branches connecting to that bus will be measured.

The CGA presented in Section 2.2 is tested in each system with
the following parameters:

• Maximum iteration: 50,000 for simultaneous V-θ estimation,
300 for the outer loop, and 3,000 for the inner loop of separate
V-θ estimation;

FIGURE 2
Flowchart of the proposed CGA algorithm for separate V-θ estimation.

FIGURE 3
Reference and estimated values of the voltage magnitude (A) and phase (B) of the IEEE 14-bus network.
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TABLE 1 Maximum error (%) of the IEEE 14-bus network voltage magnitude and phase in the four cases.

Simultaneous V-θ estimation Separate V-θ estimation

Voltage magnitude Voltage phase Voltage magnitude Voltage phase

Conventional measurement 3.86 1.49 0.63 0.83

PMU measurement 0.16 0.62 0.89 1.36

FIGURE 4
Reference and estimated values of the voltage (A) magnitude and (B) phase angle for the IEEE 30-bus network.

TABLE 2 Maximum error (%) of the IEEE 30-bus network voltage magnitude and phase in the four cases.

Simultaneous V-θ estimation Separate V-θ estimation

Voltage magnitude Voltage phase Voltage magnitude Voltage phase

Conventional measurement 1.74 32.85 0.96 2.51

PMU measurement 2.11 1.98 0.95 1.74

FIGURE 5
Reference and estimated values of V-θ for the IEEE 118-bus network.
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• Population size: 40 for the IEEE 14-bus grid, 100 for the 30-
bus grid, and 400 for the 118-bus grid;

• Elitism rate: 0.05;
• Mutation rate: 0.01;
• Crossover rate: 0.8;

3.1 IEEE 14-bus test case

The considered system is an IEEE 14-bus system, which has 14 buses
and 20 branches. The parameters of the system are taken from Power
Systems Test Case Archive (1993b). The number of conventional
measurements used in the estimation is 29, which are bus active and
reactive powers at 14 buses, and a voltage magnitude of bus 1 is used.

PMUs are installed on buses 2, 6, 7, and 9 (Kamh et al., 2021). There
are 38measurements by PMUs, including voltage magnitude and phase
of buses 2, 6, 7, and 9; and current magnitude and phase of branches
2–1, 2–3, 2–4, 2–5, 6–5, 6–11, 6–12, 6–13, 7–4, 7–8, 7–9, 9–4, 9–7,
9–10, and 9–14.

Figure 3A presents the estimated results of voltage magnitude,
and Figure 3B presents the results of voltage phase in four cases:
simultaneous V-θ estimation using conventional measurement
(SIM-CONV), simultaneous V-θ estimation using PMU
measurement (SIM-PMU), separate V-θ estimation using
conventional measurement (SEP-CONV), and separate V-θ
estimation using PMU measurement (SEP-PMU), as well as the
reference values. Table 1 shows the maximum errors of these
estimations.

The maximum error of the simultaneous V-θ estimation using
conventional measurement is 3.86%, while using PMU measurement

gives a much smaller error, 0.62%. In the case that voltage magnitude
and phase are separately estimated, the maximum error of the two
approaches is 1.36%. This error is much smaller than the one of
simultaneous estimation. Figure 3 and Table 1 show that the
estimated result of SIM-CONV has the largest deviation from the
reference value. With the same data from conventional measurement,
when using the proposed algorithm, the percentage error of the
estimated voltage magnitude decreases from 3.86% to 0.63%,
correspondingly reduced by six times. The estimated voltage phase
error is reduced from 1.49% to 0.83%, which is about 1.8 times.
Therefore, the separate V-θ estimation is better than the
simultaneous estimation. If an acceptable error is 5%, the
comparison shows that both simultaneous and separate V-θ
estimations are appropriate to the IEEE 14-bus system.

3.2 IEEE 30-bus test case

The second test case is the IEEE 30-bus system, which has
41 branches. The parameters of the IEEE 30-bus system are taken
from the study by Saadat (1999) and Power Systems Test Case Archive
(1993b).

The number of conventional measurements used in the
estimation is 61, which are bus active and reactive powers at
30 buses, and a voltage magnitude of bus 1 is used. PMUs are
installed at buses 2, 4, 6, 9, 10, 12, 15, 18, 25, and 27 (Kamh et al.,
2021). There are 104 measurements by PMUs.

Figure 4A presents the estimated results of voltage magnitude,
and Figure 4B presents the one of voltage phase in the four cases.
Table 2 shows the maximum errors of these estimations.

TABLE 3 Maximum error (%) of the IEEE 118-bus network voltage magnitude and phase in the four cases.

Simultaneous V-θ estimation Separate V-θ estimation

Voltage magnitude Voltage phase Voltage magnitude Voltage phase

Conventional measurement - - - -

PMU measurement - - 2.76 8.92

TABLE 4 Comparison of the maximum error (%) of the simulation results.

IEEE 14-bus network IEEE 30-bus network IEEE 118-bus network

This paper 1.360 1.743 8.924

Xiaoli et al. (2015) 0.6 - -

Rabha et al. (2015) 0.8 - -

Jin and Shen (2018) 4.88 2.2 6.98

Khoa et al. (2004) - - -

Tungadio et al. (2016) 0.657 0.502 0.851

Hossam-Eldin et al. (2009) - - -

Tripathi et al. (2014) - 9.4 -

Ivanov and Garvrilaş (2012) 2.09 - -

Kumar and Prasad (2012) - 9.85 -
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In the case of conventional measurement, the results show that
using the simultaneous V-θ estimation gives a maximum error of
32.85%, which is much larger than the one of the separate V-θ
estimation (2.51%). In addition, the estimated voltage magnitude
error is reduced from 1.738% to 0.963%. In more detail, Figure 4B
shows that the estimated phases by the simultaneous V-θ estimation
using conventional measurement mostly have errors larger than 10%,
while those of the separate V-θ estimation are always smaller than 3%.
So the simultaneous V-θ estimation cannot be applied to this case. The
separate V-θ estimation is good for this case.

In the case of PMU measurement, the maximum error of both
two approaches is relatively small and can be acceptable. The
maximum error value of this case, as shown in Table 2, is 2.11%.
In this case, the simulation using SEP-PMU shows better results
than in the case of SIM-PMU, and the percentage error value is
reduced by about 2.2 times with the estimated voltage magnitude
and 1.1 times with the estimated voltage phase. Hence, both the
approaches are appropriate to solve this system.

3.3 IEEE 118-bus test case

The IEEE 118-bus network consists of 118 bus and
186 branches. This paper takes the parameters of the networks in
Power Systems Test Case Archive (1993c).

The number of conventional measurements used in the
estimation is 237, which are bus active and reactive powers at
118 buses, and a voltage magnitude of bus 69 is used. PMUs are
installed at buses 3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 40, 45, 49, 52,
56, 62, 64, 68, 70, 71, 76, 79, 85, 86, 89, 92, 96, 100, 105, 110, and 114.
There are 328 measurements by PMUs.

Solving the network by the simultaneous V-θ estimation with
two types of measurement gives bad results. The separate V-θ
estimation using 237 conventional measurements also has a large
error, so the results are not presented here.

Figure 5 and Table 3 present only the results and maximum error of
separate V-θ estimation using PMU data, respectively. The estimated
results of this case are quite good. In Figure 5, the curve shows the
estimated value of the voltage magnitude [SEP-PMU (V)] and phase
angle [SEP-PMU (V)] very close to or equal to the reference value (Vref

and θref). In Table 3, the maximum error of voltage magnitude is 2.76%,
and the maximum error of voltage phase is 8.92%. The results show that
the separate V-θ estimation using PMU data is appropriate to solve the
network.

3.4 Comparison of the simulation results
with existing publications

With the simulation results for the aforementioned three networks
of 14-, 30-, and 118-bus systems, we find that the separate V-θ
estimation is much better than the simultaneous V-θ estimation,
specifically in the case when the number of state variables increases,
as in the case of 30- and 118-bus networks. Using measured data from
conventional measurements, the simultaneous V-θ estimation process
results in very large errors in the grid of 30- and 118-bus networks.
Meanwhile, our proposed GAwith the separate V-θ estimation can give
good results for all three grids using measured data from PMU.

To evaluate our proposed approach further, the aforementioned
simulation results of the three networks are compared with the
results of existing publications in Table 4. Among nine references in
Table 4, there are five, four, and two papers which estimate the state
of the IEEE 14-bus, 30-bus, and 118-bus networks, respectively. The
error value of the proposed algorithm is also quite good when
compared with published papers. The comparison shows that using
genetic algorithms, previous works can solve small networks, while
the weighted least square method (Jin and Shen, 2018) and the PSO
algorithm (Tungadio et al., 2016) can solve large networks.
Introducing the decoupling of voltage magnitude and phase in
genetic algorithm iterations can solve large networks.

4 Conclusion

A smart grid requires a state estimation function. This paper presents
a novel approach to genetic algorithms for estimating the power system
state using both conventional and PMUdata. Based on a strong coupling
between active power and the voltage phase, as well as between reactive
power and voltage magnitude, the voltage magnitude is around 1.0 p.u,
and the voltage phase is around 0.0. Our approach proposes to estimate
separately voltage magnitude and phase in every iteration of the genetic
algorithm. The proposed approach is validated on the IEEE 14-bus, 30-
bus, and 118-bus networks. The results show that the IEEE 14-bus and
30-bus networks with conventional or PMU data can be solved by the
existing genetic algorithm and this approach. However, the separate
magnitude and phase estimation gives better results than the others.
There is no solution for the IEEE 118-bus network in the existing
publications that use onlyGA. This paper can solve this networkwith our
proposed approach using PMU data. The simulation results show that
our proposed algorithm can be applied to estimate the voltagemagnitude
and phase angle for large smart transmission networks.
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