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Currently, the improvement of model parameter extraction accuracy is essential
to research photovoltaic (PV) fields. In this study, a model parameter identification
based on Pontogammarus maeoticus swarm optimization (PMSO) is proposed.
The PMSO is used for parameter identification of mathematical models for PV
modules. In the PMSO algorithm, by giving the ability of free exploration to
particles that are far away from the optimal solution, the search scope is
expanded to avoid falling into the local optimum. Besides, the local search for
each Gammarus has a better convergence for PV parameter identification.
Therefore, the accuracy of parameter identification for modeling PV modules
is improved. The feasibility and superiority of the proposed method are verified by
measured I-V characteristics of the PV array. The experimental results and error
analysis verify that when compared with the conventional meta-heuristic
algorithms, the proposed method achieves higher modeling accuracy. The
proposed PMSO algorithm is suitable for engineering application of parameter
identification and modeling of PV modules.
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1 Introduction

In recent decades, with increasing concerns about resource depletion, climate change,
and environmental pollution, the proportion of installed renewable energy has gradually
increased (Renewables, 2022). Investment in renewable power and fuels has risen for the
fourth consecutive year, and the record increase in global electricity generation has led to
solar and wind power providing more than 10% of the world’s electricity for the first time
ever (Renewables, 2022).

Therefore, in order to better estimate the generated power of photovoltaic (PV) power
plants, many different types of PV models have been built, such as the single-diode model
(SDM) (Kalliojärvi-Viljakainen et al., 2022; Javier Toledo et al., 2023), double-diode model
(DDM) (Yahya-Khotbehsara and Ali, 2018), improved single-diode model (ISDM) (Abbassi
et al., 2017), and triple-diode model (TDM) (Rezk and Ali Abdelkareem, 2022). The
improvement of accuracy of parameter identification can enhance the simulation
accuracy of PV models (Chouder et al., 2012). It can also help evaluate the performance
of PV systems (Dabou et al., 2021), predict the output characteristics of PV arrays (Zhu et al.,

OPEN ACCESS

EDITED BY

Luis Martin Pomares,
Dubai Electricity and Water Authority,
United Arab Emirates

REVIEWED BY

Guojiang Xiong,
Guizhou University, China
Sahil Tahiliani,
Applied Materials, United States

*CORRESPONDENCE

Ling Chen,
8201701106@hytc.edu.cn

RECEIVED 11 April 2023
ACCEPTED 21 July 2023
PUBLISHED 10 August 2023

CITATION

Chen L, Han W, Shi Y, Zhang J and Cao S
(2023), A photovoltaic parameter
identification method based on
Pontogammarus maeoticus
swarm optimization.
Front. Energy Res. 11:1204006.
doi: 10.3389/fenrg.2023.1204006

COPYRIGHT

© 2023 Chen, Han, Shi, Zhang and Cao.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 10 August 2023
DOI 10.3389/fenrg.2023.1204006

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204006/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204006/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204006/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1204006/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1204006&domain=pdf&date_stamp=2023-08-10
mailto:8201701106@hytc.edu.cn
mailto:8201701106@hytc.edu.cn
https://doi.org/10.3389/fenrg.2023.1204006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1204006


2023), track the maximum power point (MPP) (Manna et al., 2023),
and diagnose failure of PV arrays (Zhang and Huang, 2011), which
directly affect the power generation efficiency and economic benefits
of a PV power plant. Therefore, it is important to model the PV
modules and accurately obtain the parameters of solar cells and PV
modules.

The identification methods of PV model parameters can be
divided into analytical and optimization methods. Many researchers
have proposed to directly analyze the I-V curve to obtain parameters
through the analysis method (Chan and Phang, 1987; Ortiz-Conde
et al., 2006; Li Hong Idris Lim Ye et al., 2015; Torabi et al., 2017).
This kind of method is direct and simple, but its accuracy depends
on the correctness of the key information points selected on the I-V
curve, i.e., short-circuit point, open-voltage point, and MPP.
However, due to changes in outdoor ambient conditions, the I-V
characteristic will have non-linear changes, so the analytical method
cannot show good accuracy in practical applications.

Alternatively, with the progress of computer and artificial
intelligence, many optimization methods based on the meta-
heuristic algorithm to identify PV model parameters have been
proposed. These methods are suitable for solving non-linear

complex problems and improving the accuracy of solving.
They are mainly divided into the following four categories:
biology-based algorithms, physics-based algorithms, sociology-
based algorithms, and mathematics-based algorithms (Yang
et al., 2020). Many scholars have applied the meta-heuristic
algorithm to identify PV model parameters. Mirjalili and

FIGURE 1
Single-diode model.

FIGURE 2
Sketch of sea waves, sea edge, sea bed, and Gammarus in sea and sea edge (Ghojogh and Sharifian, 2018).

FIGURE 3
Sketch of local search by Gammarus for foraging, red dots are local bests (Ghojogh and Sharifian, 2018).
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Lewis (2016) proposed the whale optimization algorithm (WOA)
in 2016. Xiong et al. (2018) soon applied the WOA to PV
parameter identification. Zeng et al. (2021) proposed
parameter identification of PV cells via the adaptive compass
search (ACS) algorithm and when being compared with the
WOA, the ACS algorithm showed better optimization
accuracy and convergence rate. El-Dabah et al. (2023)
proposed PV model parameter identification using the
northern goshawk optimization (NGO) algorithm, and Kumar
and Magdalin Mary (2022) proposed PV model parameter
identification using the chaotic tuna swarm optimizer (CTSO)

algorithm. Both methods have good results for the parameter
identification of TDM. Wen et al. (2021) proposed the parameter
identification of PV models by using an enhanced adaptive
butterfly optimization algorithm (EABOA). The EABOA
exhibits a precision superior to other methods in parameter
extraction for the SDM and DDM. Nunes et al. (2020)
proposed a novel multiswarm spiral leader particle swarm
optimization (M-SLPSO) for PV parameter identification. The
proposed M-SLPSO uses several swarms with different spiral
trajectories, with population stagnation and premature
convergence being alleviated. Alam et al. (2015) proposed a

FIGURE 4
Flowchart of the PMSO algorithm.
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flower pollination algorithm (FPA)–based solar PV parameter
estimation. Gude and Chandra Jana (2022) proposed the cuckoo
search algorithm–based parameter identification of solar cells.
Qais et al. (2019) proposed the coyote optimization algorithm
(COA) for parameters extraction of three-diode PV models of PV
modules. Lu et al. (2023) proposed the hybrid multi-group
stochastic cooperative optimization algorithm (HMSCPSO),
where the diversity of the population is increased to solve the
problem of parameter identification. Shen et al. (2023) proposed
the parameters of the discrete-time equivalent model (PDEM) of
a PV system. The model parameters are identified using the least

square method (LS) and bat algorithm (BA). Gu et al. (2023)
proposed a simple and effective approach success-history
adaptation differential evolution with linear population size
reduction and decomposition (L-SHADED) to solve the
problem of PV parameter identification, when the temperature
and irradiance change. However, many problems still exist for the
aforementioned algorithms, e.g., the adaptability of WOA
parameters has to be improved. The NGO algorithm has
worse accuracy considering noisy signals. The robustness of
the FPA, CTSO, and EABOA should be enhanced for different
temperature conditions. The accuracy of its identification is
affected by the irradiance levels. Some algorithms do not take
global search into account and may be easy to fall into local
optimum.

This work proposes parameter identification of PV models by
Pontogammarus maeoticus swarm optimization (PMSO). In the
following experimental verification, the accuracy of the PV
module parameter extraction by other conventional meta-
heuristic algorithms and the proposed method is compared,
which verifies the superiority of the proposed method. One of
the advantages of the algorithm in comparison to others is that it
can escape from local bests better for PV parameter identification.
The local search for eachGammarus has a better convergence for PV
parameter identification.

The contents of this article are organized as follows: the first
section is the introduction. The second section introduces the SDM.
The third section shows the detailed procedure of the PMSO
algorithm. The fourth and fifth sections demonstrate the
experimental verification and conclusions, respectively.

2 Single-diode model

The SDM is the most popular PV model, which includes five
parameters—photogeneration current Iph, reverse saturation
current Isat, diode ideality factor A, equivalent series resistance
Rs, and parallel resistance Rsh (Xu et al., 2023). Parameters of the
SDM should vary according to module performance and
environmental conditions, which is challenging for model
parameter identification. In this work, the parameters of SDM
are identified, and modeling results using the identified
parameters are compared with several other conventional
algorithms to verify the effectiveness and superiority of the
proposed method.

The equivalent circuit of the SDM is shown in Figure 1. The
mathematical expression of SDM is given as follows (Chen et al.,
2023):

FIGURE 5
Framework of the method flow.

FIGURE 6
Data acquisition system for measuring I-V curve and
meteorological data.

TABLE 1 Specification of PV module TSM-240.

Parameter Value

Maximum power 240 W

Voltage at maximum power point 29.7 V

Current at maximum power point 8.1 A

Open-circuit voltage 37.3 V

Short-circuit current 8.62 A
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I � Iph − Isat exp
V + IRs

AVT
( ) − 1[ ] − V + IRS

Rsh
, (1)

Iph � Isc +KiΔT( )G
Gs

, (2)

Isat � Isc + KiΔT
e Voc+KvΔT( )/VTN − 1

, (3)

where I is the output current; V is the output voltage; G is the
measured irradiance; Gs is the irradiance under standard test
conditions (STC); T is the absolute temperature of the solar cell;
ΔT is the difference of temperature; VT is the thermal voltage; Isc is
the shunt current; Ki is the temperature coefficient of Isc; Voc is the
open-circuit voltage of the PV module; Kv is the temperature
coefficient of Voc; K is Boltzmann’s constant (1.380 × 1023 J/K);
and q is the electron charge. The parameters to extract are Iph
photogenerated current, Isat diode reverse saturation current, A diode
quality factor, Rs equivalent series resistance, and Rsh parallel
resistance. N is the number of solar cells connected in series.
Besides, the predefined fitness function is required for parameter
identification of the PV model. In this method, the fitness function
takes the root mean square error of the measured current and
theoretical current (Zhang et al., 2020), and is defined as follows:

RMSE �
����������������
1
n
∑n
i�1

Imea,i − Ithe,i( )2,√
(4)

where Imea,i is the i-th measured current, Ithe,i is the modeled
theoretical current with the same voltage, and n represents the
number of points in an I-V curve.

3 PMSO algorithm

3.1 Principle of Pontogammarus maeoticus
swarm

Gammarus is a kind of hard-shell creature, which belongs to the
order Amphipoda. Pontogammarus maeoticus is one of the popular
Gammarus. Two factors mainly help Gammarus searching for food
(Ghojogh and Sharifian, 2018). The first one is the sea wave, as
shown in Figure 2. The Gammarus that is far from the sea edge may
be influenced strongly by the sea wave. This sea edge is modeled as
the global best. Once the Gammarus has reached the sea edge, it
would further search the local best at the vicinity of its position.
Then, another action of theGammarus starts, i.e., foraging, as shown

FIGURE 7
Comparison ofmeasured andmodel estimated I-V characteristics in typical days in four seasons. (A) Spring, (B) Summer, (C) Autumn, and (D)Winter.
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in Figure 3. The foraging helps the Gammarus further search the
local best. At last, the nutrients are foraged and the local best
optimum is obtained.

3.2 Initialization of Gammarus location

At first, the Gammarus is randomly generated for random
exploration in the landscape, and its random initialization
expression (Ghojogh and Sharifian, 2018) is given as follows:

Gi d( ) � U −ld, ld( ),
−ld ≤ landscape d( )≤ ld, i � 1, .., NG{ }, (5)

where Gi(d) is the location of the Gammarus, (−ld,ld) is the bound of
search space in dimension d, and landscape (d) is dimension d of the
landscape.

After randomly generating locations of the Gammarus, it should
be checked whether collision occurs. If collision occurs, the
Gammarus is repositioned. After repositioning, the collision
should be checked again. For quantitatively measuring the
collision, the distance between two Gammarus in a surrounding
hyper-sphere or hyper-cube in the D-dimensional space is
calculated. The distance calculation equation is as follows:

distance Xi, Xj( ) � Xi −Xj

∣∣∣∣ ∣∣∣∣ � �����������������∑D
d�1

Xi d( ) −Xj d( )( )2,√√
(6)

where Xi(d) and Xj(d) are the d-th decision variable for the
position of i-th and j-th Gammarus, respectively. D is the
number of all decision variables. Therefore, the collision
distance is a hyper-parameter and should be set according to
the specific problem. In this work, for the model parameter
identification of the SDM, the five model parameters are
determined as five decision variables. Furthermore, the
distance between two Gammarus is calculated in a 5-D
decision space.

3.3 Initial neighborhood settings

At the beginning of each global iteration, each Gammarus
performs a local search of the domain. In the first global
iteration, the initial domain Ni of all Gammarus is given as a
constant. For the second and subsequent global iteration, the Ni

of global optimal Gammarus is set as the initial neighborhood of
founder of the global best (GB) at the first of every global iteration

FIGURE 8
Comparison of measured and model estimated P-V characteristics in four seasons. (A) Spring, (B) Summer, (C) Autumn, and (D) Winter.
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(NGB). Moreover, the Ni of other Gammarus will be determined by
its distance from the global optimal solution. The greater the
distance is, the greater will be the Ni. The equation is given as
follows:

Ni ← F × GB − Gi| |, (7)
where F is a hyperparameter to adjust the amplitude of distance,
according to the distance between the GB and i-th Gammarus
location in landscape, Gi.

3.4 Searching of optimal solution

The position of the Gammarus in the landscape is updated in
each global iteration, except in the first. For each individual
Gammarus, the moving distance is assigned according to the
distance of the other Gammarus from the GB. The equation for
updating positions is as follows:

Wi| |∝ GB − Gi| |, (8)
where Wi is the wave vector affecting the i-th Gammarus. On the
other hand, all Gammarus are classified as the Gammarus close to
the GB or that away from the GB, according to their distance from
the GB. The criteria for judging and the number of close Gammarus
are hyperparameters. For Gammarus close to the GB, the direction
of its movement will be toward the GB. The angle calculation in
different dimensions is as follows:

Θi d( ) � tan−1

������������∑D
j�d+1 vi j( )( )2√
Vi d( )

Θi D − 1( ) � 2 × tan−1 Vi d( )
Vi D − 1( ) +

���������������������
Vi D( )( )2 + Vi D − 1( )( )2,

√
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(9)
where Vi is the i-th Gammarus Gi vector to the GB. Vi(j) represents
the j-th dimension component of this vector, j � 1, . . . , D{ }.D is the
number of dimensions of landscape. For Gammarus away from the
GB, the direction of movement will be toward a random direction.
The angle calculation is as follows:

θi d( ) � U 0, 2π( ), d � 1, .., D − 1{ }. (10)
Based on the moving distance and direction of the Gammarus,

the vectors for moving are calculated as follows:

Wi � Wi 1( ),Wi 2( ), ..,Wi D( )[ ]T
Wi 1( ) � Wi| | cos Θi 1( )( ),
Wi d( ) � Wi| | cos Θi d( )( )∏ d − 1

j � 1
sin Θi j( )( ) , d � {2, .., D − .

Wi D( ) � Wi| | sin Θi D − 1( )( )∏ D − 2
j � 1

sin Θi j( )( )
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(11)
This prevents allGammarus frommoving toward the global and

local best that have been found, allowing them to explore more of the
landscape and find better solutions. The flowchart of the PMSO

TABLE 2 Values of identified model parameters using four parameter identification methods for the ambient conditions in spring (621 W/m2, 29.5°C), summer
(617 W/m2, 47.4°C), autumn (575 W/m2, 47.4°C), and winter (628 W/m2, 35.9°C).

Season Method Photocurrent
Iph (A)

Reverse saturation current
Isat (A)

Ideality
factor A

Series resistance
Rs (Ω)

Parallel resistance
Rsh (Ω)

Spring PMSO 5.7925 2.3835*10−9 0.9921 0.3381 155.09

ABC 5.8007 6.2601*10−10 0.9646 0.3674 141.46

COA 5.8041 6.2896*10−10 0.9646 0.3663 137.99

FPA 5.7498 5.3696*10−11 0.9201 0.4129 348.44

Summer PMSO 5.6894 2.5086*10−8 0.9844 0.3673 154.00

ABC 5.7057 8.0486*10−9 0.9580 0.3952 131.46

COA 5.7041 8.0634*10−9 0.9580 0.3949 132.47

FPA 5.4676 1.1346*10−9 0.9228 0.5389 379.22

Autumn PMSO 5.1318 2.2826*10−9 0.9925 0.3542 183.56

ABC 5.1412 5.9173*10−10 0.9644 0.3869 162.52

COA 5.1431 6.0063*10−10 0.9647 0.3857 160.92

FPA 5.1034 2.5050*10−10 0.9498 0.4891 283.62

Winter PMSO 5.9378 2.8422*10−9 0.9763 0.3553 186.18

ABC 5.9426 1.6144*10−9 0.9644 0.3639 161.55

COA 5.9444 1.6145*10−9 0.9644 0.3670 172.27

FPA 5.8704 1.0687*10−10 0.9223 0.5970 568.91
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algorithm is shown in Figure 4. Then, PMSO is used to identify the
model parameters based on the I-V curve. The identification results
are obtained through continuous iterations by reducing the RMSE in
(4) with the measured I-V curve. The framework of the proposed
method is illustrated in Figure 5.

4 Experiment and conclusion

4.1 Experiment

In order to verify the accuracy of the PMSO algorithm in the
extraction of PV module parameters, in this work, a 5.28-kWp PV
array composed of 22 poly-crystalline PV modules TSM-240 is used
for experimental verification. The three-phase grid-connected
inverter GW20KN-DT is used to measure the I-V curve of the
PV array. The pyranometer is used to measure the in-plane

irradiance of the PV array. The platinum-resistant Pt100 is
pasted to the back of the PV module to measure the
temperature. The data acquisition system for measuring the I-V
curve and meteorological data is shown in Figure 6; Table 1 lists the
specifications of the PV modules under STC, provided by the
manufacturer.

Modeling is carried out using the proposed extraction method
based on the PMSO algorithm. The I-V curves, in-plane irradiance,
and temperature of the PV array are transmitted to the indoor
monitoring computer through the RS-485 bus for analysis and
verification. In order to avoid excessive loss of PV plant by
measuring the I-V curve, the sample interval is determined to be
2 min. Meanwhile, in order to reduce the measurement error, the
measured I-V curves are preprocessed, and the measured data with
amplitude less than 200 W/m2 or curve distortion affected by local
shadow are ignored. The number of local maximum and minimum
values on the second derivative d2I/dV2 of the curve is used as an

FIGURE 9
Percentage error of the estimated current based on PMSO in different seasons.
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indicator to identify abnormal I-V curves (Li et al., 2019). Then, the
PMSO is used to estimate the model parameters. Finally, the
extraction results of the PMSO are compared with those of other
conventional parameter extraction methods, i.e., FPA (Alam et al.,
2015), artificial bee colony (ABC) (Gude and Chandra Jana, 2022),
and COA (Qais et al., 2019). Figure 7 presents the comparison
results between the measured and modeled I-V characteristics based
on the aforementioned parameter extraction methods in the typical
days of four seasons. The comparison results between the measured
and modeled P-V characteristics based on the aforementioned
parameter extraction methods are shown in Figure 8. It can be
seen from the experimental results shown in Figures 7, 8that when
compared with other conventional meta-heuristic algorithms, the
parameter extraction of PV modules on typical days of the four
seasons is more consistent with the measured I-V curve. The
corresponding values of the identified model parameters using
the four parameter identification methods for the ambient
conditions in spring (621 W/m2, 29.5°C), summer (617 W/m2,
47.4°C), autumn (575 W/m2, 47.4°C), and winter (628 W/m2,
35.9°C) are shown in Table 2.

4.2 Error analysis

In addition, the modeling error is analyzed by using model
parameters identified by the proposed algorithm. Figure 9 shows the
percentage error of the model based on the PMSO algorithm in four
seasons at approximate 600 W/m2. The percentage error for the

model estimated by the proposed PMSO algorithm is relatively
closer to 0 when compared with the other three algorithms. The
reason is that the sea wave and foraging action of the Gammarus is
effective for searching the global optimum of the identified model
parameters. It validates that the proposed algorithm can achieve
higher accuracy of parameter identification. Besides, the root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are used to comprehensively
assess the performance of different methods for model parameter
identification. The RMSE is calculated via (4). The MAE and MAPE
are calculated as follows:

MAE � 1
n
∑n
i�1

Imea,i − Ithe,i
∣∣∣∣ ∣∣∣∣, (12)

MAPE � 1
n
∑n
i�1

Imea,i − Ithe,i
Imea,i

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100%. (13)

Table 3 shows the different error metrics of the four parameter
identification methods for the ambient conditions in the four
seasons. It reveals that the proposed PMSO algorithm achieves
fewer errors than the other conventional meta-heuristic
algorithms. Though, the RMSE of the model based on the
proposed PMSO algorithm is greater in winter, the MAE of the
modeled results is also the least. In most cases, the identification
accuracy of the model parameters for the proposed PMSO algorithm
is low enough for engineering applications.

5 Conclusion

In this work, a model parameter identification method based on
PMSO is proposed. In the PMSO algorithm, by giving the ability of
free exploration to the particles that are far away from the optimal
solution, the search scope is expanded to avoid falling into the local
optimum. Therefore, the accuracy of parameter identification for
modeling the PV module is improved. The feasibility and superiority
of the proposed method are verified by the measured I-V
characteristics of a PV array. Experimental results and error
analysis verify that, compared with the conventional meta-heuristic
algorithms, the proposed method achieves higher modeling accuracy.
The proposed PMSO algorithm is suitable for engineering application
of parameter identification of PVmodules. Considering the advantage
of the PMSO algorithm that it is not easy to fall into local optimum,
the further research would focus on applying the PMSO algorithm for
other different optimization problems, e.g., the maximum power
point tracking of PV array with complicated shading.
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