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With the rapid technological progress of society and increasingly stringent
environmental regulations, further reduction of emissions has become an
important issue for environmental protection. This study developed a response
surface model with the biodiesel blending ratio (BBR), load, and exhaust gas
recirculation (EGR) as independent variables and brake thermal efficiency (BTE),
brake specific fuel consumption (BSFC), and NOx, and CO emission rates as
dependent variables. Simulations were performed and calculated. The results
of the response surface approachwith the objectives ofmaximizing the BTE of the
engine and minimizing BSFC, NOx emissions, and CO emissions show that when
the BBR is 20%, the EGR rate is 15%, and the engine load is 74.52%, pollutant
emissions are significantly reduced while the engine power’s performance is
maximized.
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1 Introduction

The efficient use of energy and environmental sustainability has become the focus of
attention in many countries (Alaswad et al., 2015; Yu et al., 2016). Biodiesel is not only a
renewable energy source (Martos et al., 2016; Zhang et al., 2022d) but also can effectively
improve the combustion of diesel engines (Khare et al., 2011; Foley et al., 2013) and increase
the thermal efficiency and reduce the emission of pollutant gases from diesel engines (Cui
et al., 2017; Zhang et al., 2022c). The most direct way of reducing emissions from diesel
engines is through after-treatment, which can significantly reduce the emissions of exhaust
gases. For example, Zhao investigated the optimum operating conditions of a diesel
particulate filter (DPF) at different temperatures, oxygen concentrations (Zhao et al.,
2023), and exhaust gas loads (Zhao et al., 2022), and compared the effects of different
parameters on after-treatment. Nowadays, the research on the combustion characteristics
(Zhang et al., 2023a) of biodiesel in diesel engines is increasing (E et al., 2017; Cai et al., 2023).
In recent years, many studies on diesel combustion (Zhang et al., 2021a) and diesel
combustion after-treatment (Zhao et al., 2021) have been conducted. However, few
experiments analyze and optimize each input parameter of diesel engines because many
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different results are usually produced, and the experiments need to
be fully analyzed to produce the desired data. Different experimental
analysis methods often result in different test protocols
(Nuchitprasittichai and Cremaschi, 2011). Each method of
experimental analysis in the engine field has distinct advantages
and disadvantages (Zhang et al., 2022e; Tan et al., 2023b).

The orthogonal design of experiments method is a method that
uses extreme difference analysis and analysis of variance, mainly
through orthogonal tables, to arrange experiments characterized by
simple operation and lowworkload (Shi et al., 2023). The orthogonal
experimental method has a wide range of adaptability and is applied
in various fields such as engineering, materials science, physics, and
other multifaceted applications (Zhang et al., 2022a; Zhang et al.,
2022b). Wang et al. (2022) studied the effect of combustion
parameters on the combustion characteristics and NO emission
characteristics of combustion in a combustion furnace by
orthogonal experiments and concluded that the deflection angle
of the blade end had a significant effect on the furnace temperature
and NO emissions. The number of blades had no effect on the
furnace temperature and NO emissions. Li et al. (2022) proposed a
timing of the design energy consumption relationship of a typical
rural house in a severely cold region. The optimization method is a
multi-factor, multi-objective optimization using the orthogonal
experiment method and the optimization method with entropy
weights. A design scheme is proposed after comparing
18 optimization schemes that effectively improve the subjective
design flaws of the constructors during building design and
increase energy saving, cost-benefit ratio, and carbon emission
reduction considerations. Hu et al. (2022b) proposed a method
in response to the problems of increasing form factor and
deterioration of key performance indexes by structural
optimization methods used in the design process of
magnetorheological (MR) valves. A geometric optimization
design method is proposed for the optimal design of MR valve
structures under specific volume constraints. In this work, a second-
order response surface methodology (RSM) model is proposed to fit
the radial flow path and spool region density of the radial MR valve
using orthogonal experiments and response surface analysis, and the
accuracy of the response surface function is also estimated for the
entire design development. Finally, a geometric optimization
problem was formulated for the constructed RSM using a genetic
algorithm to find the global optimal geometric parameters of the
radial MR valve, and the correctness of the algorithm and the
effectiveness of the optimized design were effectively verified by
experiments (Li et al., 2023b). Conducting experiments according to
an orthogonal design method allows effective comparison of
preselected parameters to determine their degree of influence on
the experimental results. Sometimes, the actual determination of the
specific optimization range requires the intervention of other
optimization methods to complement the accuracy of the
experimental results; ANOVA lacks the means to portray a
nonlinear relationship between multiple factors.

The genetic algorithm (GA) is a method for solving optimization
problems. The adaptation function is used to measure the overall
situation to achieve the optimal solution, and the genetic algorithm
has a stronger global search capability by randomly selecting
individuals, which can avoid falling into the local optimal
solution, and has higher solution accuracy. Teng and Qin (2019)

In order to study the relationship curves of torque with soot and
NOx under the premise of satisfying the torque output demand and
soot emission demand, the relationship curves of torque with soot
and NOx are determined using the established genetic algorithm
model penalty function, and the best combination of ECG
parameters and fuel supply parameters is found by optimization.
A genetic algorithm based on algebraic analysis is proposed to
optimize the combustion phase change angle of a dual-fuel
engine, and a double Wiebe function is proposed to fit the actual
operating conditions in its work. Finally, by comparing the genetic
algorithm with the Levenberg–Marquardt (LM) algorithm for
iterative calculations, the genetic algorithm is examined for its
practicality, and also, the accuracy of the genetic algorithm is
demonstrated (Hu et al., 2022a). However, while improving its
convergence, the genetic algorithm requires about 150 iterations,
requiring much computational time. Li et al. (2023a) proposed a
non-dominated ranking genetic algorithm (NSGAⅢ) that has been
recently investigated. This genetic algorithm differs from the
traditional NSGA Ⅱ in that NSGA Ⅲ employs a diversity
maintenance strategy that uses a set of uniformly distributed
reference points to preserve the diversity of communities. This
approach is better than NSGA Ⅱ, which uses a crowded ranking
of reference points and is more applicable to multidimensional
problems. Moreover, the reference points in NSGA Ⅲ results can
directly identify similar individuals, and the optimal solution can be
found in a shorter time during the enhanced training. Compared
with previous genetic algorithms, the proposed algorithm greatly
facilitates the processing of optimization results, increases accuracy,
and limits the consumption of computational time. However, due to
the varying degree of crowding of the initial data, some genetic
algorithms may lead to data misuse; some local optimal solutions are
ignored by mistake, thus losing the optimal solutions. Some
additional processing is needed to improve or supplement the
genetic algorithm (Hu et al., 2022a).

The RSM can be used to solve the interaction between random
variables and system response variables through advanced
experimental design methods (Solmaz et al., 2021; Liu et al.,
2023). The main components of response surface experimental
methods include experimental design and function fitting, and
their accuracy is mainly determined by the design of the
response surface function and the values of the coefficients in the
function (Singh et al., 2021). RSM has been applied to develop
models using design of experiments and multiple linear regression
analysis techniques (Ozgur, 2021). The established second-order
RSMmodel has been found to be themost appropriate in the current
work. Currently, the RSM is widely used in engineering practice and
has been studied by many experts worldwide in the field of internal
combustion engine combustion. Kashyap et al. (2021) obtained the
best performance of the dual fuel engine by replacing 20% of the
hydrogen at higher loads by using RSM. The analysis of variance
(ANOVA) of the experimental results at the 95% confidence level
showed that the developed model was significant. Simsek and Uslu
(2020) investigated the effect of biodiesel/2-ethylhexyl nitrate
(EHN) fuel blends on diesel engine performance and emissions
by RSM. In the RSM model created, three continuous factors were
selected to create a Pareto chart supporting the analysis of variance
and the validity of the selected input factors was determined. The
final optimum values for the engine parameters were derived as
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100% biodiesel percentage, 1.1% EHN percentage, and 1515 W load.
The results show that the response surface experimental approach
can effectively optimize compression ignition engine performance
and exhaust emissions powered by a combination of biodiesel and
EHN, thus saving time and reducing engineering effort. Yilmaz et al.
(2022) studied diesel fuel blends and considered that the addition of
1-pentanol to biodiesel blends will increase the use of alternative
fuels in diesel engines. The RSM was used to optimize the biodiesel
blending ratio (BBR) and study the effect of these three component
blends on emissions by considering the relationship between brake
thermal efficiency (BTE), brake specific fuel consumption (BSFC),
CO, HC, and NOx in relation to the three additive ratios to find the
optimal blending ratio of 79.9% diesel, 8.33% waste oil biodiesel
(WOB), and 12.58% 1-pentanol to achieve the best emission
economy. The results of these studies help understand the
combustion reaction process of diesel–biodiesel dual-fuel engines
and have some engineering guidance for energy saving and emission
reduction of dual-fuel diesel engines.

Biodiesel is a popular alternative fuel with the advantages of lean
combustion, high octane number, and latent heat of vaporization,
which can improve the combustion and emission characteristics of
engines without changing the engine structure. It is essential to find
the right combination of the advantages of the engine’s exhaust gas
recirculation (EGR) and biodiesel fuel that will meet the emissions
and engine performance targets. At present, researchers mostly use
single factors for combustion and emission characteristics analysis
of biodiesel, but parameters usually interact with each other, so it is
necessary to use multi-objective optimization methods. RSM is an
optimization method that can be used to reduce the number of
experiments and to accurately predict the optimal operating
parameters of the engine. Therefore, this paper uses the RSM
with the objectives of maximizing BTE and minimizing BSFC,
NOx, and CO to derive the optimal biodiesel blending ratio, the
optimal workload, and the optimal EGR.

2 Materials and method

2.1 Preparation and characterization of test
fuels

Biodiesel can achieve good combustion conditions in engines
due to its high octane number and high latent heat of vaporization.
Experiments were conducted using different proportions of
biodiesel to investigate the blending ratio. The specific
experiments are described as follows.

2.1.1 Main parameters and boundary conditions of
the model

The temperature boundary conditions are given empirically and
are set as follows: piston temperature is 553 K, cylinder head
temperature is 523 K, cylinder wall temperature is 373 K, and
injection nozzle temperature is 550 K. Velocity boundary
conditions: piston movement speed is the actual piston
movement speed at the calculated speed, and the remaining
components are stationary. The turbulent kinetic energy (TKE)
and turbulence length scale (TLS) in the initial combustion

chamber are calculated from the following equations (Zhang
et al., 2021b):

TKE � 3
2
× u, (1)

u � 0.7 × 2 × h ×
n

60
, (2)

TLS � hv
2
, (3)

where u indicates turbulent pulsation velocity, mm/s; h is the diesel
engine stroke, mm; n is the diesel engine speed, rpm; hv is the
maximum valve lift, mm.

The main parameters of the diesel engine are shown in Table 1.

2.1.2 Fuel properties
The study examined diesel/biodiesel blends with different

biodiesel blending ratios, namely, D95B5, D90B10, D85B15, and
D80B20, respectively. D95B5 represents 95% diesel +5% biodiesel,
D90B10 represents 90% diesel +10% biodiesel, D85B15 represents
85% diesel +15% biodiesel, and D80B20 represents 80% diesel +20%
biodiesel. The input physical properties of the model are treated as
constant values, and the physicochemical properties of diesel and
biodiesel are shown in Table 2 (Chen et al., 2012; Tan et al., 2023a).

2.1.3 Experimental setup
The experimental arrangement is shown in Figure 1: the fuel is

controlled by an oil pressure sensor (accuracy ±1% MPa) at the
outlet, and at the end of the test setup, the emission levels of NOx and
CO in the exhaust gas are measured with an exhaust gas analyzer
with an accuracy of ±5 ppm. The models measured by the sensor
during the experiment are passed through the computer to the
electronic control unit and finally to the computer for analysis.

2.1.4 Verification of grid independence
Before the model can be simulated, the accuracy of the

simulation was verified using a suitable mesh density. Figure 2
shows the cylinder pressure curve with different grid sizes that can
ensure accuracy and reduce the calculation time. A grid size of 2 mm
was chosen for the experimental study.

TABLE 1 Relevant parameters of the model.

Parameter Value

Bore × stroke (mm) 190 × 210

Connecting rod (mm) 410

Engine speed (r/min) 1,000

Number of fuel injection holes 8

Nozzle radius (mm) 0.28

Initial cylinder turbulence energy (m2/s2) 18.375

Compression ratio 14

Inlet initial pressure (MPa) 0.193

Effective power (kW) 220

Spray angle (°) 150
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2.1.5 Experimental verification
The experimental and simulation results were compared for

cylinder pressure, heat release rate (HRR), and trends on NOx

emissions at 100% and 50% load. As shown in Figure 3, both the
experimental and prediction errors were within 5%, and the
accuracy of the model was verified by the experiment. It was
concluded that the model was accurate.

2.2 Response surface optimization method
calculation formula

The research route of the RSM is to set up a finite number of
representative experiments by experimental design and use the least
squares method to derive polynomials to express the state function
of the implicit limit based on the experimental output. Overall, the
RSM is a practical statistical method to determine the final best
response value between different inputs (Yusup et al., 2014; Sun
et al., 2017).

TABLE 2 Physiochemical properties of diesel and biodiesel.

Fuel Diesel Biodiesel (RME) D95B5 D90B10 D85B15 D80B20

Flash point temperature (°C) 67 168 72.05 77.1 82.15 87.2

Oxygen volume fraction (%) 0.0 10.7 0.535 1.07 1.605 2.14

Density (g/m3, at 20°C) 0.82–0.86 0.882 0.8231–0.8611 0.8262–0.8622 0.8293–0.8633 0.8324–0.8644

Latent heat of vaporization (kJ·kg−1) 253.31 273.36 254.31 255.315 256.32 257.32

Viscosity (MPa·s, at 20°C) 3.0–8.0 4.556 3.08 3.16 3.23 3.31

Cetane number (CN) 45–66 53.88 45.444 45.888 46.332 46.776

Low heating value (MJ·kg−1) 42.5 39.53 42.3515 42.203 42.0545 41.906

FIGURE 1
Diesel engine test system.

FIGURE 2
Cylinder pressure curves at different grids.
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In order to derive quantitative relationships between the three
structural parameters of BBR, load, and EGR and the economic
performance indicators (BTE and BSFC) and emission indicators
(NOx and CO), a response surface function was constructed based
on the RSM with the objectives of maximizing BTE and minimizing
BSFC, NOx emissions, and CO emissions. The basic equations are as
follows:

y � α0 +∑n

a�1αaxa +∑∑
a< b αabxaxb +∑n

a�1αaax
2
a + ε, (4)

where y denotes the response value; α0, αa, αaa, and αab denote the
regression coefficients of different factors; xa denotes the values of
different factors; ε denotes the random error.

Among them, the relationship between the number of basic
functions Y and the number of design parameters μ is divided into
linear, quadratic polynomial, and cubic polynomial relationships.

Y � μ + 1, (5)
Y � μ + 1( ) × μ + 2( )

1 × 2
, (6)

Y � μ + 1( ) × μ + 2( ) × μ + 3( )
1 × 2 × 3

. (7)

2.3 Significance test model

The adaptability and accuracy of the model must be quantified
to assess the predictive power of the model and perform significance

tests on the established response surface models. Many factors
determine the accuracy of the response surface model: the
number of data groups collected, the smoothness of the actual
function, and the choice of the response surface equation. In this
paper, error analysis is performed statistically. The sum of
squares of multiple error fluctuations and the value of degrees
of freedom are used in statistics to test the response surface
model (Jamaluddin et al., 2013). The specific equations are as
follows:

Mi � ∑N

a�1 ya − y
−( )

2
Gi � N − 1, (8)

Mj � ∑N

a�1 ya − y
−( )

2
Gj � N − n, (9)

Mk � ∑N

a�1 ya − y
−( )

2
Gk � n − 1, (10)

y
− � 1

N
∑N

a�1ya, (11)

where ya and y
−
are the true and approximate function values of

the sample G, respectively; N is the number of design
parameters; n is the number of functions; Mi and Gi are the
total sum of squares and degrees of freedom of error
fluctuations; Mj and Gj are the degrees of freedom and sum
of squares of residual fluctuations, respectively; Mk and Gk are
the sum of squares and degrees of freedom of fitted error
fluctuations, respectively. Thus, the F-value used to test the
accuracy of the response surface model can be obtained based
on the probability statistical theory.

FIGURE 3
Comparison of experimental and simulated data at 100% and 50% load conditions: (A) indicates cylinder pressure at 50% load, (B) indicates cylinder
pressure at 100% load, (C) NOx concentration at 50% load, and (D) NOx concentration at 100% load.
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F Gk, Gj( ) � Gc × Mk

Gk × Mj
, (12)

F Gk, Gj( )>Fa Gk, Gj( ), (13)

where R2 is used as a complex correlation coefficient to test the
accuracy criteria of the model. Its calculation equation is as follows:

R2 � Gk

Gi
. (14)

R2 can measure the fit of the established response surface model, and
in general, the closer R2 to 1, the higher the accuracy of the model fit
(Cui et al., 2022). However, when the number of design variables and
basis functions in the response surface model gradually increases, it
will appear that R2 will be close to 1, which cannot be used to
evaluate the fitting accuracy, so R2

Adj (adjustment factor) is proposed
as follows:

R2
Adj � 1 − Mj × Gi

Mi × Gk
. (15)

2.4 Response surface model construction

In this paper, a response surface model is established based on
the diesel engine operating parameters. On the premise of ensuring

high model accuracy, the response surface optimization is carried
out, and the optimal operating parameters of the diesel engine are
derived. The specific process is shown in Figure 4.

The Design-Expert software was used to create the response surface
experimental design, and 20 sets of experimental data were derived. A
response surface model was developed with BBR, load, and EGR as
independent variables and BTE, BSFC, NOx emissions, and CO
emission as dependent variables, and simulations were performed to
calculate the results shown in Table 3.

The core of the response surface optimization analysis method is to
design the appropriate parameter variables in the space with a suitable
experimental design method (Shahbaz et al., 2016). The input
parameters are substituted into the response surface model, and the
multiple quadratic regression equation is used to fit the direct
mathematical function relationship between the influencing factors
and the response results according to the input and output
parameters, and then, the measured response value is used as the
target value to obtain the ideal value with the response surface model.

In this article, a quadratic regression model of the engine system is
represented to analyze the biodiesel blending ratio, the workload, and
the effect of EGR on engine combustion and emissions. The difference
between the predicted and target values is called the residual. Figure 5
shows the predicted BSFC, BTE, and NOx emissions against the
expected values. Figure 5 shows that the residuals of the model are
very small, indicating that the fit and model are ideal.

TABLE 3 Response surface design simulation data.

BBR (%) EGR (%) Load (%) BSFC (g/(kW·h)) BTE (%) NOx (ppm) CO (ppm)

5 0 100 405.97 35.33 272 79.23

5 0 50 333.63 28.62 96.035 14.53

5 10 50 306.25 27.23 65.32 34.36

5 0 75 274.07 32.86 189.947 45.36

5 10 75 283.76 31.56 125.23 65.23

5 10 75 283.76 31.56 125.23 65.23

5 15 100 439.23 34.92 110.23 112.36

10 15 50 272.36 30 38.56 32

10 5 100 436.23 34.68 198.32 80.12

15 0 50 326.30 28.88 97.641 26.56

15 0 75 269.77 33.32 190.70 46.53

15 10 50 302.35 28.06 43.04 23.56

15 0 75 269.77 33.12 190.70 46.53

15 10 100 446.23 35.32 125.36 58.65

15 10 100 446.23 36.32 125.36 58.65

15 0 75 269.77 32.5 190.70 46.53

20 5 50 308.02 30.76 50.23 23.86

20 15 75 275.62 33.12 24.6 17.02

20 15 75 275.62 33.12 24.6 17.02

20 0 100 401.11 36.7675 263.25 60.78
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3 Response surface parameter
evaluation

3.1 Brake-specific fuel consumption
evaluation index

The fuel consumption model based on RSM is as follows
(Elsayed and Lacor, 2011):

BSFC � 286.07 − 1.22A − B + 63.82C + 5.43AB + 4.06AC

+ 23.96BC − 1.56A2 − 13.93B2 + 91.34C2. (16)

The difference between the predicted value of fuel consumption
calculated according to this formula and the simulated value is very
small. BSFC is the brake-specific fuel consumption, g/(kWh); A is
the BBR, %; B is the EGR rate, %; C is the engine load, %.

The variance analysis of fuel consumption is shown in Table 4.
The biodiesel blending ratio, EGR, and biodiesel load have very
significant effects on the model of fuel consumption (p-value of
model<0.0001). The response values of R2, R2

Adj, and R2
Pre

(prediction factor) to the model are 0.9987, 0.9975, and 0.9912,
respectively, which indicates that all squared terms are also
significant for the model and can be used for the experimental
prediction (Han et al., 2021).

Figure 6 shows the graphs of the biodiesel blending ratio, EGR,
and load on fuel consumption individually for biodiesel. In
Figure 6A, the biodiesel blending ratio has little effect on fuel
consumption. The EGR curve in Figure 6B shows a smaller slope
than the load. The graph of fuel consumption versus load shows that
the effect of load is the main effect, and fuel consumption decreases
then increases rapidly with increasing load, as depicted by a curve
with a steep slope, as shown in Figure 6C.

Three-dimensional surface plots specifically depict the
interaction between variables and responses. Figure 7 shows
surface plots of the relationship between the biodiesel blending
ratio and load about BSFC. The results show that engine load has a
greater effect on power than blended fuel. The surface plot shows a
drastic change when the load slightly changes from low to high. This
higher load does more work leading to consuming more fuel. In
addition, the image shows that the biodiesel percentage has a
negligible effect on fuel consumption.

3.2 Brake thermal efficiency evaluation index

The brake thermal efficiency model based on the RSM is as
follows:

BTE � 31.88 + 0.56A − 0.15B + 3.45C + 0.02AB + 0.11AC

− 0.09BC + 0.14A2 + 0.76B2 − 0.35C2. (17)

The error between the predicted and simulated values of brake
thermal efficiency calculated by this formula is almost negligible. In
the equation, BTE represents the BTE of the engine, %; A is the BBR,
%; B is the EGR rate, %; C is the engine load, %.

The variance analysis of thermal efficiency is shown in Table 4. It
can be seen from the table that the p-values of the biodiesel blending
ratio, EGR, and load-to-fuel consumption of biodiesel are <0.0001,
0.0865, and <0.0001, respectively. Among them, the response values
of R2, R2

Adj, and R2
Pre to the model are 0.9954, 0.9913, and 0.9761,

respectively, which are all within the allowed error range. The
predicted values of the model fit well in the experiment, which
indicates that the model is correct and accurate. The model has a
reference value for the prediction of thermal efficiency (Wang and
Li, 2022).

Figure 8 shows the separate effects of biodiesel blending ratio,
EGR, and load of BTE. In Figure 8, the biodiesel blending ratio has a
positive correlation with the thermal efficiency in Figure 8A. The
EGR has less effect on the BTE and remains around 32%, as shown
by the curve in Figure 8B. As shown in Figure 8C, load is the main
effect on the diesel engine, BTE increases rapidly with the increase of
load, forming a curve with a steeper slope, and its effect on BTE is
much greater than the biodiesel blending ratio and EGR. This
indicates that as the load increases, diesel engine combustion in
the cylinder becomes more and more adequate.

A 3D surface plot was created to further understand the
interaction between the variables and the response. Figure 9
shows a surface plot of the relationship between the biodiesel
blending ratio and load about BTE. The results show that the
diesel load has a greater effect on BTE than the biodiesel
blending ratio. A significant change can be seen on the surface
plot when the load is changed slightly from low to high.

FIGURE 4
Response surface flow chart.
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3.3 NOx evaluation index

The NOx model based on the RSM is as follows:

NOx � 121.19 − 19.27A − 64.76B + 54.40C − 16.67AB − 1.28AC

− 31.34BC − 2.09A2 + 6.3B2 − 10.32C2.

(18)
The NOx of the diesel engine calculated according to this

equation was obtained, and the error between the predicted and
values simulated through calculation was almost negligible.
Therefore, it can be considered that NOx obtained through
the formula can represent the NOx emissions of the engine,
ppm; A is the BBR, %; B is the EGR rate, %; C is the engine
load, %.

The variance analysis of NOx is shown in Table 5. It can be seen
that the model is significant and can express the state of the diesel
engine and the corresponding effects in each case with basic
accuracy. The p-values of BBR, EGR, and load on NOx

are <0.0001. In addition, the response values of R2, R2
Adj, and

R2
Pre to the model are 0.9991, 0.9983, and 0.9923, respectively.

The high R-squared correlation coefficient ensures a satisfactory
agreement between the calculated and observed data (Guo et al.,
2012).

FIGURE 5
BSFC, BTE, CO, and NOx forecast compared to the expected value: (A) BSFC, (B) BTE, (C) CO, and (D) NOx.

TABLE 4 BSFC and BTE Miller’s cyclic ANOVA table.

BSFC BTE

F-value p-value F-value p-value

Model 849.05 <0.0001 241.12 <0.0001

A 1.31 0.2791 47.51 <0.0001

B 0.9122 0.3620 3.61 0.0865

C 3,915.65 <0.0001 1937.09 <0.0001

AB 18.19 0.0016 0.0341 0.8572

AC 8.84 0.0140 1.17 0.3057

BC 307.93 <0.0001 0.7330 0.4119

A2 0.6656 0.4336 0.8859 0.3688

B2 50.28 <0.0001 25.28 0.0005

C2 3,065.10 <0.0001 7.94 0.0182

R2 0.9987 0.9954

R2
Adj 0.9975 0.9913

R2
Pre 0.9912 0.9761
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The individual effects of the biodiesel blending ratio, EGR, and
load on the NOx emissions of a diesel engine are shown in Figure 10.
The results show that the magnitudes of the effects on NOx

emissions are as follows: the EGR is the largest, followed by the
biodiesel blending ratio, and the load has the least effect. As shown
in Figure 10A, increases in the biodiesel blending ratio cause a
moderate increase in NOx emissions. This is because the high
oxygen content of biodiesel leads to higher NOx. As shown in
Figure 10B, EGR is the most influential on NOx emissions, and
as EGR increases, NOx decreases significantly. In addition, in
Figure 10C, there is a negative correlation with the increasing
load curve, and NOx increases significantly with a large slope of
the curve.

A 3D surface plot was created to further understand the interaction
between the variables and the response. Figure 11 shows a surface plot
of the relationship between EGR and load about thermal efficiency. The
results show that NOx emissions from the diesel engine decrease
significantly as EGR increases, while NOx emissions increase as the
load and biodiesel blending ratio increase. The in-cylinder temperature
increases significantly when the load changes from low to high, and the
high temperature can lead to a large amount of NOx formation.

FIGURE 6
Graph of the separate effects of the BBR, EGR, and load on fuel consumption: (A) biodiesel (%), (B) EGR (%), and (C) load (%).

FIGURE 7
3D surface plot of BSFC about the engine load and biodiesel
blending ratio.
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3.4 CO evaluation index

The CO model based on the RSM is as follows:

CO � 46.08 − 15.09A + 0.45B + 22.81C − 15.10AB − 10.38AC

− 0.45BC − 0.45A2 + 0.81B2 + 1.36C2,

(19)
where CO represents the CO emissions of the diesel engine,

ppm; A is the BBR, %; B is the EGR rate, %; and C is the engine load,
%. The predicted values of CO for diesel engines can be calculated by
this equation, and the obtained results have very little error with the
simulated values, so the emission values of CO are calculated by this
equation.

The analysis of variance for CO is shown in Table 5. In this case, the
factors that affect themodel are biodiesel blending ratio, EGR, and load.
The F-value of the model was 505.73 with a p-value <0.0001, which is
less than 0.05; thus, the model is significant. In addition, R2, R2

Adj, and
R2
Pre were 0.9978, 0.9958, and 0.9755, respectively. The difference

between the three was less than 0.2, implying that the model was
appropriate (Zhang et al., 2023c).

FIGURE 8
Graph of the separate effects of the BBR, EGR, and BTE load: (A) biodiesel (%), (B) EGR (%), and (C) load (%).

FIGURE 9
Surface plot of BTE about the engine load and biodiesel blending
ratio.
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Figure 12 shows the individual effects of the parameters (Hu
et al., 2023) on CO emissions. The increase in the oxygen content of
biodiesel significantly increases the conversion of CO to CO2. As
shown in Figure 12A, an increase in the biodiesel blending ratio

leads to a decrease in CO emissions, and its effect is prominent. EGR
has little effect on CO emissions, as shown in Figure 12B. However,
in Figure 12C, the load is an important factor affecting CO, and the
increase of CO emissions as the diesel engine load increases may be

TABLE 5 BSFC and BTE Miller’s cyclic ANOVA table.

Gas NOx CO

F-value p-value F-value p-value

Model 1,211.94 <0.0001 505.73 <0.0001

A 389.28 <0.0001 882.23 <0.0001

B 4,550.05 <0.0001 0.8137 0.3882

C 3,382.58 <0.0001 2,198.06 <0.0001

AB 203.97 <0.0001 618.56 <0.0001

AC 1.04 0.3313 253.97 <0.0001

BC 626.38 <0.0001 0.4896 0.5000

A2 1.42 0.2614 0.2442 0.6318

B2 12.24 0.0057 0.7637 0.4027

C2 46.61 <0.0001 2.98 0.1148

R2 0.9991 0.9978

R2
Adj 0.9983 0.9958

R2
Pre 0.9923 0.9755

FIGURE 10
Graph of the separate effects of the BBR, EGR, and load of NOx emissions: (A) biodiesel (%), (B) EGR (%), and (C) load (%).

FIGURE 11
3D surface plot of NOx about engine load and EGR.
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due to the increase of oxygen content, which leads to the increase in
CO conversion to CO2.

A three-dimensional surface plot was created by analytical
calculations. Figure 13 shows the surface plot of the relationship
between the biodiesel blending ratio and load about BTE.
Figure 13 shows that both the biodiesel blending ratio and
load have a large effect on CO emissions. With the increased
biodiesel blending ratio, the CO emissions of diesel engines
decrease significantly, while with the increase of load, CO
emissions also increase.

4 Multi-objective optimization

In this paper, BBR, load, and EGR are used as independent
variables and BTE, BSFC, NOx emissions, and CO emissions are
used as dependent variables to obtain the optimal parameters for
multiple responses and to achieve the objectives of maximizing BTE
andminimizing BSFC, NOx emissions, and CO emissions (Luo et al.,
2022; Ye et al., 2023).

The best solution derived from the response surface multi-
objective optimization was to use 20% canola oil with diesel fuel

FIGURE 12
Graph of the separate effects of the BBR, EGR, and load of CO emissions: (A) biodiesel (%), (B) EGR (%), and (C) load (%).

FIGURE 13
3D surface plot of CO about the engine load and biodiesel
blending ratio.
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for the diesel engine at 74.52% load and 15% EGR. The solution was
chosen with a consensual value of 0.874, as shown in Figure 14. In
addition, the highest value of BTE and the lowest value of BSFC,
NOx emissions, and CO emissions combination were derived. The
final predicted values of BTE, BSFC, NOx emissions, and CO
emissions were 33.14%, 272.07g/(kWh), 24.3 ppm, and
16.48 ppm, respectively.

Based on response surface multi-objective optimization, it is
concluded that diesel engines can be optimized to a considerable
extent in terms of performance and emission characteristics when
using an optimal biodiesel blending ratio of 20%. This optimization
occurs especially at high engine loads and high EGR. The main
reason for this is the desirable fuel properties of biodiesel, higher

oxygen content, and higher latent heat of vaporization contribute
significantly to the optimal emission and combustion characteristics
of the diesel engine (Ye et al., 2023).

5 Validation of optimization results

After the optimization results were obtained, the best solution
obtained from the multi-objective optimization was returned to the
simulation experiment for another validation to verify the
correctness of the optimization results. Table 6 presents a
comparison of the actual values corresponding to the optimal
conditions of the engine biodiesel blending ratio, EGR, and

FIGURE 14
Predicted value of the best engine operating conditions.

TABLE 6 Validation of optimization results.

BBR (%) EGR (%) Load (%) Fuel consumption (g/(kW·h)) BTE (%) NOx (ppm) CO (ppm)

20 15 74.52 Actual value 276.01 31.97 25.39 16.17

Predicted value 272.07 33.14 24.3 16.48

Error (%) 1.44 −3.53 4.61 −1.86
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mixed load with the predicted values. The results show that the
absolute errors in the predicted values of the model are consistent
with an acceptable range. Thus, the developed model can accurately
predict performance characteristics, and the absolute percentage
error with the simulated values is less than 4%. However, in this
paper, the percentage of absolute error is less than 5% for model
predictions of NOx emission characteristics. This result may be due
to the lack of experimental values and consensual values (Zuo et al.,
2022). Finally, the validation results are in good agreement with the
experimental data and can be used as a reference in the practical
application of diesel engines.

6 Conclusion

In this paper, a response surface model was developed to study
the effects of combustion and emission characteristics of diesel-
biodiesel blends for diesel engines based on different engine
blending ratios, loads, and EGR. The response surface model was
developed with biodiesel blending ratio, load, and EGR as
independent variables and BTE, BSFC, NOx emissions, and CO
emissions as dependent variables. The maximum BTE, as well as the
minimum BSFC, NOx emissions, and CO emissions, was obtained.
The main findings are as follows:

(1) The response models of EGR, biodiesel blending ratio, and load
for BTE and BSFC show that load has the most significant effect
on BTE and BSFC, and load has the greatest effect on diesel
engine operation.

(2) With increased EGR, the NOx emissions of diesel engines are
significantly reduced, while NOx emissions increase with
increases in the load and biodiesel blending ratio. It is
possible that this is due to the recovery of heat energy by the
EGR, which leads to a more complete combustion of the fuel,
resulting in lower NOx emissions.

(3) CO emissions decreased significantly with an increasing biodiesel
blending ratio, whichmay be due to the increase of oxygen content,
whereas the CO emissions increased with increasing load.

(4) The best solution based on the response surface multi-objective
optimization was selected as a consensual value of 0.874, using
20% biodiesel with 80% diesel as the fuel for the diesel engine at
74.52% load and 15% EGR. At this point, the BTE, BSFC, NOx

emissions, and CO emissions were 33.14%, 272.07g/(kWh),
24.3 ppm, and 16.48 ppm, respectively.

This paper provides a better understanding of the relationship
between EGR, biodiesel blending ratio, and load on the biodiesel

engine, and provides a reference for future research on the
parameters of biodiesel engines and the development of EGR
systems. In future work, more engine parameters and more
efficient and refined optimization methods will be considered
(Zhang et al., 2023b).
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