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Solar energy from rooftop photovoltaic (PV) systems in Australia’s National
Electricity Market (NEM) has been continuously increasing during the last
decade. How much this change has affected power demand from electricity
networks is an important question for both regulators and utility investors.
This study aims to quantify the impact of rooftop solar energy generation
on spot electricity demand and also to forecast power system load in the
post-covid-19 era. Using half-hourly data from 2009 to 2019, we develop a
novel approach to estimate rooftop solar energy generation before building
regression models for wholesale electricity demand of each state. We find
that the adoption of solar PV systems has significantly changed the levels and
intra-day patterns of power demand, especially by reducing daytime power
consumption from the grid and creating a “duck curve”. The results also show
that most states in the NEM would see decreased electricity demand during
2019–2034.
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1 Introduction

Increasing concerns about carbon emissions and climate change have motivated energy
transition and the continuing adoption of renewable energy over the last few decades
(Australian Energy Market Operator, 2022). Consumers have also started managing their
own energy by investing in distributed energy resources (DERs) (O’Shaughnessy et al.,
2021). These circumstances have led to ongoing installations of rooftop solar photovoltaics
(PVs). Specifically, rooftop PV installations participating in Australia’s National Electricity
Market (NEM) have been increasing during the last decade, as shown in Figure 1 below.
Consequently, Australia has the most rooftop PVs installed per capita of any country in
the world (Australian Energy Market Operator and Energy Networks Australia, 2019; Shaw-
Williams et al., 2019; Zander et al., 2019; Wilkinson et al., 2021).

This phenomenon is very likely to contribute to negative daytime electricity prices.
For example, South Australia (SA) witnessed a record number of negative prices in
December 2020 due tomild weather, record power generation from rooftop solar, and a high
level of output from large-scale renewable generation (Australian Energy Market Operator,
2021), with the price even reaching A$–679.30 at 1:30p.m. on 18 December 2021.
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FIGURE 1
Cumulative small-scale solar generation capacity from April 2001 to August 2021. Source: Clean Energy Regulator and the authors’ calculation.

FIGURE 2
Flow chart of the whole analysis.

Examining whether and how rooftop solar affects intra-day
and inter-day patterns of power demand and, more generally, the
wholesale electricity market, is of great significance for regulators
and investors in utilities.

Much literature addresses how rooftop solar adoption is
determined rather than the impact of increasing rooftop solar
PV installations. Collier et al. (2023) identify population traits,
residential density, size, type and tenure, and power consumption
patterns as significant factors influencing solar PV uptake.
Zhang et al. (2023) find evidence of neighbourhood-level spatial
interaction effects in the determination of residential solar PV
adoption. Ros and Sai (2023) establish regression models for
household solar PVdemand.O’Shaughnessy et al. (2021) investigate

the state policy interventions and business models accelerating the
rooftop solar adoption in the low-income households. Alrawi et al.
(2022) survey the public perception towards rooftop solar PV
installations in Qatar, while Zander et al. (2019) examine the impact
of financial incentives on residential rooftop solar PV adoption in
Australia.

Current literature rarely focuses solely on rooftop solar
energy. Most studies examine the impact of renewable energy or
distributed energy resources. Shen et al. (2023) analyze the impact
of co-adopting EV, rooftop solar PV, and home battery storage.
Earle et al. (2023) propose a promising strategy of combining
traditional energy-efficiency upgrades and behind-the-meter
DERs to achieve residential electrification. López Prol et al. (2020),
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FIGURE 3
Actual and estimated monthly rooftop solar power generation (in MWh). Effective working hours of PV panels are estimated as the average value across
the periods from August 2016 to July 2017, August 2017 to July 2018, August 2018 to July 2019, and August 2019 to July 2020.

Sensfuß et al. (2008), Cardenas et al. (2017), and Csereklyei et al.
(2019) document that increased adoption of intermittent renewable
energy, including rooftop solar, is very likely to reduce wholesale
electricity prices.1 There are also related studies in the Australian
context (Blakers et al., 2021; Gonçalves and Menezes, 2022;
Srianandarajah et al., 2022). El-Adaway et al. (2020) and Perez-
Arriaga (2016) focus on the effect of energy transition and
distributed energy resource penetration, while Quint et al. (2019)
review various challenges resulting from distributed energy
resources.

In the Australian context, the impact of small-scale power
generation from renewable energy across the whole national market

1 It is referred to as the merit order effect. See Bell et al. (2017) for a review
concerning the merit order effect from different countries using different
methodologies.

is under-explored. Higgs et al. (2015), Rai and Nunn (2020), and
Alsaedi et al. (2020) investigate the effect of utility-scale VRE
generation.2 Besides, the literature focusing on regional markets in
the NEM is abundant. Wu et al. (2023) try to identify predictors
of electricity demand with consideration of COVID-19 lockdowns
in Victoria. Wilkinson et al. (2021) demonstrate empirically the
impact of rooftop solar on intra-day wholesale electricity prices
of Western Australia. Simshauser (2022) discusses the peak load
problem associated with high penetration of rooftop solar PVs
in the NEM’s Queensland region. Al Khafaf et al. (2022) analyze
the impact of smart meters on household energy consumption
in Victoria. The exception we are aware of is Mwampashi et al.

2 Utility-scale VRE generation increases the supply of low-cost power, while
rooftop solar power reduces demand for the electricity that needs to be
supplied through the grid. They affect electricity markets in different ways.
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TABLE 1 Descriptive statistics of the differences between the half-hourly
rooftop solar generation inferred from effective working hours during
benchmark periods and the AEMO generation data. Deviation and absolute
deviation aremeasured in MW.

NSW QLD SA TAS VIC

Deviation (Act.–Est.) Mean −0.23 −0.08 −0.01 −0.05 0.06

(–0.09%) (–0.02%) (–0.01%) (–0.30%) (0.03%)

Median 0 0 0 0 0

SD 89.12 90.19 42.00 7.93 68.40

Max. 717.73 648.30 273.98 55.96 491.40

Min. −695.05 −638.67 −383.51 −65.55 −568.79

Abs. Dev. |Act. −Est.| Mean 43.39 45.80 21.16 3.92 33.34

Median 0.88 0.97 0.37 0.05 0.51

SD 77.84 77.70 36.29 6.89 59.73

Max. 717.73 648.30 383.51 65.55 568.79

Min. 0 0 0 0 0

Act. Mean 267.36 364.84 146.08 18.05 202.36

Median 6.22 8.68 1.97 0.21 3.09

SD 384.72 502.22 212.71 26.31 301.55

Max. 1906.02 2158.83 928.22 120.48 1477.76

Min. 0 0 0 0 0

Obs. 70128 70128 70128 70128 70128

(2022) who focus on the impact of solar generation, both large-scale
and small-scale, on electricity spot prices and the corresponding
volatility in the NEM.

Thus, there have been few comprehensive analysis on the impact
of rooftop solar generation in the Australian National Electricity
Market. We investigate whether and how rooftop solar installations
affect wholesale power demand which is the intermediary channel
in the relationship between power generation from renewable
energy and electricity pricing, complementing the research in this
area.

Additionally, most literature in this area has focused on short-
term electricity demand projection Hsiao (2014), Aneiros et al.
(2016), Lindberg et al. (2019) suggest the feature of more
renewable energy sources should be considered in long-term
power load forecasting. Nti et al. (2020) point out that most
electricity forecastingmodels with best performances apply artificial
intelligence. Al Mamun et al. (2020) review different electric
load prediction techniques based on machine learning, while
Vanting et al. (2021) evaluate different projection methodologies
using deep neural networks. Franco and Sanstad (2008) and
McFarland et al. (2015) model and predict electricity consumption
in the context of the United States, giving consideration to climate
change and consequent temperature increases. Morcillo et al. (2022)
estimate nearly 20% saving in future energy bills with the adoption
of solar PVs based on a system dynamics model.

However, there are a limited number of studies forecasting the
intra-day patterns of electricity spot demand in the long term.

We have provided electricity spot demand projection in the post-
pandemic era on a half-hourly basis, emphasizing the impact of
rooftop solar PV adoption.

To the best of our knowledge, ours is one of the first studies in
the context of the NEM that focuses on rooftop solar PV systems as a
typical example of small-scale renewable energy generation.We find
that a 1 MW increase in rooftop solar generation corresponds with
0.5–0.6 MW decrease of spot-demand deviation from its seasonal
patterns on a half-hourly basis in individual state markets of the
NEM. Moreover, our study also contributes to predicting intra-day
electricity demand patterns in the long term given the impact of
increasing solar rooftop uptakes.We conclude that the peak of intra-
day electricity consumption will gradually move to form around
dusk due to the growth of solar generation from rooftop PVs.

In Section 2 of this paper, we introduce the various methods
applied through the analysis, before describing our data in Section 3.
Section 4 shows the main results of the study, preceding the
conclusion in Section 5.

2 Methodology

Figure 2 demonstrates the procedure of this empirical study.
The goal of this study is to visualize (Box 1) and to quantify (Box
4) the impact of rooftop solar installations on the spot demand of
individual states in theAustralianNational ElectricityMarket. Based
on the models with consideration of solar rooftop, we also aim to
forecast spot electricity demand during 2019–2034 (Box 7).

To achieve the goal of Box 4, we develop a novel approach in
Section 2.1 to estimate rooftop solar generation based on total daily
global solar exposure and half-hourly effective working hours of
rooftop solar PV panels (Box 2). Because the data on rooftop solar
generation from July 2009 to July 2016 is missing. Specifically, total
daily global solar exposure is referred to as the total amount of solar
energy falling on a horizontal surface of unit area for a day. Effective
working hours of rooftop solar PV panels are calculated as the ratio
of rooftop solar generation over the solar power generation capacity
of small-scale PV systems.

Given that seasonal factors may affect the results, half-
hourly electricity demand as the dependent variable should be
deseasonalized (Box 3) before quantifying the effect of rooftop solar
on wholesale electricity demand in the NEM through regression
models (Box 4). Section 2.2 details the procedure for deseasonalizing
spot-demand data.

Themethod in Section 2.3 is adopted to speculate on the possible
values of daily solar exposure in the future (Box 5). The forecast
of other variables is from credible sources (Box 6), such as state
governments’ official websites. Section 2.4 presents the models
built for capturing the effect of distributed solar power generation
facilities on deseasonalized spot demand in each Australian state
(Box 4) and also for forecasting spot demand in the next 15 years
(Box 7).

2.1 Estimating rooftop solar generation

This section correspondswith Box 2 in the flow chart of Figure 2.
We aim to estimate the generation from rooftop PVs for each
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FIGURE 4
Monthly average half-hourly power demand for the 1–1:30p.m. and 8–8:30p.m. trading intervals for NSW, Queensland, SA, Tasmania, and Victoria. The
figures also show the corresponding trend line for each trading interval and the considered sample period from 2009 to 2019. Source: AEMO and the
authors’ calculations.

market, taking into account the generation during the daytime
(i.e., half-hourly generation) and information on the small-scale
(systems up to 100 kW) solar power generation capacity for each
market (available on a monthly basis). Unfortunately, the Australian
Energy Market Operator (AEMO) only provides estimates3 on
half-hourly rooftop solar generation starting from August 2016.
We therefore decided to estimate the half-hourly solar power
generation for the remaining sample period, from July 2009 to July
2016.

If power generation from rooftop PVs is not available for a
certain 30-min time interval (t,d,y), our estimates are based on total
daily global solar exposure and effective working hours of PV panels
during a specific 30-min interval (t) on the corresponding date (d)
in different benchmark periods (y+ n) for each state (i). Benchmark
periods are those years where data on rooftop solar PV generation is
available from the AEMO.

First, effective working hours of PV panels in benchmark years
(hi,t,d,y+n) can be approximated by using the ratio of rooftop solar
power generation (RftPVGeni,t,d,y+n) to the generation capacity of
rooftop PV panels (GenCpi,m,y+n) in the corresponding month.

hi,t,d,y+n ≈
R ftPVGeni,t,d,y+n
GenCpi,m,y+n

(n = 1 or 2 or 3 or 4) (1)

3 There are three types of estimates in the AEMO’s model: daily, measurement,
and satellite. Subject to availability, we always choose the estimate of the
best quality, whose indicator equals 1 in most cases.

RftPVGeni,t,d,m,y+n is officially estimated by the AEMO, while
GenCpi,m,y+n is collected by the Clean Energy Regulator. Due
to it taking 12 months for individuals to register for small-
scale technology certificates, at which point their generation
capacity appears in the data4, rooftop PV panel generation
capacity for the most recent year may be underestimated.
Therefore, the benchmark period applied here ends in July 2020
to avoid overestimating the effective working time of rooftop
PV panels.

Second, by summing the effective working hours for each 30-
min interval, we obtain the effective working time for a certain
date (d). A constant is inferred from the average ratio of daily
effectiveworking time over the corresponding total daily global solar
exposure (SolarExpo) fromAugust 2016 to July 2020when both data
are available.

Const. ≈
d=366,n=4

∑
d=1,n=1

∑48
t=1

hi,t,d,y+n
SolarExpoi,d,y+n

/(365× 3+ 366) (2)

The half-hourly distribution of the effective working time of
PV panels during a day is calculated as the proportion of half-
hourly working time over total daily working time. To minimize
the effect of unusual observations, we first average the effective

4 Detailed instructions on data usage are on the Clean Energy Regulator
website, http://www.cleanenergyregulator.gov.au/RET/Forms-and-resources/
Postcode-data-for-small-scale-installations.
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FIGURE 5
The left panel shows intra-day demand patterns in August and January of the first, fourth, seventh, and last financial year of the sample period, i.e.,
August 2009 and January 2010, August 2012 and January 2013, August 2015 and January 2016, and August 2018 and January 2019. The right panel
displays intra-day demand patterns in August and January of the third, seventh, 11th, and last financial year of the forward-looking period, i.e., August
2021 and January 2022, August 2025 and January 2026, August 2029 and January 2030, and August 2033 and January 2034. The half-hourly demand
(in MW) is calculated as the average power demand for the same 30-min trading intervals of different days in the corresponding month. The change
through time is shown for NSW.

working duration inferred from the same 30-min intervals in a
31-day window that moves in 1-day steps. Then we take the
mean value of the smoothed ratios on the same dates from
different benchmark years, i.e., August 2016–July 2017, August
2017–July 2018, August 2018–July 2019, and August 2019–July
2020.

Dist.i,t,d =
4

∑
n=1

̃hi,t,d,y+n

∑48
t=1
̃hi,t,d,y+n
/4 (3)

Last, the estimated power generation of rooftop solar PVs is the
product of rooftop solar generation capacity for the corresponding
month (GenCpi,m,y), the corresponding total daily global solar
exposure (SolarExpoi,d,y), the constant inferred from historical data,
and intra-day patterns of the effective working time of rooftop PV
panels (Disti,t,d).

R ftPVGeni,t,d,y = GenCpi,m,y × (SolarExpoi,d,y ×Const.

× Dist.i,t,d) (4)

2.2 Demand deseasonalization

This section details Box 3 in the flow chart of Figure 2. In
estimating the seasonal pattern of power demand, half-hourly
demand observations are classified by the days of the week as well
as the corresponding month, for example, Mondays in January,
Tuesdays in January, …, Wednesdays in February, …, Sundays in
December. Public holidays are treated as Sundays.This classification
considers weekly as well as yearly patterns. Initially, 84 (7× 12)
groups are classified.

Given that this study deals with half-hourly spot-demand data,
we also need tomodel the intra-day periodicity. In 1 day, there are 48
half-hourly data points, which are again classified by days of theweek
and months of the year (e.g., 11a.m. on Mondays in January). Thus,
the final number of groups is 4,032 (84× 48).We decided to choose a
non-parametric approach, where the seasonal pattern for each group
is calculated as themean value in the group. For example, the average
demand during 12–12:30p.m. on Mondays in January is regarded
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FIGURE 6
The left panel shows intra-day demand patterns in August and January of the first, fourth, seventh, and last financial year of the sample period, i.e.,
August 2009 and January 2010, August 2012 and January 2013, August 2015 and January 2016, and August 2018 and January 2019. The right panel
displays intra-day demand patterns in August and January of the third, seventh, 11th, and last financial year of the forward-looking period, i.e., August
2021 and January 2022, August 2025 and January 2026, August 2029 and January 2030, and August 2033 and January 2034. The half-hourly demand
(in MW) is calculated as the average power demand for the same 30-min trading intervals of different days in the corresponding month. The change
through time is shown for Queensland.

as the typical demand for this specific trading interval. Estimated
seasonal components suggest that for each market, spot electricity
demand exhibits very different intra-day patterns depending on
the season and time of the year.5 Demand exhibits more peaks in
summer due to periods of extreme temperature, and also the wide
use of air conditioners. This is why it seems more appropriate to
estimate separate weekly short-term seasonal components (STSCs)
for different months of the year instead of just a single weekly intra-
day pattern. Note, however, that this estimation method is typically
the case for spot electricitymarkets (see, for example, Pilipovic, 1997;
Geman and Roncoroni, 2006; Weron, 2006; Bierbrauer et al., 2007;
Janczura et al., 2013; Yan and Trück, 2020).

As we also try to forecast spot demand in the following years,
the impact of the COVID-19 pandemic should be taken into
consideration. Most countries implemented lockdowns to reduce
transmission of the virus at the beginning of the pandemic, including
Australia, which announced a “national lockdown” on 23 March

5 Detailed results of the estimated seasonal component are not provided here,
but are available from the authors on request.

2020. Restrictions commonly seen in lockdowns included “stay
at home” orders and work-from-home arrangements. This can be
expected to change various aspects of daily routines including
electricity usage.Thus, different STSCs are estimated before and after
the lockdown date of 23 March 2020.

2.3 Bootstrap forecast

This section describes the steps of Box 5 in the flow chart of
Figure 2. The reason why the forecast of future solar exposure is
based on a non-parametric approach is that solar exposure has
not been the focus of any institution tracking energy prices or
consumption to our knowledge. In contrast, forecasted values of
most other variables can be found from credible public sources.

Our solar exposure forecast contains two components: one
seasonal and the other stochastic. The seasonal component is
estimated as the mean monthly pattern. The stochastic component
is simulated using the stationary bootstrapping method of Politis
and Romano (1994). As pointed out by Laker et al. (2017),
stationary bootstrapping has the advantage over traditional block
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FIGURE 7
The left panel shows intra-day demand patterns in August and January of the first, fourth, seventh, and last financial year of the sample period, i.e.,
August 2009 and January 2010, August 2012 and January 2013, August 2015 and January 2016, and August 2018 and January 2019. The right panel
displays intra-day demand patterns in August and January of the third, seventh, 11th, and last financial year of the forward-looking period, i.e., August
2021 and January 2022, August 2025 and January 2026, August 2029 and January 2030, and August 2033 and January 2034. The half-hourly demand
(in MW) is calculated as the average power demand for the same 30-min trading intervals of different days in the corresponding month. The change
through time is shown for SA.

bootstrapping that it retains the stationarity of the original dataset
and accounts for potential serial dependence and seasonality.

The bootstrapping procedure contains the following steps. For
each forecast day, we locate the same days in historical years in
our dataset and apply a ±45 days window (i.e., 90 days in total) to
determine the sample set to bootstrap from.6 After that, a random
block length is determined from a geometric distribution (G(p))
where themean block length is 1

p
. We apply themethod proposed by

Politis andWhite (2004) and Patton et al. (2009) to choose themean
block length with an automatic procedure by examining the serial
dependence in the original time series.This step is repeated until the
length of the future periodwe are interested in is reached. Compared
to the standard stationary bootstrapping method, which conducts
resampling using the full historical data, the dynamic sampling
window provides better information relevance and accounts for

6 For example, to simulate a block starting on 1 June 2023 with a length of
3 days, the days from 15 April 2009 to 15 July 2009, from 15 April 2010 to
15 July 2010, from 15 April 2011 to 15 July 2011, etc., will be used as the
sampling period to bootstrap from.

potential remaining seasonality. Finally, the estimated seasonal
component and the bootstrapping results are combined to construct
a forecast of future solar exposure.

2.4 Modelling equations

This section provides the details of Box 4 and Box 7 in the flow
chart of Figure 2. To realize the goal in Box 4, we build the following
model.

DesDemandi,t = α+ β ⋅Roo ftopSolarGeni,t + γ′ ⋅CtrlVari,t + εi,t (5)

where DesDemand measures the difference between actual half-
hourly demand and its seasonal pattern,7 RooftopSolarGen denotes

7 Seasonal patterns are subtracted from spot demand. It is for investigating
more clearly whether and how demand can be explained by increasing
adoption of rooftop solar PV systems, reducing the effect of people’s energy-
consumption habits.
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FIGURE 8
The left panel shows intra-day demand patterns in August and January of the first, fourth, seventh, and last financial year of the sample period, i.e.,
August 2009 and January 2010, August 2012 and January 2013, August 2015 and January 2016, and August 2018 and January 2019. The right panel
displays intra-day demand patterns in August and January of the third, seventh, 11th, and last financial year of the forward-looking period, i.e., August
2021 and January 2022, August 2025 and January 2026, August 2029 and January 2030, and August 2033 and January 2034. The half-hourly demand
(in MW) is calculated as the average power demand for the same 30-min trading intervals of different days in the corresponding month. The change
through time is shown for Tasmania.

the estimated half-hourly rooftop solar generation, 8 and CtrlVar are
control variables.

To quantify the effect of the national lockdown due to COVID-
19 on the relationship between deseasonalized spot demand and
rooftop solar, we estimate the following model based on the
sample data from 1 January 2018 to 30 June 2022 so that
the number of dates before and after the national lockdown is
similar.

DesDemandi,t = α+ β ⋅Roo ftopSolarGeni,t
+ η ⋅ Icovid ⋅Roo ftopSolarGeni,t
+ θ ⋅ Icovid + γ′ ⋅CtrlVari,t + εi,t (6)

8 The estimates from July 2009 to July 2016 are based on the methodology
introduced in Section 2.1. We adopt the AEMO estimates from August 2016
on.

DesDemandmeasures the difference between actual half-hourly
demand and its seasonal pattern.9 Different short term seasonal
components are estimated before and after the national lockdown
due to changes to people’s daily lives. Icovid equals 1 (0) if t is after
(before) 23 March 2020. RooftopSolarGen denotes the half-hourly
rooftop solar generation, and CtrlVar are control variables.

Concerning the goal in Box 7, we forecast spot demand in the
next 15 years following Equation 7, after regressing deseasonalized
spot demand on considered independent variables and estimating
the coefficients in Equation 5.

SpotDemand f
i,t = STSCi,t + ̃α+ ̃β ⋅Roo ftopSolarGen

f
i,t

+ ̃γ′ ⋅CtrlVar fi,t (7)

9 We subtract seasonal patterns from demand to investigate more clearly
whether and how demand can be explained by increasing adoption
of rooftop solar PV systems, reducing the effect of people’s energy-
consumption habits.
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FIGURE 9
The left panel shows intra-day demand patterns in August and January of the first, fourth, seventh, and last financial year of the sample period, i.e.,
August 2009 and January 2010, August 2012 and January 2013, August 2015 and January 2016, and August 2018 and January 2019. The right panel
displays intra-day demand patterns in August and January of the third, seventh, 11th, and last financial year of the forward-looking period, i.e., August
2021 and January 2022, August 2025 and January 2026, August 2029 and January 2030, and August 2033 and January 2034. The half-hourly demand
(in MW) is calculated as the average power demand for the same 30-min trading intervals of different days in the corresponding month. The change
through time is shown for Victoria.

where STSC represents short-term seasonal components calculated
with the method described in Section 2.2; and ̃α, ̃β, and ̃γ′ are the
coefficients estimated through regressions.

3 Data

Data of half-hourly spot demand and estimated solar power
generation from rooftop PVs is publicly available from the AEMO.
Data of total daily global solar exposure and half-hourly dry-bulb
temperature comes from the Bureau of Meteorology, an agency of
the Australian federal government. The capacity data for small-
scale installations is from the Clean Energy Regulator, an Australian
statutory authority. Data on gross state product (GSP), population,
the consumer price index (CPI) on electricity, and the number
of households for individual state markets is from the Australian
Bureau of Statistics. Descriptive statistics of key variables are
displayed in Supplementary Tables A2, A3.

Our forecast of rooftop solar generation is based on Equation 4,
while we estimate future solar exposure employing the bootstrap
method introduced in Section 2.3. The predicted capacity of

rooftop PVs is from the Australian Energy Market Operator
(2022), and we have averaged the values under four scenarios:10

“slow change”, “progressive change”, “step change”, and “hydrogen
superpower”. The projection of daily temperature for the next 15
years is from the Climate Change in Australia website (http://
www.climatechangeinaustralia.gov.au/) which is the joint work of
the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) and Bureau of Meteorology.The forecast of GSP and CPI is
from the treasury of each state. The projection of NSW population
is from the NSW Department of Planning and Environment. The
forecast of population and GSP for the Australian Capital Territory
is from the ACT 2022–2023 Budget Outlook. The population
projections for Queensland and Tasmania are from the respective
state treasuries, while the projection for SA is from the state’s online
planning and development system. The estimated growth rate of
the population for Victoria is from the Victorian Department of

10 We have also calculated the results under the most likely scenario, “step
change”. The difference from those shown in the paper is trivial. These results
are available from the authors upon request.
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Environment, Land, Water and Planning. The estimated number of
households in the next 15 years are from the Australian Bureau of
Statistics.

Given that data on solar power generation from rooftop PVs
is not available from July 2009 to July 2016, it is necessary to
ensure the estimated solar generation does not deviate too far
from actual values before quantifying its impact. Figure 3 shows the
comparison between actual and estimated monthly rooftop solar
power generation from August 2016 to July 2020, suggesting our
method is roughly accurate in estimating aggregate rooftop solar
power generation on a monthly basis.

At the same time, the methodology described in Section 2.1
should not bring systematic errors to the estimation of intra-day
solar generation. We have shown the comparison between actual
and estimated half-hourly solar generation for each month in
Supplementary Figure A1. The actual half-hourly solar generation
for each month is the average half-hourly solar generation for
the same 30-min intervals, i.e., 12–12:30a.m., 12:30–1a.m., etc.,
on different days in the same month. The estimated half-hourly
solar generation for each month is the product of corresponding
rooftop solar generation capacity and the typical working
duration calculated as the average working time for the same 30-
min intervals, i.e., 12–12:30a.m., 12:30–1a.m., etc., on different days
in the same months of four benchmark periods. The comparison
suggests that our methodology does not bring substantial biases to
the estimation of intra-day patterns for solar generation.

On a half-hourly basis, descriptive statistics of the differences
between the rooftop solar power generation estimates inferred from
the methodology in Section 2.1 and the corresponding data from
the AEMO are displayed in Table 1. Given the scales of actual half-
hourly generation from rooftop solar in the third section of Table 1,
mean and median values of the (absolute) deviation indicate that
our estimates are reasonably good. Among the five states in the
NEM, it is most difficult to accurately estimate solar generation
in NSW and Queensland, while the inter- and intra-day patterns
of solar generation in Tasmania are relatively stable, so that our
methodology is better at estimating small-scale solar generation
there. More specifically, the average deviation of estimated half-
hourly solar generation from its actual values for different 30-
min intervals is shown in Supplementary Table A4. Compared to the
scale of actual generation, our method does not bring significant
biases to the estimation of half-hourly solar generation.

Therefore, the effective working hours inferred from themethod
in Section 2.1 can be used to derive estimates for rooftop solar
generation on a half-hourly basis for the remaining sample period,
i.e., from July 2009 to July 2016, as the comparison from different
perspectives does not indicate significant deviation of estimated
small-scale solar generation from the actual values. The estimates
here are reasonably good.

4 Empirical results

4.1 The effect of rooftop solar generation
on demand

As electricity generation from rooftop solar only makes up a
small share of total electricity demand in eachmarket, which we will

TABLE 2 Results of estimated coefficients in the regression. Dependent
variables are the deviation from the seasonal pattern of power demand for
five individual states—NSW, Queensland, SA, Tasmania, andVictoria. The
explanatory variables are estimates of power generation from rooftop solar,
and control variables, including a time trend, temperature deviation from
18°C, GSP, state population, the CPI of electricity, and the number of persons
per household. P-Values are based on HAC covariance estimators.

NSW QLD SA TAS VIC

RooftopSolarGen −0.685 −0.498 −0.477 −0.266 −0.414

P value (HAC) 0.000 0.000 0.000 0.000 0.000

TimeTrend −0.054 0.094 −0.006 −0.001 −0.012

P value (HAC) 0.000 0.000 0.172 0.925 0.050

TemperatureDev 99.035 46.315 38.874 5.268 80.898

P value (HAC) 0.000 0.000 0.000 0.000 0.000

GSP (in A$ millions) 0.019 −0.020 0.006 −0.052 0.011

P value (HAC) 0.000 0.000 0.164 0.000 0.000

Population (in thousands) 4.551 −15.930 4.692 10.386 −0.810

P value (HAC) 0.002 0.000 0.313 0.699 0.410

CPI (electricity) −13.894 −13.861 −1.690 1.120 6.551

P value (HAC) 0.000 0.000 0.010 0.028 0.005

Persons per household (in millis) 7.317 21.048 −0.233 −1.063 7.553

P value (HAC) 0.291 0.000 0.867 0.856 0.109

Adjusted R2 48.07% 33.54% 52.48% 15.32% 59.62%

N 99020 99020 99020 99020 99020

Goodness of fit 73.80% 82.50% 69.08% 70.44% 77.31%

illustrate in the following analysis, to quantify the effect of rooftop
solar, first we must confirm whether there is detectable variation
in the patterns of power demand due to rooftop solar. This section
corresponds with Box 1 in the flow chart of Figure 2.

It is important to acknowledge that despite the significant
increase in household installations of solar panels, the energy
generated from rooftop solar only accounts for a limited fraction
of total demand in most markets between 2009 and 2019.
Supplementary Figure A2 shows the percentage of total demand that
is generated from solar panels for the markets in NSW, Queensland,
SA, Tasmania, and Victoria. These numbers range from less than 3%
for Tasmania and a maximum of approximately 6% in NSW and
Victoria to a maximum of almost 18% in SA. However, given that
the share of actual generation is typically much lower than these
maximum values for most of the markets, generation from rooftop
solar panels can only be expected to have a limited effect on power
demand.

The substantial increase in rooftop solar installationsmight have
played a role in the overall trend of decreasing demand for electricity
that is traded through the NEM. Supplementary Figure A3 shows
how during our sample period for three major markets—NSW,
SA, and Victoria—there has been a declining trend in the market
load, i.e., electricity that is traded in the NEM. Interestingly,
for Queensland there was an increase in demand throughout
2009–2019.
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FIGURE 10
Estimation results of the regression model of spot-demand deviation on rooftop solar generation and other control variables, including temperature
deviation from 18°C, a time trend, population, GSP, the CPI on electricity, and the number of persons per household. The model is estimated based on
data of different half-hourly trading intervals, i.e., 6a.m., 6:30a.m., etc. The left panel presents p-values referring to the probability that the null
hypothesis is correct. The null hypothesis is that the coefficient in front of the independent variable equals zero. HAC means the statistics are adjusted
in consideration of heteroscedasticity and autocorrelation. The right panel draws adjusted R2, which refers to the explanatory power of the model.

Given these observations, we would like to have a closer
look at the influence of rooftop solar generation on intra-day
demand at different times. To do this, we consider two different
trading intervals: 1–1:30p.m., when markets are likely to have a
maximum share of solar electricity generation, and 8–8:30p.m.,
when it is very likely that there is no generation from rooftop solar
installations.

Figure 4 shows that throughout the sample period the total
demand for the 1–1:30p.m. trading interval has decreased more
substantially in comparison to the 8–8:30p.m. interval for the
markets in NSW, SA, Tasmania, and Victoria. This observation is
also proved by the p-values of testing whether the slopes of two
trend lines are significantly different. Furthermore, the decrease in
demand for the 1–1:30p.m. period is more striking for the markets
in SA, Queensland, and Victoria, where a significantly higher share
of electricity comes from rooftop solar installations. We also find
that demand levels have slightly decreased for the 1–1:30p.m.
trading period in Queensland, while demand has increased quite
substantially for the 8–8:30p.m. period. Overall, these findings may
suggest that the increase in generation from rooftop solar can indeed
affect demand patterns.

The left panels of Figures 5–9 also show the impact of rooftop
solar on typical intra-day patterns of electricity demand. We choose
two different months: August, a period in winter when electricity is
needed for heating, and January, a period in summer when people

need electricity for cooling and there is more likely to be sufficient
sunshine, longer daytime, and more generation from rooftop solar
installations. Both curves display similar patterns, referred to as the
duck curve (Simshauser and Akimov, 2019; Wilkinson et al., 2021).
Comparing the first (2009–2010), fourth (2012–2013), seventh
(2015–2016), and last financial year (2018–2019) of our sample
period, we can see deepening troughs in power demand during
the daytime in August for NSW, Queensland, SA, and Victoria.
Increasing adoption of rooftop solar PV systems and other facilities
leads to decreased grid load. Especially for Queensland and SA,
which had substantially higher rooftop solar penetration in 2018,
the demand trough in the August daytime is almost the same
as the daily demand trough around 4a.m. Additionally, the daily
demand peak was gradually formed around or even after 4p.m. in
January for these states, especially in Queensland and SA, where
the demand curve between 8a.m. and 6p.m. changes from convex
to concave.

4.2 Regression results

This section demonstrates the effect of solar generation from
rooftop PVs on a half-hourly basis through different regression
models, regarding Box 4 in the flow chart of Figure 2. We choose
the sample period from 2009 to 2019 to avoid any possible bias
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TABLE 3 Estimation results of coefficients in the regression quantifying the
impact of COVID-19. Dependent variables are the deviation from the seasonal
pattern of power demand for five individual states—NSW, Queensland, SA,
Tasmania, andVictoria. The explanatory variables are estimates of power
generation from rooftop solar, a dummy indicating the impact of COVID-19,
and their cross term. Control variables include a time trend and temperature
deviation from 18°C. P-Values are based on HAC covariance estimators.

NSW QLD SA TAS VIC

RooftopSolarGen −0.272 −0.148 −0.238 −0.153 −0.213

P value (HAC) 0.000 0.000 0.000 0.004 0.000

COVID-19*RooftopSolarGen −0.004 0.000 −0.001 0.000 −0.001

P value (HAC) 0.092 0.933 0.290 0.883 0.422

COVID-19 305.209 78.639 50.643 −6.792 60.570

P value (HAC) 0.004 0.202 0.038 0.612 0.395

TimeTrend 89.529 34.881 36.505 4.904 76.176

P value (HAC) 0.000 0.000 0.000 0.000 0.000

TemperatureDev 0.046 −0.006 0.069 0.114 0.091

P value (HAC) 0.334 0.818 0.049 0.094 0.095

Adjusted R2 21.24% 8.54% 34.83% 5.87% 30.71%

N 44256 44256 44256 44256 44256

arising from the COVID-19 pandemic. We also delete half-hourly
observations when there is no rooftop solar generation for five
regional markets at the same time, because we are focusing on
the periods when generation from small-scale PV systems can
make a difference. Some independent variables have a lower
frequency, so we use interpolation to make them available on a half-
hourly basis. Moreover, it is common to build different models of
electricity demand for different states, e.g., the modelling of Al-
Musaylh et al. (2018) for Queensland and Ahmed et al. (2012) for
NSW.

To rule out the effect of any trends in spot-demand series, we
include time passage as a control variable in the model, because
the decreasing trend of electricity demand in NSW, SA, Tasmania,
and Victoria may affect the results. Moreover, the effect of air
temperature on electricity demand is documented in many studies
(Apadula et al., 2012; Trotter et al., 2016; Csereklyei et al., 2021).
This can arise from the use of energy-draining household appliances,
for example if people turn on air conditioning or heating. Heaters
will be used more widely in relatively cold areas, being likely
to increase power demand if the temperature deviates too much
from the level that makes people comfortable, say 18°C. Many
socioeconomic variables can also help explain demand deviation
from its seasonal trend. Following Hyndman and Fan (2009),
Ahmed et al. (2012), and other relevant literature, we consider GSP,
state population, the CPI of electricity, and the number of persons
per household.

Estimation results in Table 2 confirm that power generation
from solar PVs can reduce the deviation of demand from its
seasonal patterns in all five states significantly. Based on the full
model, a 1 MW increase in rooftop solar generation would reduce
around 0.5 MWof spot-demand deviation from its seasonal patterns

in Queensland and SA, leading to an even greater impact of
more than 0.6 MW in NSW. The last row of Table 2 presents the
goodness of fit if the STSCs are added back to the estimated
dependent variable. It reaches above 70% in four regional markets,
with the exception being SA, where the goodness of fit almost
reaches 70%, validating that the model here is well established.
Equation 5 is estimated based on data in different half-hourly
trading intervals, and the results are shown in Figure 10. The
coefficients of rooftop solar generation are quite significant for
most of the daytime period. The explanatory power could reach
up to 40% in NSW, SA, and Victoria during specific trading
intervals, suggesting that rooftop solar has a substantial impact
on intra-day patterns of electricity demand, especially in the
daytime.

Compare with the estimation results of regression models
without rooftop solar generation in Supplementary Table A5, we
find evidence that solar rooftop plays an important role in
explaining the deviation of spot electricity demand from its seasonal
patterns. The overall explanatory power of the models without
rooftop solar generation as independent variables is relatively lower.
Regarding the possible effects of COVID-19, Table 3 suggests that
the pandemic does not affect the negative impact of rooftop solar
on deseasonalized spot demand in an economically and statistically
significant way.

4.3 Demand forecast for 2019–2034

According to themodel built in Section 4.2, we can forecast half-
hourly demand from July 2019 onward, which is the goal of Box 7
in the flow chart of Figure 2. Despite actual values being available,
we still predict spot demand from July 2019 to June 2022 for two
reasons. First, random and temporary events happening to the NEM
during this time probably will not have effects in the long term.
For example, even though the COVID-19 pandemic has affected
patterns of electricity consumption, people’s work and life habits are
still expected to go back to normal. Second, the focus of our paper
is the effect of rooftop solar, which does not change significantly
due to those unpredictable events. Applying estimated coefficients
to professional forecasts of explanatory variables in Equation 7, we
get deseasonalized spot demand for the five individual states in
the NEM. Due to the effects of the COVID-19 pandemic, different
STSCs are added back, depending on whether it is before or
after the lockdown date of 23 March 2020. Figure 11 and Table 4
show the trend of estimated spot demand from July 2019 to June
2034. On average, spot demand in NSW, Tasmania, and Victoria
will keep decreasing after 2019, while Queensland will see spot
demand increase for 1 year before the demand declines. Based
on our forecast, spot demand in SA will expand gradually after
2 years of falling, which makes it the only state with a different
trend.

In the right panels of Figures 5–9, we have also displayed the
change to typical intra-day demand patterns due to the effects of
rooftop solar under the following assumptions:

1. There will not be significantly massive power storage added to the
market during the forecast period.
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FIGURE 11
Yearly average of forecasted spot demand in megawatts. The values for NSW, Queensland, SA, and Victoria are measured on the left axis while those of
Tasmania are shown on the right axis.

2. Increasing uptake of electric vehicles (EVs)11 is not considered.
3. Electricity consumption patterns and energy efficiency will not

experience significant changes compared with the benchmark
period.

The results confirm that total power demand significantly drops
for almost every state through the forecasted period, especially in
the middle of the daytime, when solar power is more likely to be
produced. The concavity in the middle of the intra-day demand
pattern becomes lower and lower for both January and August in
five states.

In NSW, electricity demand in January was typically highest in
the daytime, due to hot weather and the use of air conditioning.
This can be obviously seen from intra-day power demand patterns
between 2009 and 2019 in the left panel of Figure 5. But according
to our forecast, increasing solar power generation from rooftop PVs
reduces the load on the grid during daytime in January between 2019
and 2034. The daily highest power demand in January will not be in
the middle of the day when it is hottest. Instead, it will be the time

11 The results, considering forecasted EV charging patterns, are shown in
Supplementary Figures A4, A5. Adopted estimation methods are available
from the authors on request. The projection of EV numbers, estimated
charging types, and the corresponding charging patterns, is from the
Australian Energy Market Operator (2022). We do not discuss the results here
in detail because the effects of EVs are trivial until 2030.

when sunshine is not abundant but there is still a need for cooling,
usually at dusk.

Similar to the situation in NSW, in Queensland power demand
will still increase even after sunrise in the daytime of January
between 2009 and 2019. However, forecasted electricity demand
starts to go down after sunrise because sunshine can be more
efficiently used in the next 15 years thanks to the increasing
capacity of rooftop PVs. The intra-day demand pattern in August
would also change and the overall level is decreasing. The daily
peak of electricity consumption at dusk becomes even more
clear.

SA has the highest solar penetration in the NEM, partially
replacing fossil fuels with renewables. Its intra-day pattern of
spot demand changes more aggressively compared with NSW and
Queensland. Due to the application of rooftop solar PVs, electricity
demand from the grid drops dramatically after 8a.m., reaching a
daily low around 2p.m. that ismuch lower than any time through the
day. It climbs to the daily highest point at about 8p.m., after sunset,
and falls afterwards due to people’s declining activity.

Differing from the other four states in the NEM, in the
southernmost state of Tasmania, power demand is generally higher
in August than in January. There, electricity is consumed more
for heating than cooling, especially in winter. Thus, the impact of
rooftop solar on half-hourly demand patterns is more profound in
August, when the concavity along the corresponding curve is deeper.
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TABLE 4 Yearly average of forecasted spot demand inmegawatts.

NSW QLD SA TAS VIC

2019–2020 7508.61 6544.79 1302.76 1154.87 4527.12

2020–2021 6176.15 7149.82 1152.56 1130.43 3445.79

2021–2022 5747.62 6597.99 1142.13 1001.26 3020.95

2022–2023 5971.46 5800.88 1210.91 912.01 3100.90

2023–2024 5419.91 5738.08 1206.89 878.12 2918.22

2024–2025 5147.57 5647.87 1220.37 846.85 2764.26

2025–2026 5036.81 5537.32 1207.22 820.08 2593.55

2026–2027 4788.64 5404.30 1211.01 789.42 2467.72

2027–2028 4651.14 5262.33 1225.75 754.48 2345.88

2028–2029 4497.24 5113.67 1212.64 714.37 2179.22

2029–2030 4322.32 4947.56 1243.73 675.18 2126.80

2030–2031 4206.28 4803.59 1239.47 630.19 1984.08

2031–2032 4100.59 4609.34 1261.77 582.04 1896.26

2032–2033 4094.81 4470.06 1265.87 531.05 1802.52

2033–2034 3924.13 4238.13 1274.22 476.54 1703.36

Apart from that, there is not much variance from the sample period
to the next 15 years. The overall demand is decreasing.

Similar to Tasmania, in Victoria, another cooler southern state,
the effect of rooftop solar is more prominent in August. There was
barely a concavity due to small-scale solar power generation in
the daytime along the intra-day demand curve of January—rooftop
solar could not significantly reduce electricity demand from the grid
before 2020. But the concavity and the daily low along the intra-
day power demand curve gradually appear around 12p.m. during
the forecast period. Overall, power demand is apparently declining
based on our forecast.

To conclude, spot demand will fluctuate considerably during
the daytime in the future, which may lead to potential economic
losses for coal-fired power plants and also market-wide uncertainty
in power supply. In themeantime, uncoordinated charging behavior
for an increasing number of EVs may add further uncertainty
to the power market. As one solution to this, massive electricity
storage could be used to smooth the grid load curve from daytime
to nighttime. Alternatively, convenient charging facilities could be
installed to encourage people to charge vehicles in the daytime. The
situation of uncertainty is likely to worsen if massive storage or
coordinated charging behavior does not emerge.

5 Conclusion

This study has analyzed the impact of rooftop solar on demand
for power from the electricity grid in the NEM. Based on the novel
approach of estimating solar power generation from rooftop PV
panels, we have confirmed and quantified the effect of increasing
generation capacity from rooftop PV systems. Forecasted spot
demand is also provided, given consideration of this profound
effect.

To conclude, we find that:

1. Rooftop solar generation has significantly reduced the total
market load for the NSW, SA, and Victoria regions over time.

2. Increasing rooftop solar power generation has changed the intra-
day patterns of power demand. Its effect is clearer during half-
hourly trading intervals in the daytime.

3. A 1 MW increase in rooftop solar generation would subtract
more than 0.6 MW of spot-demand deviation from its seasonal
patterns in NSW. The reduction caused by 1 MW of added
rooftop solar generation reaches about 0.5 MW in Queensland,
SA, and Victoria.

4. The COVID-19 pandemic does not affect the impact of rooftop
solar on deseasonalized spot demand significantly.

5. The forecasted demand suggests obvious declining trends in
four regionalmarkets, namelyNSW,Queensland, Tasmania, and
Victoria, while overall spot demand grows after a few years’
decline in SA.

6. Due to the growth of solar power generation from rooftop PVs,
the peak of intra-day electricity consumption will gradually
move from midday to dusk in the near future.

Compared with the results of Mwampashi et al. (2022) whose
research setting is similar to us, we both find that the high uptake
of rooftop solar PVs can make more power available in the daytime,
pushing the electricity consumption peak towards early evening
hours. The difference is that we also provide demand forecast for
15 years in addition to analyzing and modelling the impact of solar
rooftop.

There are also some uncertainties and limitations of our study.
First, other variables that may affect electricity spot demand
could be omitted in the built regression models, which would
impair the accuracy of our results. Second, there are uncertainties
regarding climate change itself as well as the corresponding
adaption and mitigation measures. These uncertainties could
change the relationships drawn from current datasets. For example,
wide-range deployment of home battery storage increases the
efficiency of utilizing rooftop solar energy, which would lead
to intra-day transfer of electricity consumption. Last but not
least, as the focus of our paper is the impact of solar rooftop
rather than electricity demand forecast, we do not apply AI-
based methods despite their outstanding performances. Future
research could take into account the structural changes in energy
markets, such as the increase in renewables, EV, and energy
efficiency, when employing the forecasting techniques based on deep
learning.
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