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Intelligent grid load forecasting
based on BERT network model in
low-carbon economy

Peng Tao, Hao Ma*, Chong Li and Linqing Liu

State Grid Hebei Marketing Service Center, Shijiazhuang, China

In recent years, the reduction of high carbon emissions has become a
paramount objective for industries worldwide. In response, enterprises and
industries are actively pursuing low-carbon transformations. Within this context,
power systems have a pivotal role, as they are the primary drivers of national
development. Efficient energy scheduling and utilization have therefore become
critical concerns. The convergence of smart grid technology and artificial
intelligence has propelled transformer load forecasting to the forefront of
enterprise power demand management. Traditional forecasting methods relying
on regression analysis and support vector machines are ill-equipped to handle
the growing complexity and diversity of load forecasting requirements. This
paper presents a BERT-based power load forecasting method that leverages
natural language processing and image processing techniques to enhance
the accuracy and efficiency of transformer load forecasting in smart grids.
The proposed approach involves using BERT for data preprocessing, analysis,
and feature extraction on long-term historical load data from power grid
transformers. Multiple rounds of training and fine-tuning are then conducted
on the BERT architecture using the preprocessed training datasets. Finally,
the trained BERT model is used to predict the transformer load, and the
predicted results are compared with those obtained based on long short-term
memory (LSTM) and actual composite values. The experimental results show
that comparedwith LSTMmethod, the BERT-basedmodel has higher short-term
power load prediction accuracy and feature extraction capability. Moreover, the
proposed scheme enables high levels of accuracy, thereby providing valuable
support for resource management in power dispatching departments and
offering theoretical guidance for carbon reduction initiatives.

KEYWORDS

carbon reduction, smart grid, transformer load, digital transformation, energy
scheduling, BERT model

1 Introduction

With the continuous development of the global economy, energy consumption continues
to increase, leading to rising greenhouse gas emissions, which intensifies the global
climate crisis and the speed of climate change. Therefore, achieving carbon neutrality and
reducing carbon emissions has become a common goal of all countries. As an important
part of it, power system management is particularly important for realizing the goal.
Power system scheduling can achieve the energy manage and utilizing more efficiently,
both renewable and non-renewable. Moreover, power system resource management can
also encourage and promote the development and application of renewable energy.
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Through technological innovation and cooperation and sharing,
power companies can achieve more intelligent, efficient and
sustainable power system resource management, and make greater
contributions to carbon neutrality and carbon reduction actions
Yuan et al. (2023).

Figure 1, distribution transformers which are distributed in
urban and rural areas, are the most important terminal equipment
in the power system with a large number and complex structure.
Their safe and economic operation is an essential condition to
ensure the high-quality development of the power grid. With the
deep integration of big data, artificial intelligence technology and
power grid business, power distribution transformer load prediction
has become an important basis to support power grid production
and operation, and the accuracy of its load prediction is of great
significance for transformer key monitoring, active rush repair,
bearing capacity analysis and other businesses.

The current technologies for load forecasting mainly include
artificial neural networks, support vector regression, decision
trees, linear regression, and fuzzy set Jahan et al. (2020). These
methods are all based on the correlation mining of historical
coincident data and forecast data. In other words, the regression
analysis method is based on the causality model to predict
the corresponding data, and the time series forecasting method
completes the load forecasting through the curve fitting and
parameter estimation of the load historical data. These methods
are due to their simple structure and poor flexibility. It is difficult
to meet the prediction accuracy Hou et al. (2022) required by
practice. The above methods have the following problems 1)
Usually the historical load data series are short, and usually face
the challenge of insufficient data samples; Zhao et al. (2021). 2)
The prediction accuracy of traditional forecasting methods is not
high, and it is difficult to be applied in production practice. 3)
The performance and universality of the prediction method are
poor.

1.1 Motivation

Recently, due to the advantages of artificial intelligence methods
in data forecasting and intelligent analysis, power system load
forecasting based on machine learning (ML) Liao et al. (2021);
Yuan et al. (2023) has gradually emerged. For example, the load
forecast based on the time series model can be extended to a multi-
class regression model to predict the power load by establishing a
time series model for the grid power or the method based on the
support vector machine (SVM) can use its own excellent binary
classification characteristics.

However, these traditional ML prediction schemes, such as
LSTM, convolutional neural network (CNN), and recurrent neural
networks (RNN), all have problems of poor prediction accuracy
and low efficiency. The bidirectional encoder representations from
transformers (BERT) model innovatively encodes the sequence
by using self-attention and position embedding Qu et al. (2023),
which has nothing to do with timing and can be calculated
in parallel, thereby achieving higher load prediction accuracy.
However, the traditional forecasting algorithm is a structure
improved by RNN, which has the concept of time series and
cannot be calculated in parallel. Second, traditionalmodel structures

(such as LSTM, CNN, and RNN) are not interpretable Wang et al.
(2021), while the self-attention mechanism of BERT’s transformers
can produce more comprehensive models. This is very beneficial
to the smart grid system. In view of BERT’s powerful ability to
process and understand high-dimensional data, it can achieve high
load forecasting effect. This paper proposes a BERT-based power
system load forecasting architecture. That is, through reasonable
load forecasting, the utilization rate of renewable energy can be
maximized, the proportion of renewable energy in the power system
can be increased.

1.2 Related work

Load forecasting is a crucial component of power system
operation and plays an indispensable role in achieving carbon
neutrality and reducing emissions. It enables power system
managers to accurately predict future power demand, facilitating
optimal planning of power production and distribution
Ahmad et al. (2022). By employing scientific load forecasting,
excessive or insufficient power production can be avoided,
resulting in reduced power waste and carbon emissions. For
instance, to address the challenges of power system emergency
control and uncertainty, Huang et al. (2019) proposed an adaptive
emergency control scheme based on deep reinforcement learning
(DRL). They also developed an open-source platform called
reinforcement learning grid control (RLGC),which provides various
power system control algorithms and benchmark algorithms,
supporting and enhancing the field. In Gasparin et al. (2022),
deep learning techniques are applied to power load forecasting.
The study evaluates the impact of different architectures, such
as feedforward and recurrent neural networks, sequence-to-
sequence models, and time convolutional neural networks, on
load forecasting performance. Architecture variant experiments
are conducted to compare the robustness and effectiveness of
these models for load forecasting. From a power system network
security perspective; Liu et al. (2020) proposes a network security
assessment method based on deep Q-network (DQN). This
approach approximates the optimal attack migration strategy
by determining the required number of migrations, leading to
improved power system security. The authors of Biagioni et al.
(2022) introduce a flexible modular extension framework that
serves as a simulation environment and experimental platform
for various agent algorithms in power systems. They validate the
framework’s performance using the multi-agent deep deterministic
policy gradient algorithm, addressing a gap in power system
agent training. In Tan and Yue (2022), a BERT-based time series
forecasting model is utilized to predict the wind power generation
load in the power grid. This method effectively forecasts future load
patterns.

In the realm of user electricity consumption behavior, various
studies have been conducted. For instance, in Barman and
Choudhury (2020), the authors analyze the demand-compliant
behavior of electricity consumers and propose a hybrid parameter
selection strategy that combines the gray wolf optimization
algorithm and support vector machine. This approach considers
changes in user demand to predict power system load. In
Wang (2017), multiple factors that commonly influence load,
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such as weather conditions, are taken into account. The authors
employ multiple linear regression analysis to determine regression
coefficients and standard deviations, enabling load prediction under
different weather conditions. Considering the power load scenario
in a city, Li et al. (2018) introduces a data-driven linear clustering
strategy. This strategy involves data preprocessing and modeling
to construct an optimal autoregressive integrated moving average
model. The method demonstrates efficient error forecasting and
improved accuracy for predicting the city’s power system load. In
Saviozzi et al. (2019), the authors address the business needs of
distribution system operators and propose an integrated artificial
neural network-based load forecasting and compliance modeling
method for modern distribution management systems.The method
exhibits better adaptability and higher performance, as validated
through practical usage.

In contrast to the aforementioned methods, Du et al. (2020)
addresses the limitations of traditional large-scale nonlinear time
series load data forecasting methods. They propose an attention-
BiLSTM network that utilizes BiLSTM to predict short-term
power load sums. The attention mechanism employed in this
method leads to improved prediction accuracy and stability.
To enhance the temporal characteristics of composite data, Yin
and Xie (2021) introduces a multi-time-spatial scale method for
data processing and proposes a short-term rich deterioration
prediction approach. In Chapaloglou et al. (2019), a coincidence
prediction algorithm is designed using a feedforward artificial
neural network. The algorithm performs predictions based on
the current load curve shape classification. Combining feed-
forward deep neural networks and recursive deep neural networks,
Din and Marnerides (2017) predicts the short-term load of the
power system. This approach effectively identifies the primary
factors influencing load and power consumption, enabling
accurate short-term load prediction. Research conducted in
Yin et al. (2020) focuses on the deep forest regression method,
utilizing two complete random forests for effective training
and data learning. This method improves prediction accuracy
while mitigating the impact of deep learning method parameter
configuration. To address the low prediction accuracy of traditional
methods, Rafi et al. (2021) proposes a prediction method based
on convolutional neural networks and long short-term memory
networks, achieving high prediction accuracy. In Kong et al. (2017),
behavioral analysis is conducted on the scope of residents’ activities.
The authors propose a deep learning framework based on long-
term and short-term memory of device consumption sequences,
enabling accurate prediction of electricity load in the smart
grid.

1.3 Contribution and organization

Themain contributions of this paper is organized as following:

• Different from the existing literature on power load forecasting,
this paper proposes a Bert-based short-term forecasting
method for transformer load data. The method is suitable
for unpredictability and long sequence prediction Zhao et al.
(2021). It can maximize the mining of hidden relationships
behind sequences and related variables.

• Datasets abnormal values detection, processing and feature
extraction are executed to establish the formal datasets. For
all observation periods, the corresponding verification datasets
and test datasets were divided according to a fixed proportion.
During the formal training process of data, the efficiency of
model learning is ensured by normalizing and standardizing all
datasets.
• Leveraging the powerful data feature extraction capabilities
of BERT, our proposed algorithm excels in extracting
features from composite data over time, enabling accurate
prediction of composite data within a specific future
time range. Through rigorous experimentation and data
analysis, the proposed model has demonstrated remarkable
load prediction accuracy and performance for power
system transformer load forecasting compared to the
LSTM.

1.3.1 Organization
The paper is structured as follows: Section 2 delves into the

BERT-based load forecasting scheme. Section 3 provides a detailed
description of the datasets used in this study. In Section 4, the
experimental setup and analysis of results are presented. Finally,
Section 5 concludes the paper.

2 BERT-based load forecasting
method

2.1 Bidirectional encoder representation
from transformers (BERT)

BERT, a deep learning-based natural language processing
technology, is utilized in this paper for data processing Devlin et al.
(2018). The BERT model typically involves pre-training and fine-
tuning stages. It has found widespread applications in question
answering systems, sentiment analysis, and language reasoning.
In this study, the BERT model is employed to extract power
load characteristics from composite power system data. These
characteristics include transformer ID, date, time stamp, wind
speed, flight direction, ambient average temperature, maximum
temperature, minimum temperature, humidity, reactive power, and
active power. Subsequently, these extracted features and time series
data are fed into the forecasting model for training. The steps
involved in the BERT-based power load data processing are as
follows:

2.1.1 Data preprocessing
In our study, we performed data preprocessing on the

load data of 52 transformer sets spanning multiple years. This
preprocessing involved handling missing values, outliers, and type
conversion. Finally, we applied normalization and standardization
techniques to the data. For the normalization and standardization
process, we employed the following method on the input
data x:

X =
x−min (x)

max (x) −min (x)
(1)

X =
x−mean (x)

δ
(2)
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where δ is the variance of the sample. The data normalized by
normalization is scaled between [0,1].

2.1.2 Coding
In the load prediction task, BERT encodes the input data using

transformer. The input to BERT consists of token embeddings,
segment embeddings, and position embeddings.These three vectors
are combined to form the final input vector. Additionally, BERT
is capable of encoding the input data from multiple perspectives,
enhancing its understanding of transformer load data. The position
code, as described in Kazemnejad (2019), comprises a pair of
sine and cosine functions, each with a decreasing frequency along
the vector dimension. Mathematically, it can be represented as
follows:

p⃗t
(i) = f(t)(i) ≔

{
{
{

sin(ωk ⋅ t) , if i = 2k)

cos(ωk ⋅ t) , if i = 2k+ 1
(3)

ωk =
1

100002k/d
(4)

p⃗t =

[[[[[[[[[[[[[[[[

[

sin (ω1 ⋅ t)

cos (ω1 ⋅ t)

sin (ω2 ⋅ t)

cos (ω2 ⋅ t)

⋮

sin(ωd/2 ⋅ t)

cos(ωd/2 ⋅ t)

]]]]]]]]]]]]]]]]

]

(5)

where ωk represents the position index of the token in the
sequence, taking integer values ranging from 0 to the maximum
sequence length minus 1 (MLen-1). The variable d denotes the
dimensionality of the position vector, which is equal to the hidden
state dimension of the entire model. The variable i is an integer

ranging from 0 to d/2-1, specifically 0, 1, 2, … , 383. p⃗t refers to a
matrix withMLen rows and d columns, denoted as [MLen,d], where
MLen represents themaximum sequence length and d represents the
dimension.

Based on the aforementioned position encoding, BERT
facilitates the model in performing calculations involving relative
positions more effectively. The rectified linear unit (ReLU) function
is employed as the activation function, which can be expressed as:

S (z) =max (o,z) (6)

In the context of activation functions, the input is denoted as z.
When sigmoid or other functions involving exponential operations
are used to calculate the activation function, the computational load
tends to be high. Moreover, when reverse propagation is applied to
compute the error gradient, the derivative often involves division,
resulting in a relatively large computational burden. In contrast,
the computation involved in ReLU is significantly reduced. The
utilization of ReLU leads certain neurons to output zero, thereby
promoting network sparsity. This reduction in interdependence
among parameters helps alleviate the occurrence of overfitting
issues.

2.1.3 Training
BERT utilizes historical power grid load data from a specific

time period as input. This data is fed into a fully connected layer
Franco et al. (2023) to generate forecast outputs. The model is
trained using the mean square error as the loss function. Through
training, the model adjusts its parameters to minimize the loss,
continuously improving its accuracy.This iterative process continues
until convergence is achieved.

2.1.4 Prediction
By training the BERTmodel, load values of specific transformers

in the near future can be predicted. These predictions serve as
valuable references and guidance for power grid enterprises in terms
of power demand. To ensure higher prediction accuracy, we adopt
training samples with the same prediction length during the training

FIGURE 1
The typical architecture of transformers and power monitoring center.Q15
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FIGURE 2
Schematic diagram of typical BERT.

stage. This is achieved through the use of sliding windows, allowing
for the construction of training and test sets.

Figure 2 illustrates the utilization of transformer-based
bidirectional encoding in BERT. Unlike the full transformer model,
BERT exclusively employs the encoder part. Each encoder unit
consists of multi-head attention, layer normalization, feedforward
layers, and additional layer normalization, stacked and combined
across multiple layers. Self-attention, a crucial component of
BERT, is integrated with position encoding to address temporal
correlation in the training data. Its primary function is to
dynamically calculate weights during information propagation.
Multi-head attention aggregates the outputs of multiple distinct
units and subsequently combines them through fully connected
dimensionality reduction and output. Layer normalization plays a
role in regularization. It gathers the outputs of self-attention, applies
layer normalization, and then normalizes each row within the
batch.

During the model training process for specific load data,
as depicted in Figure 2, we take into account various factors
that influence the power system load. These factors include
transformer ID, date, time stamp, wind speed, flight direction,

ambient average temperature, maximum temperature, minimum
temperature, humidity, reactivated power, activated power, and
more. Since these data are interrelated, we utilize the Embedding +
Positional method to incorporate the correlation between historical
load data attributes into the data. Embedding involves mapping the
training data to corresponding dimensions. By employing BERT,
we can train the model, extract features from the input rich
and deteriorating data, and ultimately achieve short-term power
compliance prediction.

2.2 BERT’s attention mechanism

The core component of BERT is the Transformer, and the
theoretical foundation of the Transformer lies in the attention
mechanism. The attention mechanism enables the neural network
to focus on specific parts of the input. It involves three main
concepts: Query, Value, and Key. The Query represents the target
word, the Value represents the original representation of each word
in the context, and the Key represents the vector representation of
each word in the context. BERT calculates the similarity between
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FIGURE 3
The architecture of proposed predicting model based on BERT.

TABLE 1 The detailed description about the semantic meaning of each related variables which included in the datasets.

Number Parameter Specification

1 ID The unique identification of each transformer

2 Day Day of the record

3 Tmstamp Created time of the record

4 HTem (°C) Maximum temperature

5 LTem (°C) Minimum temperature

6 ATem (°C) Average temperature

7 HHum ({%}) Maximum humidity

8 LHum ({%}) Minimum humidity

9 HWin (m/s) Extreme wind speed

10 WinDir (°) Corresponding wind direction of maximum wind speed

11 RFall (mm) 24-h precipitation

12 Load (kW) Average load

the Query and Key, and then combines the Value to generate
the attention value for the target word. In other words, the
attention mechanism allows BERT to selectively attend to relevant
information during processing.

Attention(Query, Source ) = ∑
i
Similarity(Query ,Keyi) ⋆ Value

(7)

The self-attention mechanism has certain limitations, such
as being overly focused on its own position. To address this
issue, BERT employs the multi-head attention mechanism. This
mechanism allows BERT to mitigate the self-attention’s excessive
self-focus and promotes a more balanced attention across the
input sequence. Additionally, the use of the multi-head attention
mechanism in BERT enhances the model’s expressive power.
It enables the attention layer’s output to contain encoding
representation information from different subspaces. By performing
multiple sets of self-attention processing on the original input
sequence and combining the results through linear transformations,
BERT improves its feature understanding capability. This
enhancement contributes to a more comprehensive representation
of the input data, thereby improving the model’s overall
performance.

2.3 The architecture of proposed model

The prediction network model, as depicted in Figure 3, is
composed of the integration of historical loads and extracted
variables through feature extraction. These upper-layer feature
vectors, along with the historical loads, are fed into the
BERT network. The BERT network processes the inputs and
generates hidden features, which are then passed through
a fully connected network with sizes of 512, 1024, and 96.
Dropout functions with a probability of 0.3 are applied after the
first and second fully connected layers to mitigate overfitting.
The final output consists of load predictions for different
transformers.

To obtain more accurate predictions of future loads, we utilize
Mean Squared Error (MSE) as the loss function during model
training. The MSE can be expressed as:

LMSE =
1
N

N

∑
i=1
(yi − ŷi)

2 (8)

where N represents the discrete vector samples, where yi denotes
the actual load value and ŷi represents the corresponding predicted
value. However, when using the gradient descent method to learn
the MSE loss function, the learning rate may be very slow at the
beginning of themodel training.We can represent the training set as
x1,x2… xm and their corresponding outputs as yi. Additionally, the
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FIGURE 4
The corresponding temperature (A), humidity and rainfall (B).

FIGURE 5
The corresponding wind speed/direction (A), average system load of different transformer (B).

network model gradient can be calculated by

g ← 1
m
∇θ∑

i
LMSE ( f (x(i);θ) ,y(i)) (9)

where g represents the gradient of the current batch, and θ represents
the model parameters. To obtain the optimized weight update, the
biased estimation of the first moment can be represented as:

s← ρ1s + (1− ρ1)g (10)

where s represents the moment vector and ρ1 is the decay rate. The
biased estimation of the second moment can then be written as:

q← ρ2q+ (1− ρ2)g ⊙ g (11)

where q is the second moment vectors. ρ2 denotes the decay rates.
Furthermore, the bias corrected moment estimation can be denoted
as

̂s← s
1− ρt1

(12)

q̂←
q

1− ρt2
(13)

Then, the model parameters can be updated by

θ← θ− β ̂s

√q̂+ δ
(14)

where θ denotes the model parameters, and β represents the
learning rate. The primary advantage of using the adaptive moment
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FIGURE 6
The description related features’ distribution of the observation period.

estimation (Adam) optimizer is its ability to adaptively select the
update step size. This approach can achieve the goal of annealing
the learning rate while also minimizing the impact of the gradient
scale on optimization.

3 Description of datasets

3.1 Basics and preprocessing of datasets

In order to accurately predict the average load, comprehensive
datasets were constructed using load data from 52 different
transformers in the same area, collected over a period of 584 days.
The data was collected at a 15-min interval for each transformer,
resulting in approximately 96 discrete samples per day for each
transformer. The total dataset size is approximately 52× 96× 584.
The objective of this study is to predict future load values
based on historical data and related variables, aiming to achieve
intelligent power scheduling, improve energy efficiency, reduce
carbon dioxide emissions, and enable efficient and intelligent
scheduling. Each sample in the dataset includes eight environmental
parameters: maximum temperature, minimum temperature,
average temperature, maximum humidity, minimum humidity,
extreme wind speed, wind direction, and 24-h precipitation.Table 1
provides further details on these parameters.

Figure 4 depicts the detailed trends of the environmental
variables. On the left side of the figure, it can be observed that
the ambient temperature exhibits fluctuations. Over the 584-day
acquisition period, the ambient temperature shows both local and
periodic fluctuations. Local temperature fluctuations are influenced
by random factors such as short-term rainfall, while long-term
fluctuations are driven by large seasonal changes. Temperature

variations have a significant impact on the power load fluctuations
of residents and various enterprises in the region, making it a crucial
factor in the load variations of different transformers across the
area.

On the right-hand side of Figure 4, the variations in humidity
over different sampling intervals are depicted. The blue curve
represents the maximum humidity recorded during the day, while
the red curve represents the minimum humidity. This metric
partially indicates the need for dehumidification in the area and
contributes to the system load. The black curve represents the
amount of rainfall recorded during the day, which directly affects
environmental humidity. It can be observed from the chart that
the overall humidity of the system is high during periods of
heavy rainfall. This aspect reflects local weather conditions and
the availability of photovoltaic power generation to supplement
household and factory power consumption. Therefore, these
three factors illustrated in the figure play a significant role in
system load fluctuations and are considered as relevant impact
factors.

Figure 5 presents the statistics of environmental wind speed,
wind direction, and the total load of the 52 transformers in
the region during the data collection period. On the left side
of the figure, the maximum daily wind speed shows both local
fluctuations and long-term periodic changes that correspond to
the data collection cycle. Short-term fluctuations are influenced
by the measurement location, while long-term changes are related
to larger cycles, similar to the temperature variations mentioned
earlier. Moreover, the maximum wind direction exhibits a strong
correlation with the maximum wind speed. Considering wind
speed in load scheduling is crucial as it is associated with wind
power generation, which can be integrated into the grid for
intelligent scheduling purposes. On the right side of the figure,
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FIGURE 7
Heat map of related feature correlation matrix.

the overall load of the different transformers throughout the entire
collection cycle is analyzed using summation statistics. Transformer
number 4 has the highest load based on the statistical analysis.
Classifying transformers based on their overall load statistics can
lead to more intelligent maintenance and scheduling strategies.
Additionally, factors such as photovoltaic (PV) systems, wind
turbines (WT), gas turbine generators (GTG), and energy storage
systems (ESS) are important components of the power system
and influential factors in transformer load. PV and WT have
experienced rapid deployment and development in recent years,
contributing to diversified power supply systems. These power
sources are influenced by environmental factors such as wind
speed and sunlight, which can affect power supply in the system.
GTG, on the other hand, is a stable and controllable power
source that enables intelligent scheduling and maximizes energy
utilization by predicting future regional loads. ESS, as an emerging
technology, facilitates energy storage and release in the power grid.
It helps achieve more precise intelligent scheduling, reducing the
inherent variability of wind and photovoltaic power generation
and ensuring optimal energy utilization throughout the scheduling
system.

3.2 Features of datasets

A comprehensive statistical analysis was conducted to
analyze the distribution of the variables discussed in the
previous chapter, aiming to provide a deeper understanding of
their feature engineering. Figure 6 presents the results of this

TABLE 2 Experiment parameters configuration.

Parameter Value

Total number of epochs, N 200

batch size, Batch 512

learning rate, lr 5e-3

predict sequence length, PL 1*24 * 1

train sequence length, TL 1*24*4

buffer size, Bs 1000

attention hidden sizes, As 32*1

train days, Td [1, 451]

valid days, Vd [452, 500]

dropout rate, dr 0.25

Optimizer, op Adam

analysis. The analysis reveals that air temperature follows a basic
normal distribution. However, due to large periodic changes,
the distribution can be divided into three distinct intervals,
each reflecting different characteristics. On the other hand, the
distribution of maximum humidity is more dispersed and cannot
be accurately described by mathematical models. Nonlinear neural
networks based on machine learning models are better suited for
capturing the complex characteristics and relationships of this
variable. Wind speed variables conform to a Gaussian distribution,
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FIGURE 8
The corresponding training and validation strategy.

FIGURE 9
Training loss (A) and load prediction bar chart (B).

indicating a more regular pattern. The direction of the wind is
strongly linked to the magnitude of the wind speed. Most wind
directions exhibit oscillations to the left and right, while a wide
range of wind directions corresponds to the maximum wind
speed. In contrast, rainfall indicators exhibit sparse distribution
characteristics. Careful characterization of this variable is necessary
to fully understand its role in the system’s compliance and accurately
capture its impact. Overall, the statistical analysis provides valuable
insights into the distribution patterns and characteristics of the
variables, guiding the subsequent modeling and feature engineering
processes.

To explore the interrelationships among different variables,
a correlation analysis was performed on all variables and the
system statistical load. The results are presented in Figure 7,
where the correlation coefficient ranges from −1 to 1. A negative
value indicates a negative correlation, a positive value indicates a
positive correlation, and a value closer to 1 indicates a stronger

correlation.The analysis reveals several key findings. Firstly, there is
a strong correlation among the three temperature-related variables,
indicating their close interdependence. Temperature and humidity
also exhibit a high correlation, suggesting a relationship between
these two factors. Furthermore, wind speed and direction are highly
correlated, indicating that they influence each other. Precipitation
shows a common correlation with other variables, suggesting
its influence on the overall system. Notably, there is a strong
negative correlation between the system load and temperature
as well as humidity. This implies that higher temperatures and
humidity levels are associated with lower system loads, indicating
a potential inverse relationship. Overall, the correlation analysis
highlights the complex and hidden relationships among the system
statistical load and the various variables. Given these intricate
relationships, large-scale neural networks can be employed tomodel
nonlinear patterns and facilitate accurate load forecasting for the
future.
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FIGURE 10
The corresponding training (A) and validation strategy (B).

FIGURE 11
LSTM prediction results (A) and practical load prediction (B).

4 Experiment setup and results
analysis

4.1 Experiment setup

The feature vectors consist of temperature, humidity, wind
speed, wind direction, and rainfall, represented by numerical values.
These feature vectors serve as the input to the BERT network,
which predicts the load of the transformer in the next time
period. During training, the BERT network is trained using a
loss function and optimized using gradient descent to adjust the
weights. After training, the model is applied to predict the load
of multiple transformers in the test datasets. The accuracy of
the predictions is evaluated using metrics such as mean absolute
percentage error (MAPE), mean absolute error (MAE), and root
mean squared error (RMSE). By comparing the predicted values

with the actual values, the performance of themodel is assessed, and
model parameters can be adjusted accordingly. Experimental results
demonstrate that the proposedmodel effectively predicts the load of
multiple transformers with high accuracy. The model exhibits good
robustness and generalization capabilities, indicating its ability to
handle various scenarios and generalize well to unseen data.

The BERT-based algorithm for load data prediction in this
experiment was developed using Python 3.8 and TensorFlow
2.7. The dataset used comprised 584 days of load data from 52
transformers belonging to the Hebei Electric Power Company.
During the training process, the algorithm underwent 200 epochs
with a batch size of 512 and a learning rate of 5e-3. The dataset
was split into a training set covering days 1–451 and a validation
set covering days 452–500 which is displayed in Figure 8. The
Adam optimizer was utilized, and the parameter values used in the
experiment are provided in Table 2.
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FIGURE 12
LSTM predicted results absolute error (A) and relative error (B).

FIGURE 13
Absolute error of the BERT (A) and LSTM (B) algorithms with same batch size.

4.2 Results analysis

Figure 9 illustrates the comparison of the loss function and
prediction accuracy curves during the training of the BERT-based
load forecasting algorithm. The results demonstrate that initially,
the algorithm exhibits unstable fluctuations in the loss function,
which is expected due to the limited number of training epochs.
However, as the BERT model iteratively adjusts its parameters,
the loss function gradually converges and stabilizes, indicating
the algorithm’s superior convergence properties. Furthermore,
Figure 9 compares the predicted load values generated by the
BERT algorithm with the actual load values. The comparison
shows that the BERT load forecasting algorithm effectively learns
from historical transformer load data, captures relevant features
from multiple factors influencing power load, and adapts to
the characteristics of load changes, leading to higher prediction
accuracy.

In Figure 10, the load prediction results for the last 10
transformers are presented, and the predicted results are visually
depicted through a histogram of the error rates. The results
demonstrate that our proposed BERT-based transformer power load
forecasting algorithm generally achieves better forecasting accuracy,
with most error values kept within a small range of 0.2 and the
majority of error rates maintained below 10%. However, a small
portion of the error rates fluctuate significantly, as observed for the
No. 47 and No. 48 transformers. This could be attributed to the
training data collected with high fluctuations, resulting in a slight
increase in the prediction error rate for these transformers. Overall,
our proposed BERT-based transformer power load forecasting
algorithm exhibits satisfactory forecasting results and demonstrates
superior feature extraction and expansion capabilities compared to
traditional CNN and LSTM models. These findings have practical
implications and are valuable for addressing the needs and making
adjustments in the power system industry.
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FIGURE 14
Relative error of the BERT (A) and LSTM (B) algorithms with same batch size.

Figure 11 presents the load prediction results for all
transformers in the LSTM-based area. It is evident that there is
a certain difference between the actual transformer load and the
prediction based on LSTM. However, through careful observation
and leveraging historical data, a certain level of compensation can
be achieved to achieve accurate load predictions for the future.
The right side of the figure shows the predicted values of different
transformers for the next time period. It can be observed that the
majority of transformer predicted values closely match the actual
load values, with only a few predictions showing slight deviations.
To further evaluate the difference between the predicted values and
the actual values, Figure 12 displays the absolute error and relative
error. The left side of the figure shows the absolute error values,
indicating that only transformers numbered 43, 45, and 46 exhibit
relatively large absolute errors, while the absolute errors of other
transformers remain low. However, when considering the relative
error, transformer number 49 stands out with a significant relative
error. This can be attributed to the current load of the transformer
being negative, leading to a substantial relative error. Overall, the
results demonstrate the performance of the LSTM-based load
forecastingmodel.While theremay be some differences between the
predicted and actual values, themodel achieves accurate predictions
for the majority of transformers, with only a few exceptions.

Figure 13 presents the comparison of the BERT and LSTM
models using the same training data and batch size. The results
demonstrate that, under the same training parameters, the BERT
network achieves a lower average absolute error compared to the
LSTM network.This can be attributed to the BERT network’s ability
to effectively learn from the entire training set using a deep network
model, while the LSTM network relies on time series relationships
andmay not achieve optimal predictive performance through global
comprehensive learning. Figure 14 provides a comparison of the
relative error between the two models. It shows that the BERT
network achieves a smaller relative error than the LSTM model,
indicating better stability in its prediction results. The average error
results, as presented in Table 3, further support the superiority of
the BERT networkmodel. Across different evaluation indicators, the

TABLE 3 The experiment error results of BERT and LSTMwith same batch
size.

Transformer ID

Average relative
error

Mean absolute
error

Maximum relative
error

BERT 48.64 1.99 87.02%

LSTM 53.52 2.91 92.69%

BERT network consistently demonstrates better performance gains.
Overall, the transformer load prediction based on the BERTnetwork
model exhibits high accuracy and stability. It can be effectively
applied to existing power systems, enhancing the intelligent dispatch
capability of regional electricity.

5 Conclusion

This paper introduces a novel BERT-based transformer power
load forecasting algorithm that surpasses existing algorithms in
order to enhance energy utilization efficiency and significantly
reduce carbon dioxide emissions within power dispatching
departments. The proposed algorithm leverages BERT’s powerful
model extraction capabilities by preprocessing, encoding, and
training historical load data obtained from the power grid.
Consequently, it exhibits improved data understanding and
achieves more accurate load forecasting compared to traditional
LSTM approaches. Unlike conventional time series algorithms,
our experimental results demonstrate that the BERT-based load
forecasting method exhibits superior accuracy and robustness. The
empirical analysis is based on actual power load data collected over
a 2-year period from a power grid company, encompassing the
composite data of 52 transformers. The dataset employed in this
study includes various influential factors such as transformer ID,
date, time stamp, wind speed, wind direction, ambient average
temperature, maximum temperature, minimum temperature,
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humidity, reactive power, and active power. Our BERT-based
method employs multiple preprocessing techniques and dataset
analyses, leading to accurate load change predictions across different
time periods and identification of key factors influencing power
load. In contrast to traditional time series algorithms, our approach
can effectively capture all relevant factors impacting power load.
The proposed BERT-based power load forecasting algorithm serves
as a valuable reference for power grid enterprises in terms
of power demand planning and operation. Optimized training
parameters enable the majority of transformers to achieve an
average error rate of less than 10%. In comparison, the LSTM-
based load forecasting model yields an average relative error of
approximately 53.52%, indicating inferior performance compared
to the BERT-based method with the same training parameters.
Thus, the BERT-based scheme facilitates precise energy scheduling
and utilization, maximizing energy efficiency, and offering valuable
insights for the digital low-carbon transformation of power
dispatching departments. Future work will focus on exploring
distributed federated learning algorithms to enhance the model’s
robustness and adaptability.
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