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Aqueous Zn–CO2 battery possesses a large theoretical capacity of 820 mAh g-1

(5855 mAh cm-3) and high safety, showing a unique position in carbon neutrality
and/or reduction and energy conversion and storage, which has developed rapidly
in recent years. However, obstacles such as low value-added products, low
current density, high overvoltage, and finite cycles impede its practical
application. Cathode catalysts, as a key component, have a significant
influence on gas cell performance. Despite many updated papers on cathode
materials for aqueous Zn–CO2 batteries, a systematic summary has rarely been
reported, and even less is mentioned about the design principle and development
strategy for efficient catalysts. Relying on the structure and mechanism of the
Zn–CO2 battery, this review discusses the research progress and existing
challenges, and, more importantly, the design strategies and preparation
methods of the efficient cathode are proposed, centering on material
structure, charge distribution, and coordination environment. Finally, in this
review, the opportunities for the development of a high-performance Zn–CO2

battery are highlighted, which enables enlightening the future exploration of next-
generation energy storage systems.
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1 Introduction

Excessive carbon dioxide (CO2) emissions caused by consumption of fossil fuels further
aggravate the global energy crisis and the greenhouse effect (Chang et al., 2017; Asadi et al.,
2018; Zhou et al., 2020). In recent years, the carbon capture, utilization, and storage (CCUS)
(Chen et al., 2022c; de Oliveira Maciel et al., 2022; Jiang et al., 2022; Pfeiffer et al., 2022)
technology has become a hot topic of research. Among them, metal–CO2 batteries adopt
CO2 catalytic conversion and an energy storage solution where chemical energy is converted
into green renewable electricity while reducing CO2 emissions (Chu et al., 2016;
Ahmadiparidari et al., 2019; Eskezia Ayalew, 2021). Compared with traditional ion
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batteries, metal–CO2 batteries possess a higher specific capacity and
energy density (Xiang Li et al., 2016; Qiao et al., 2017; Hu et al.,
2019). For example, the energy density of a lithium–carbon dioxide
(Li-CO2) battery is as high as 1876 Wh kg-1 (Zhang et al., 2017; Cai
et al., 2018), approximately five times that of a lithium-ion (Li-ion)
battery (387 Wh kg-1 (Khurram et al., 2018; Wu et al., 2021)).
However, an alkali metal (Li, Na, and K)–CO2 battery using a
toxic organic electrolyte is not environmentally friendly, and
their solid products from carbon dioxide reduction (CO2RR) are
chemically inert, resulting in over-accumulation and substances not
subjectable to decomposition (Xie andWang, 2019; Mu et al., 2020).
Furthermore, the slow kinetics during the electrochemical process
and thermodynamic instability hinder their application. For other
metal–CO2 batteries with aqueous electrolytes, including Mg–CO2

and Al–CO2 batteries, their theoretical capacity densities are
6815 and 8076 Wh kg-1 (Ma et al., 2018), respectively, higher
than that of Zn–CO2 units (984 Wh kg-1) (Aslam et al., 2023).
However, the products of these metal–CO2 batteries are all metal
carbonates and carbon, which cannot generate other value-added
chemicals. Zinc metal reserves are abundant, and the price is low. In
the derived Zn-gas batteries, Zn–CO2 batteries show no obvious
advantages in energy density compared to Zn-air (1353 Wh kg-1) or
Zn-O2 batteries but pose significant importance to CO2 utilization
and conversion (Zhou et al., 2021). Relying on environment-

friendly, higher safety and wider products, the Zn–CO2 battery is
expected to be an ideal substitute for other metal batteries.

Based on its significant contribution to carbon neutrality (Chu
et al., 2016; Ahmadiparidari et al., 2019; Eskezia Ayalew, 2021) and
superiority in metal–gas batteries, the groundbreaking work of
Zn–CO2 batteries is exhibited in Figure 1. Aqueous Zn–CO2

batteries originated from solar-powered CO2 splitting batteries
and later developed into a rechargeable unit, subsequently to a
dual-model and self-driven system, toward the extent of a reversible
one. Nevertheless, the research on aqueous Zn–CO2 batteries is still
in its infancy, and certain problems should be overcome: 1) the lack
of effectively active catalysts with high selectivity leads to limited
discharge products, mainly generating CO and formate, while rarely
HCOOH or even less of other high value-added products (such as
methanol, ethanol, and ethylene), causing the discharge–charge
shuttle to be irreversible and potential application to be confined
(Wang H. F. et al., 2020; Chen Y. et al., 2021). 2) The lack of stable
catalytic behavior in the electrolyte environments. Most
rechargeable Zn–CO2 batteries couple CO2RR and the oxygen
evolution reaction (OER), in which CO2RR preferably proceeds
in acidic/neutral solutions and OER favors basic environments,
presenting a significant challenge to balance cathodic reduction
and oxidation behavior (Guo Y. et al., 2022), while a completely
reversible Zn–CO2 battery accompanied by CO2RR and formic acid

FIGURE 1
Timeline about the important developments of aqueous Zn–CO2 battery systems and cathode catalysts. (A) F-doped carbon (FC). Reproduced with
permission (Xie et al., 2018b). Copyright 2018, Wiley. (B) Porous silicon–nitrogen-co-doped carbon (SiNC). Reproduced with permission (Ghausi et al.,
2018). Copyright 2018, Wiley. (C) Reversible aqueous Zn–CO2 battery. Reproduced with permission (Xie et al., 2018a). Copyright 2018, Wiley. (D)
Dendritic 3D Ir@Au. Reproduced with permission (Wang et al., 2019). Copyright 2019, Wiley. (E) Cu3P/C nanocomposites. Reproduced with
permission (Peng et al., 2019). Copyright 2019, American Scientific Publishers. (F) Rechargeable dual-model battery. Reproduced with permission (Yang
R. et al., 2019). Copyright 2019, Royal Society of Chemistry. (G) Free energy of Cu–N2 and Cu–N4 during CO2RR. Reproduced with permission (Zheng
et al., 2019). Copyright 2019, Wiley. (H)Optimized adsorption configurations of Sn–Cu/Sn@SnOx for reaction intermediates. Reproducedwith permission
(Ye et al., 2020). Copyright 2020, Wiley. (I) Optimized atomic structures for FeN4, FeN3, and FeN3V embedded on the graphene layer. Reproduced with
permission (Wang T. et al., 2020). Copyright 2020, Wiley. (J) InZnO@C. Reproduced with permission (Teng et al., 2021). Copyright 2021, Royal Society of
Chemistry. (K) Self-driven CO production system. Reproduced with permission (Gao et al., 2021a). Copyright 2021, Royal Society of Chemistry. (L)
N-doped ordered mesoporous carbon (NOMC). Reproduced with permission (Gao et al., 2021b). Copyright 2021, Wiley. (M) Sn/SnO2@NC. Reproduced
with permission (Xue Teng et al., 2021). Copyright 2021, The Core Journal of China. (N) Optimized Zn-N4 and Zn-N3+1 structures. Reproduced with
permission (Chen J. et al., 2022). Copyright 2022, Wiley. (O) Charge density differences maps of V-CuInSe2. Reproduced with permission (Wang Y.-X.
et al., 2022). Copyright 2020, Wiley. (P) Fe-SA/BNC. Reproduced with permission (Liu et al., 2022c). Copyright 2022, Elsevier. (Q) Bi clusters (BiC)
deposited on hollow carbon spheres (BiC/HCS). Reproduced with permission (Yang M. et al., 2022). Copyright 2022, Elsevier.
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TABLE 1 Summary of recent reports about the cathode in aqueous Zn–CO2 batteries.

Cathode Reactions for
the cathode

Discharge
products

Catholyte Discharge–charge or
OCV(V)

Power
density (mW
cm-2)

Stability (N (Otime

h)/Cdensity (mA
cm-2)

FE
(%)

NOMC (Gao et al.,
2021b)

CO2RR/OER CO2 0.8 M KHCO3 0.48/2.58 0.7 300 (100)/1.0 100

FC (Xie et al., 2018b) CO2RR/OER CO 0.1 M KHCO3 —— —— —— 93

K-defect-C (Ling
et al., 2022)

CO2RR/OER CO 0.8 M KHCO3 —— —— 200/1.5 99

SiNC (Ghausi et al.,
2018)

CO2RR/OER CO 0.1 M KHCO3 —— —— —— 94

3D PdNSs (Xie et al.,
2018a)

CO2RR/FAOR HCOOH 1.0 M NaCl 0.78/0.96 —— 100 (33)/0.56 90

Coralloid Au (Gao
et al., 2021a)

CO2RR/OER CO 0.5 M KHCO3 0.45/2.8 0.7 68 h/1.0 94.2

Ir@Au (Wang et al.,
2019)

CO2RR/OER CO 0.8 M KHCO3 0.74/2.25 —— 90 (30)/5.0 90

s-SnLi (Yan et al.,
2021)

CO2RR/OER Formate 6.0 M KOH,
0.02 M Zn(Ac)2

—— 1.24 >800 (85)/0.5 92

BiO2 NSs (Tan et al.,
2022)

CO2RR/OER Formate 1.0 M KHCO3 —— 2.33 300 (100)/4.5 99.1

v-CuInSe2 (Wang
et al., 2022b)

CO2RR/OER CO 0.5 M KHCO3 0.55/2.4 —— >70 (40)/0.5 91

Cu-N2/GN NSs
(Zheng et al., 2019)

CO2RR/OER CO 0.5 M KHCO3 0.7/2.4 0.62 120 (40)/1.0 64

s-PdNi (Hao et al.,
2022)

CO2RR/OER CO 0.1 M KHCO3 0.86/1.5 1.95 35 h/1.2 92.6

Bi-D (Wang et al.,
2022b)

CO2RR/OER Formate 2.0 M KHCO3 1.3 (OCV) 1.16 66 (22)/5.0 93.9

0.02 M HCOO−

Bi2O3 NTs (Gong
et al., 2019)

CO2RR/OER Formate 1.0 M KHCO3 1.1 (OCV) 1.43 120 (20)/5.0 92.7

BiC/HCS(Yang
et al., 2022a)

CO2RR/OER Formate 0.8 M KHCO3 0.94 (OCV) 7.2 ± 0.5 200 (60)/1.0 97

Sn/SnO2@NC (Xue
Teng et al., 2021)

CO2RR/OER Formate 0.8 M KHCO3 0.4/2.25 0.9 174 (29)/1.5 81

SnO2/MXene (Han
et al., 2022a)

CO2RR/OER Formate 0.1 M KHCO3 0.83 (OCV) 4.28 60 h/2.0 94

ZnTe/ZnO@C
(Teng et al., 2022)

CO2RR/OER Formate 0.8 M KHCO3 1.35 (OCV) 0.93 36 (108)/1.0 86

In/ZnO@C NCs
(Teng et al., 2021)

CO2RR/OER Formate 0.5 M KHCO3 1.35 (OCV) 1.32 153 (51)/1.0 90

Fe1-Ni1-N-C (Jiao
et al., 2021)

CO2RR/OER CO 0.8 M KHCO3 —— —— 15 h/1.1 96.2

BiPbC (Gao et al.,
2022a)

CO2RR/FAOR HCOOH 0.1 M KHCO3 1.2 (OCV) 0.42 45 h/0.5 52.6

0.1 M HCOONa

Fe-P@NCPs (Liu
et al., 2022d)

CO2RR/OER CO 1.0 M KHCO3 0.55/2.33 0.85 500 (7 days)/0.5 95

Cu3P/C (Peng et al.,
2019)

CO2RR/OER CO 0.1 M KHCO3 1.5 (OCV) 2.6 —— 47

Ni/PNG (Yang et al.,
2019c)

CO2RR/OER CO 3.0 M KHCO3 0.47/2.58 0.28 215 (36)/0.2 66

1.5 M KCl

(Continued on following page)

Frontiers in Energy Research frontiersin.org03

Guo et al. 10.3389/fenrg.2023.1194674

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1194674


oxidation reaction (FAOR) is built in neutral or slightly acidic
electrolytes, triggering electrochemical corrosion or other
undesired side reactions and significantly shortening the battery
life. 3) The high overpotential and low current density (≤10 mA cm-

2) severely compromise the power and energy density, where
increasing energy consumption and poor long-term reversibility
pose a significant obstacle toward practical application. These
mentioned problems of a Zn–CO2 battery are mainly attributed
to the high stability of the C=O bond (dissociation energy as high as
806 kJ mol-1) in CO2 (Zhou and Sun, 2017; Kim et al., 2020), finite
product types, poor selectivity in CO2RR, and low electrochemical
activity in the cathodic oxidation reaction. Indeed, it is tricky to
obtain efficient long-term reversible cycles without effective catalysts
(Hao et al., 2020; Hao et al., 2021). Moreover, the aqueous
electrolytes present low operation potential and anode instability
(like Zn self-corrosion or dendrite), resulting also in limited running
cycles, but these topics are beyond our discussion in this review.

Therefore, it is crucial to design both effective and chemical/
electrochemical stable catalysts to solve the aforementioned
problems, tackling competitive adsorption–desorption between
*COOH/*OCHO, *COH/*CO, *OH/*OOH, or *H in the catalytic
process for the target products (Huang et al., 2019). Despite many
updated papers on cathode materials (Table 1) for aqueous Zn–CO2

batteries, a systematic summary has rarely been reported (Wu et al.,
2021), and even less is known about the principles of designing
efficient catalysts. Herein, this review summarizes the structure and
mechanism of Zn–CO2 battery and discusses the research progress
and existing problems of cathode materials, and, more importantly
design strategies and preparation methods for efficient cathode
catalysts are proposed, centering on catalyst structure with
adsorption performance of intermediate products, eventually
highlighting the opportunities and challenges for high-
performance Zn–CO2 batteries, which enables to enlighten the
future development of the next-generation energy storage system.

The results were obtained from the data by providing directly
from literature or estimating from the given information. NOTE:

Dis-char means discharge–charge plateau. Ocv means open-circuit
voltage. Otime means operation time. Cdensity means current density.
For better performance evaluation, the data in red, blue, and green
represent excellent, good, and average, respectively.

2 Structure and reaction mechanism of
Zn–CO2 battery

2.1 Battery structure

The Zn–CO2 battery typically consists of a catalyst cathode, Zn
sheet anode, electrolyte, and diaphragm seen in Figure 2. Its
uniqueness is the electrolyte, which is divided into two parts: the
anode counterpart utilizes alkaline KOH and Zn(CH3COO)2

TABLE 1 (Continued) Summary of recent reports about the cathode in aqueous Zn–CO2 batteries.

Cathode Reactions for
the cathode

Discharge
products

Catholyte Discharge–charge or
OCV(V)

Power
density (mW
cm-2)

Stability (N (Otime

h)/Cdensity (mA
cm-2)

FE
(%)

Ni-N3-C (Zhang
et al., 2021b)

CO2RR/OER CO 0.8 M KHCO3 0.41/2.4 —— 100/2.0 95.6

Fe1NC/S1-1000
(Wang et al., 2020c)

CO2RR/OER CO 0.8 M KHCO3 0.73 (OCV) 0.6 72 (25)/0.5 95.6

Fe-N5/DPCF (Li
et al., 2022b)

CO2RR/OER CO 0.8 M KHCO3 1.3 (OCV) —— 75 (25)/0.5 90

Fe-SA/BNC (Liu
et al., 2022c)

CO2RR/OER CO 0.8 M KHCO3 0.51/2.33 1.18 80 (27)/-1.0 94

CoPc@DNHCS-8
(Gong et al., 2022)

CO2RR/OER CO 0.5 M NaHCO3 0.75 (OCV) 1.02 40 h/1.0 95.7

Zn-N3+1 (Chen et al.,
2022a)

CO2RR/OER CO 0.5 M KHCO3 0.77 (OCV) 1.8 100 (26)/1.5 95

Ni-Nx-2D/NPC
(Zeng et al., 2021)

CO2RR/OER CO 1.0 M KHCO3 0.3/2.5 —— 50 h/0.25 95

FIGURE 2
Schematic diagram of rechargeable Zn–CO2 battery.
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mixture solution, while the cathode counterpart uses near-neutral
KHCO3 solution, and sometimes, buffer solution HCOO− is added
(Asokan et al., 2020). Bipolar membranes are necessary to separate
the electrodes, maintaining the pH and avoiding cross-
contamination (Xie et al., 2018a).

2.2 Reaction mechanism

Based on the Frontier research progress of Zn–CO2 batteries, we
discuss both anodic and cathodic reaction mechanisms and
highlight the cathodic CO2 electrochemical reduction and
opposite evolution mechanisms in alkaline and neutral electrolyte
conditions.

2.2.1 Anodic reaction mechanism
The anodic reactions are based on Zn/Zn2+ redox couple, and

the Zn2+ state is affected by the electrolyte’s pH shown as follows. In
near-neutral electrolytes, Zn2+ exists as the charge carrier, while in
alkaline solutions, Zn2+ initially appears as Zn(OH)4

2- and is further
dehydrated to ZnO (Zhong et al., 2020).

In the neutral electrolyte: Eθ (Zn/Zn2+) = −0.76 V vs. SHE, where
Eθ means the standard reduction potential

Zn ↔ Zn2+ + 2e−. (1)
In the alkaline electrolyte: Eθ (Zn/ZnO) = −1.22 V vs. SHE

Zn + 4OH− ↔ Zn OH( )42− + 2e−. (2)
Zn OH( )42− ↔ ZnO + 2OH− +H2O. (3)

2.2.2 Cathodic reaction mechanism
CO2RRmechanism: When Zn–CO2 batteries discharge, CO2RR

occurs on the gas–liquid–solid three-phase interface, and this
complex process involves the adsorption and dissociation of CO2

together with the transfer of multiple protons and electrons (Li et al.,
2017; Yang et al., 2018). CO2RR products are mainly present as
HCOOH/formate and CO through different routes in the
adsorption model on the catalytic site. The former tends to
adsorb at the O end (*OCHO) to present HCOOH in near-
neutral electrolytes and transit to formate in alkaline
environments (Han et al., 2018), while the latter adsorbs at the C
end (*COOH), as shown in Figure 3A.

HCOOH in the neutral electrolyte:

CO2 + 2H+ + 2e− → HCOOH. (4)
Formate in the alkaline electrolyte:

CO2 + 2e− +H2O → HCOO− + OH−. (5)
CO in the alkaline electrolyte:

CO2 + 2H+ + 2e− → CO +H2O. (6)
Relying on the reversibility of a discharge–recharge reaction, the

Zn–CO2 secondary battery is classified into two types: the reversible
battery covering the HCOOH product and FAOR charge process
and the rechargeable one generating CO or HCOO− discharge
products and coupling OER (simplified as Zn–CO2 battery)
(Wang F. et al., 2021). We discuss the charge mechanism as follows.

FAOR mechanism: The reversible Zn–CO2 battery forms a
closed loop between CO2 and HCOOH (El Sawy and Pickup,
2016; Xiong et al., 2020; Liang M. et al., 2021). FAOR generally
occurs in the direct, indirect, or formate pathways (Wang et al.,
2004; Zhu et al., 2021a), as seen in Figure 3B. The direct route follows
the dehydrogenation of HCOOH with the C-H bond breaking and
release of CO2, which occur quickly and effectively under low
potential. As for the indirect route, the initial step is dehydration
with C-O and C-H bonds breaking, and the adsorbed CO (CO*) is
subsequently oxidized to CO2 at high potential. The residual CO*
covers active sites and seriously represses the direct route, leading to

FIGURE 3
Cathodic reaction mechanism. (A) Possible pathways of aqueous CO2RR with diverse products. Possible pathways of (B) FAOR in direct, formate,
and indirect routes and (C) OER in acidic (or neutral) and basic electrolytes. Reproduced with permission (Xie et al., 2019). Copyright 2019, Wiley. *
represents the active site. The generation of intermediate (represented in blue) is the rate-determining step.
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catalyst poisoning or even inactivation (Calderón-Cárdenas et al.,
2021). Different from the breaking sequence of the direct route, the
formate route first breaks the O-H bond of HCOOH to HCOO*
(i.e., *OCHO) and further dehydrogenates to CO2, requiring less
binding energy than the aforementioned two paths, thus occurring
at even lower potential (Xiong et al., 2020).

Direct route:

HCOOH → COOH* +H+ + e− → CO2 + 2H+ + 2e−. (7)
Indirect route:

HCOOH → CO* +H2O → CO2 + 2H+ + 2e−. (8)
Formate route:

HCOOH → HCOO* +H+ + e− → CO2 + 2H+ + 2e−. (9)
To date, CO2RR products in the battery are mostly CO or

formate and catalysts with high FAOR activity are rarely reported.
The reversible Zn–CO2 batteries following the formate path are only
achieved under bifunctional catalysts of porous Pd nanosheets (Xie
et al., 2018a) and PdBi alloy (Gao S. et al., 2022).

OER mechanism: O2 is generated from H2O molecules in acidic
electrolytes or from -OH groups in alkaline media during the OER,
as shown in Figure 3C (Suen et al., 2017; Xie et al., 2019). Its
symbiotic hydrogen evolution reaction (HER) seriously affects the
battery’s Coulombic efficiency and should be inhibited.

H2O → 1
2
O2 + 2H+ + 2e−, Ec2 � 0.80V. (10)

To sum up, the reaction mechanisms of the Zn–CO2 battery are
listed in Table 2. The continuous exploration of mechanisms
enlightens the direction of efficient catalysts (Wang K. et al.,
2020; Wang F. et al., 2021).

3 Cathode catalysts

The catalytic properties and electrolyte environment play a
significant role in the electrochemical mechanism, influencing
product state and reaction rate and ultimately determining its
battery performance (Wang J. et al., 2021). Cathode catalysts (as
the core component) are divided into three categories in this
review: carbon-based metal-free catalysts, metal-based catalysts,
and metal–carbon composites. When the battery discharges, CO2

is mostly reduced to CO and formate and rarely to HCOOH,
depending on reaction intermediates. Specifically, accelerating the
formation of *COOH tends to produce CO while reducing the
reaction energy barrier of *OCHO, which promotes the generation

of HCOOH in near-neutral electrolytes and formate in alkaline
electrolytes (Xie et al., 2019). In the opposite charge process, it
requires cathodes to show pertinent desorption catalysis of
*COOH/HCOO*/CO* in FAOR or *OH/*OOH in the OER.
The adsorption energy of intermediates reflects the catalytic
activity and is influenced by the electronic structure and
chemical environment of the catalytic sites (Selvakumaran et al.,
2019; Peng et al., 2022b).

3.1 Carbon-based catalyst

This catalyst has the advantages of high conductivity, large specific
surface area, superior stability, and low costs and involves carbon
nanotubes, graphene, and other analogs (Lankone et al., 2017; Yu
et al., 2020; Zhao et al., 2020; Chen B. et al., 2021). The catalytic
performance is further regulated via doping N, F, Si, or P heteroatoms
into the electronic structure and introduces defects (Xue et al., 2019;
Wang C. et al., 2021; Gao Y. et al., 2022; Wang J. et al., 2022).
Generally, the doped heteroatoms with strong electronegativity
facilitate the combination with positively charged *COOH
intermediates (Shi et al., 2021; Sawant et al., 2022; Thakur et al.,
2022). N-doped carbon materials are widely used in this field. As
reported in literature, N-doped orderedmesoporous carbon (NOMC)
(Gao et al., 2021b) (Figures 4A, B) using the SBA-15 template is
prepared via the pyrolytic-etching method, possessing ultra-high
specific surface area, highly exposed N-C sites to promote the
transport and storage of reactants/intermediates (Shakeri et al.,
2021). The Faraday efficiency of the CO product (FECO) on
NOMC is close to 100% at a low overpotential of 0.36 V, and a
Zn–CO2 battery assembled with the NOMC cathode achieves long,
stable cycles of 300 (100 h) even at 1.0 mA cm-2 (Figures 4C, D),
indicating high catalytic performance and super stability. The
presence of more electronegative F atoms induces positrons and
arouses asymmetric spins, thereby rearranging the electron density
of adjacent atoms (Wang G.-D. et al., 2021).

A few F atoms were adopted into carbon matrices forming
F-doped carbon (FC) (Figures 4E–H) by the one-step pyrolysis
method, and the FC catalyst was applied in Zn–CO2 for the first time
(Xie et al., 2018b). Through density functional theory (DFT)
calculation (Figures 4I–K), it was shown that *COOH is inclined
to adsorb on the fourth C atom next to the CF2 bond with the lowest
Gibbs free energy (ΔG) of 0.64 eV rather than the F-free doped C
atom. Simultaneously, it endows the adjacent C atoms with higher
positive charge density and asymmetric spin sites, effectively
inhibiting the HER with strong binding ability to H*. As a result,
its FECO is increased to 89.6%, and the assembled solar-driven CO2

TABLE 2 Reaction mechanisms of the Zn–CO2 battery.

Battery Type Discharge reaction mechanism Charge reaction mechanism

Primary Zn-CO2 battery CO2(g) + 2H+ + Zn + 4OH− → Zn(OH)42− + CO(g) +H2O -

Rechargeable Zn-CO2 battery CO2(g) + 2H+ + Zn + 4OH− → Zn(OH)42− + CO(g) +H2Oor

CO2(g) +H+ + Zn + 4OH− → Zn(OH)42− +HCOO−
2Zn(OH)42− + 2H2O → O2(g) + 2Zn + 4OH− + 4H+

Reversible Zn-CO2 battery CO2(g) + Zn + 4OH− + 2H+ ↔ Zn(OH)42− +HCOOH(aq)
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battery achieves 13.6% photoelectric conversion efficiency, higher
than that of SiNC materials (Ghausi et al., 2018) (12.5%). Such
energy conversion–storage Zn–CO2 self-powered devices conform
to the trends in the development of self-powered integrated devices.

In addition to heteroatom doping, the construction of intrinsic
carbon defects causes charge delocalization, activating carbon atoms
at defect sites for better catalytic properties. A defect-rich porous
carbon (K-defect-C-1100) was synthesized by a K+-assisted strategy
(Ling et al., 2022) and has 12-vacancy-type defects (V12) (Figures
5A–D). Its negative potential V12 defect attracts electrophilic CO2

molecules and renders the battery high FECO to 99% (Figure 5E) in a
wide discharge potential range with excellent cyclic stability of about
200 cycles.

Though electron delocalization is induced into carbon-based
materials, the influence on the inertia of molecular activation is
finite, which hardly meets application requirements.

3.2 Metal-based catalysts

Metal-based catalysts are generally composed of metal or alloy
nanoparticles and metal compounds. Noble metal-based catalysts
such as Au, Ru, Pd, and Ir have excellent catalytic properties,
providing good acid and alkali resistance (Li D. et al., 2022; Zhao
D. et al., 2022; Kang T. et al., 2022; Huang et al., 2022); the exposure
states of active sites are easily made compatible via structure design

FIGURE 4
(A) Schematic illustration and (B) TEM image of NOMC. (C) Stability and (D) power density curves of Zn–CO2 battery with NOMC. Reproduced with
permission (Gao et al., 2021b). Copyright 2021, Wiley. (E,F) SEM andHAADF images of FC and (G,H) related EDSmapping. (I) Top and side views of the DFT
model for FC. Gray atom:C; other colorful atoms: C calculated as active sites. (J) Free energy diagramof CO2RR to COon FC. (K) Schematic of theCO2RR
pathway on FC. Reproduced with permission (Xie et al., 2018b). Copyright 2018, Wiley.
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and mass transfer capacity (Sui et al., 2021). Additionally, the
catalyst’s lattice structure and charge distribution are evolved by
introducing other metal or non-metallic atoms, which optimizes the
interaction between the catalyst and intermediates, inhibits possible
side reactions, and allows an elevation of the product selectivity
(Feng et al., 2021).

As reported, Xie et al. (2018a) prepared porous three-
dimensional interconnected Pd nanosheets (3D Pd NSs) with a
rich pore structure, large specific surface area, sufficient active sites
by electrodeposition (which adsorbs the *OCHO intermediate with
high selectivity), and presents a good reversibility in conversion
between CO2 and HCOOH under low potential. The assembled
reversible Zn–CO2 battery steadily runs for more than 100 cycles
(33 h), achieves a 788 Wh kg-1 discharge capacity, and shows an
energy efficiency of 81.2%. Gao et al. (2021a) prepared coral-like Au
catalyst with an irregular surface and initiated a self-driven CO
production device that is co-assembled by a Zn–CO2 battery and
H-type CO2 electrolyzer for the first time. *COOH is easily adsorbed
on Au (111), with a lower reaction energy barrier (ΔG = 1.16 eV)
than that in the common environment (ΔG= 1.27 eV). Unlike single
metals, bimetal composites do achieve enhanced catalytic
performance under the strong synergistic effect. Wang et al.
(2019) built a dendritic 3D Ir@Au bifunctional catalyst and
constructed a Zn–CO2 battery simulating the two-step plant
photosynthesis to achieve CO2 fixation and H2O oxidation,
which equably circulates for 30 h at 5 mA cm-2.

Although noble metals exhibit outstanding catalysis in Zn–CO2

batteries, their commercial application is restrained by high prices

and low reserves. Alloys and transition metals with special catalytic
properties are becoming their alternatives (Yang X. et al., 2022; Gao
and Zhao, 2022; Lichchhavi and Shirage, 2022). Sn is rich in
resources with low toxicity. In the electrochemical reaction, the
Sn alloy and Sn2O3 are utilized as important promoters to reduce
CO2 to C1 products (CO and HCOOH), but their poor conductivity
is still an obstacle (Kang J. et al., 2022; Ansari et al., 2022). The
hierarchical core-shell Sn–Cu/Sn@SnOx (Ye et al., 2020) (Figures
6A–C) was optimized with high conductivity by an Sn/SnOx

interface. Its Sn–Cu/Sn core provides a sufficient Sn source to
reconstruct the core-shell structure, thereby guaranteeing
stability. Its in situ reconstructed Sn/SnOx shell increases the
reaction energy barrier of *H and *COOH to suppress HER and
CO formation; conversely, it reduces the *OCHO binding energy,
which sets a decisive step toward obtaining a high selectivity of the
HCOOH product and presents a high FEformate (Figures 6D, E).
However, its partial current density of formate (jformate) is still lower
than −0.3 A cm-2, which is far from application requirements. To
solve this problem, Sn is incorporated with Li (s-SnLi) (Yan et al.,
2021) on the surface, which stimulates local electron rearrangement
and lattice strain that correspondingly occurred on the adjacent Sn
atoms, showing more negative charge (Figure 6F).

Therefore, the s-SnLi with enhanced CO2 adsorption capacity
and restricted ΔG*COOH and ΔG*OCHO (Figure 6G) showed both
high catalysis and selectivity in reducing CO2 to formate. Thus,
FEformate reaches 92%, the maximum power density of 1.24 mW cm-2,
jformate is increased to −1.0 A cm-2, and the Zn–CO2 cell operates for
over 800 cycles.

FIGURE 5
(A) Schematic illustration of K-defect-C-1100 preparation. (B)HAADF-STEM image of K-defect-C-1100 after fast Fourier transformation filtering. (C)
Raman spectra and (D) PALS spectra of K-defect-C-1100. (E) Discharge voltages and the corresponding FECO profiles at different current densities.
Reproduced with permission (Ling et al., 2022). Copyright 2022, Wiley.
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Metal oxides behave better in CO2RR performance than metal
substances, but metal self-reduction may occur in the catalytic
process. BiO2-x nanosheets (m-BiO2-x) with rich oxygen defects
(Tan et al., 2022) and favorable localization of Bi p-orbital
electrons were utilized to stabilize *OCHO and suppress *H
adsorption for high selectivity in CO2-to-formate conversion. It
offered a non-dopant pathway to boost electrochemical CO2RR.
Inspired by the synergetic effect of multi-metals, Tian et al. (2021)
embedded SnO2 nanoparticles on Bi2O3 sheets’ surfaces to assemble
SnO2/Bi2O3 composites. Different work functions at the SnO2/Bi2O3

interface induce a built-in potential, thereby promoting the interface
electron transfer and improving the conductivity of SnO2. The
strong interface on SnO2/Bi2O3 effectively prevents SnO2 from
electrolytic decomposition, which ensures catalyst stability and
promotes CO2 adsorption and activation. In addition, it showed
the enhanced adsorption of *OCHO on Bi2O3 to accelerate HCOOH
generation and the very strong adsorption of *H to inhibit the HER
(Figures 7A, B). The bimetallic oxides integrated stability and

catalytic activity, achieving a multifunctional catalyst (Guo H.
et al., 2022).

Moreover, metallic selenides are an option in CO2RR catalysts
due to their low cost and unique physical and chemical properties,
but their selectivity in products is poor (Hu H. et al., 2021). As
reported, In2Se3 nanosheets reduce CO2 to CO with an FECO of 89%
(Lü et al., 2019), and Cu1.63Se0.33 reduces CO2 to CH3OH with an
FECH3OH of only 77.6% (Yang D. et al., 2019). Both examples
show that catalyst activity and product selectivity are in great
demand for improvement. Bimetallic selenides v-CuInSe2 (Wang
Y.-X. et al., 2022) (Figure 7C) were prepared to possess the bimetallic
orbital, which regulates the adsorption–desorption strength of
*COOH being more conducive to CO generation and shows
no stable *H adsorption sites, thereby significantly inhibiting the
HER (Figure 7D). Thus, FECO was increased to 91% at −0.70 V
(vs. RHE).

For metal-based catalysts, the structure andmorphology of noble/
transitionmetals are designed to avoid aggregation and self-reduction,

FIGURE 6
(A) Schematic illustration of Sn-Cu/Sn@SnOx. (B) SEM and (C) HRTEM images of Sn-Cu/Sn@SnOx. (D) Optimized adsorption configurations for
reaction intermediates at the interface. (E) Gibbs free energy diagrams of (E) CO2RR on the Sn/SnOx interface. Reproduced with permission (Ye et al.,
2020). Copyright 2020,Wiley. (F) Schematic illustration of s-SnLi and catalystmechanisms for CO2RR to formate. (G)Mechanism investigations of CO2RR
to HCOOH and CO on s-SnLi. Reproduced with permission (Yan et al., 2021). Copyright 2022, Royal Society of Chemistry.
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where the hybridization and alloying strategy is adopted tomodify the
electron distribution for excellent catalytic behaviors.

3.3 Metal–carbon composite catalysts

The metal-based catalysts are prone to agglomerate, leading to a
decrease in catalytic activity (Chen et al., 2022b). It is a strategy to
isolate metal nanoparticles on carbon substrates (Lei et al., 2022) for
catalytic performance and conductivity, thereby deriving metal-
carbon catalysts. Such materials have excellent geometric
structures and fully expose the specific active sites (Zhao S. N.
et al., 2022). Their catalysis is not only related to the inherent
properties of embedded metal and carbon frame but also regulated
via the morphology and interface modification (creating defects and
heterostructure) (Belotcerkovtceva et al., 2022; Cao et al., 2022; Fan
et al., 2022; Su et al., 2022).

Metal Bi can enhance *OCHO adsorption and inhibit *H
adsorption, but is easily oxidized due to its low melting point
(Deng et al., 2020; Chhetri et al., 2022). To avoid oxidation, Bi is
uniformly dispersed in a carbon layer, which creates an abundance
of defects (Bi-D) (Wang J. et al., 2022), thereby showing hybrid
crystalline–amorphous phases and heterojunctions, that render the
FEformate as high as 90%; the maximum power density was
1.16 mW cm-2. Bi geometry was changed into nanotubes (Bi2O3

NTs) that accelerated the FEformate higher than 92.7%, and the
maximum power density was up to 1.43 mW cm-2 (Gong et al.,
2019). In addition, Bi clusters are deposited on hollow carbon

spheres to form atomic dispersed BiC/HCS (Yang M. et al.,
2022), improving CO2 adsorption capacity, increasing the FECO
to 97% ± 2% (−0.6 V vs. RHE), achieving a record-breaking peak
power density of 7.2 ± 0.5 mW cm-2, and a cycle number of more
than 200 times.

The Sn/SnOx heterojunction presented higher catalytic activity
than individual Sn, as previously mentioned. Multivalent Sn
provides rich interfaces between Sn(0) and Sn(II) or Sn(IV),
showing a special catalytic activity in stabilizing intermediates
(Liu K. et al., 2022; Spada et al., 2022; Zhang et al., 2022). The
Sn/SnO2 heterojunction was uniformly decorated on highly
conductive N-doped carbon networks to construct Sn/SnO2@NC
(Xue Teng et al., 2021). The FEformate is increased to 81%, the peak
power density of the assembled battery reaches 0.9 mW cm-2, and
the open-circuit voltage is 1.35 V. Furthermore, the carbon network
was replaced by potential two-dimensional materials. Low-
dimensional SnO2 quantum dots were spread among ultrathin
Ti3C2Tx MXene nanosheets (SnO2/MXene) (Han L. et al., 2022)
to reduce the reaction energy of CO2 hydrogenation to formate. This
is carried out by destabilizing water and water dissociation in order
to increase the surface coverage of *H and raise a new situation of
electrochemical CO2-to-formate.

Similarly, bimetal or multimetal catalysts are rooted into carbon
substrates to play a synergetic role via inducing geometric or
electronic reconstructions (Zhang N. et al., 2021; Kong et al.,
2022). For example, the In metal can reduce CO2 to formate, but
is faced with many obstacles such as low jformate, poor stability, and
limited coordination ability (Dong et al., 2018; Raknual et al., 2021).

FIGURE 7
Reaction adsorption energy diagram of (A) CO2RR and (B) HER pathways on SnO2/Bi2O3. Reproduced with permission (Tian et al., 2021). Copyright
2021, Wiley. (C) Charge density differences maps of V-CuInSe2 (yellow and blue regions represent the accumulation and depletion of electrons,
respectively). (D)Mechanism investigations of the CO2RR pathway on V-CuInSe2. Reproduced with permission (Wang Y.-X. et al., 2022). Copyright 2022,
Wiley.
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To resolve these problems, In is fixed into Zn-MOF derivatives
to prepare In/ZnO@C hollow nanocubes (Teng et al., 2021) (Figures
8A–D), thereby adjusting the adsorption of *OCHO on Zn catalytic
sites and improving the product selectivity. Under the hollow
nanocube framework, the synergetic effect of both Zn and In
makes jformate as high as 23.5 mA cm-2, FEformate increases to 90%
at a potential of −1.2 V (vs. RHE), long cycles of 153 (51 h) at the
current density of 1 mA cm-2, and the peak power density of a
Zn–CO2 battery is improved to 1.32 mW cm-2 (Figures 8E, F).
Simultaneously, Fe and Ni nanoparticles are introduced into ZIF
to synthesize Fe1–Ni1–N–C (Jiao et al., 2021) (Figure 6G), existing as

Fe-N4 and Ni-N4 forms. Fe and Ni monoatomic pairs play a
synergistic effect, where Ni atoms activate the adjacent Fe to
increase the electron density between Fe and CO2 while reducing
the free energy of *COOH (Figures 8H–L); thus, its FECO reaches
96.2% at −0.5 V. Furthermore, a bifunctional PdBi alloy anchored on
the carbon substrate (BiPdC) (Gao S. et al., 2022) was fabricated via
doping Pd into Bi-based MOF (CAU-17) (Figures 9A, B), in which
Bi aims at conversion of CO2RR to HCOOH product and the Pd
targets FAOR to the highly reversible conversion of CO2-to-
HCOOH. This reversible Zn–CO2 battery exhibits 52.64%
FEHCOOH (Figure 9C) and 45 h cycling durability. Despite the

FIGURE 8
(A) Schematic illustrations of In/ZnO@C. SEM images of (B) In(OH)3-Zn-MOF precursors and (C) In/ZnO@C. (D) DEX mapping of In/ZnO@C. (E)
jformate in CO2-saturated 0.5 M KHCO3 solutions. (F) Galvanostatic charge–discharge and power density curves of Zn–CO2 battery shown in the inset.
Reproduced with permission (Teng et al., 2021). Copyright 2021, Royal Society of Chemistry. (G) Schematic illustrations of Fe1-Ni1-N-C. (H) Free energy
diagrams of CO2RR on Fe1-Ni1-N-C. (I) SEM and (J) TEM images of Fe1-Ni1-N-C. (K) Aberration-corrected HAADF-STEM observation for Fe1-Ni1-N-
C (inset: 3D atom-overlapping the Gaussian-function fitting map of region 6 in panel (K). (L) HAADF-STEM intensity profile and atomic resolution EELS
mapping of the Fe–Ni pair. Reproduced with permission (Jiao et al., 2021). Copyright 2021, Wiley.
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low FEHCOOH, it is of great significance to construct a truly reversible
Zn–CO2 battery. In addition, the vital role of metal lattice revealed
strains on CO2RR and strained PdNi alloy (s-PdNi) (Hao et al.,
2022) was confined into carbon shells, presenting optimized
*COOH adsorption and *CO desorption on s-PdNi-2.3% (111)
surfaces through Bader charge analysis (Figures 9D, E).

For metal-carbon catalysts, introducing heteroatoms with large
electronegativity (such as B, P, and S.) is mainly to regulate the local
electron density of the metal, thereby providing appropriate
adsorption energy for CO2RR (Maulana et al., 2021; Peng et al.,
2022a; Ma et al., 2022). To achieve P doping, Fe–P nanocrystals were
in situ implanted into a ZIF template and calcined at high
temperatures to prepare Fe-P@NCPs (Liu et al., 2022d). During
high-temperature pyrolysis, the ZIF-8 cage separates and
encapsulates ferrocene, converts 2-methylimidazole into an N-C
skeleton, and the evaporation of Zn ions simultaneously induces Fe
reduction and phosphating, thus forming Fe–P nanocrystals with
high interfacial charge transfer capability and catalytic performance.
Its FECO can reach 95% at −0.55 V (vs. RHE). The Zn–CO2 battery
with Fe-P@NCPs operates at ultra-high stability, exceeding
500 cycles (7 days) without obvious voltage attenuation. It was
reported that P-doping promotes OER/ORR (Yang J. et al.,

2019); Yang R. et al. (2019) co-doped Ni with N and P on
graphene, forming Ni/PNG nanomaterials, and designed a dual-
mode Zn–CO2/Zn–O2 battery realizing CO2RR/OER/ORR
trifunctional catalysis. Ni-N on Ni/PNG mainly catalyzes CO2RR
(He et al., 2020; Leverett et al., 2022) and assists the OER and ORR,
while PGmainly works on the OER/ORR and inhibits the HER. The
operational routine of dual-model batteries is controlled by
supplying gas, which enlightens the integrated multifunctional
energy conversion-storage devices.

Metal-carbon composite catalysts combine the superior catalytic
performance of metal and the excellent electrical conductivity of
carbon frames, presenting significant superiority in product
selectivity and showing great potential as bifunctional catalysts.

3.4 Single-atom catalyst (SAC)

Derived from metal–carbon composite catalysts, the SAC is
particularly noticeable, and the isolated single-metal atom behaves
as an active center without interaction with adjacent metal atoms
(Xu et al., 2018; Shah et al., 2021; Shah et al., 2022). Relying on the
high atom utilization and unique coordination environment (Liu

FIGURE 9
(A) Schematic illustration and (B) HAADF and DEX mapping of BiPdC. (C) Galvanostatic discharge curves with corresponding FEHCOOH. Reproduced
with permission (Gao S. et al., 2022). Copyright 2022, American Chemical Society. (D) Schematic illustration of s-PdNi. Green, yellow, brown, and red balls
refer to Ni, Pd, C, and O atoms, respectively. (E) Bader charge analyses of the optimized adsorption structure for intermediate *COOH on s-PdNi-2.3%
(111) surfaces. Reproduced with permission (Hao et al., 2022). Copyright 2022, American Chemical Society.
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et al., 2020; Zhuang et al., 2020), the SAC shows great potential for
excellent activity, selectivity, and stability (Sun et al., 2019) in
CO2RR and oxidation reactions. However, in actual conditions,
the reduction of a catalyst’s particle size leads to a sharp increase in
surface energy, hardly maintaining the atomic level dispersion and
driving metal atoms to gather, forming nanoparticles (Zhu et al.,
2021b; Lin et al., 2021; Lin et al., 2022). Metal oxides, hydroxides,
and carbon-based materials are accepted as substrates to separate
metal atoms (Yang D. et al., 2020; Wang R. et al., 2021; Wan and
Wang, 2021). Summarizing reports on SAC in Zn–CO2 batteries
show that most substrates are carbon-based materials and the SAC
exists in metal–nitrogen–carbon (M-N-C) mode (Chen Z. et al.,
2022; Yujie Shi and Lou, 2022).

MOF with unique structures is becoming an alternative to
preparing SAC and M-N-C catalysts mostly derived from ZIF-8
and ZIF-67 precursors (Ding et al., 2022; Song et al., 2022), which
take dimethylimidazole as the organic ligand presenting the
dodecahedral structure and fix the Zn2+ and Co2+ as ligand metals,
respectively (Yang H. et al., 2020; Song et al., 2020; Mo et al., 2022).
The in situ metal substitution and high-temperature calcination
strategy is adopted to allow control over the coordination
environment of metal center sites together with altering the
porosity and conductivity of the carbon skeleton (Han W. et al.,
2022; Fu et al., 2022). The Fe1NC/S1-1000 (Wang T. et al., 2020)
catalyst with Fe-N3 sites balances the adsorption of *COOH and *CO,
achieving a peak power density of 0.6 mW cm-2 and FECO as high as
96% at a potential of−0.5 V. Similarly, Zhang Y. et al. (2021) proposed
the strategy of post-synthetic metal substitution. Zn-SAC was
designed in advance to build a controllable coordination
environment, and then Zn was replaced with Ni to generate Ni-
SAC (Ni-Nx-C), increasing the FECO as high as 95.6%, and this
Zn–CO2 battery circulates 100 times under 2 mA cm-2.
Phthalocyanine (Pc) or porphyrin presents a similar plane
symmetry structure as the M-N4-C catalyst and is also accepted as
a precursor for the SAC. (Liang Z. et al., 2021; Cruz-Navarro et al.,
2021; Ji et al., 2021; Wang H. et al., 2022). CoPc was uniformly
distributed in three-dimensional N-doped hollow carbon spheres
(NHC) and activated under CO2 atmosphere to prepare defected
CoPc@DNHCS-T (Gong et al., 2022). Its high-density carbon defect
with pyridine nitrogen establishes a double-electron absorption effect
that regulates the electronic structure of the Co atom, accelerating
CO2 activation and *COOH formation. As a result, the Zn–CO2

battery obtained a maximum power density of 1.02 mW cm-2 and
circulated for 44 cycles (~44 h) at 1 mA cm-2. Its FECO was up to 94%.

Importantly, the number and coordination mode of N atoms in
the SAC induce a local electron density change around the central
metal atom, regulating the adsorption of reaction intermediates and
catalytic activity. (Yan et al., 2018; Lu et al., 2020) Liu et al. (2022c)
anchored an Fe single atom on a B/N co-doped carbonmatrix to form
the Fe-SA/BNC catalyst that aroused significant electron transfer of
*COOH and reduced the energy barrier of *CO on FeN3B sites in the
desorption process (Figures 10A–C) compared with Fe-N4 sites based
on DFT simulations. The Zn–CO2 battery assembled with Fe-SA/
BNC obtained a high power density of 1.18 mW cm-2. Affected by the
planar structure of M-N4, the coupling rate of proton–electron is slow
in the CO2RR, and it requires higher reaction-free energy. Thus, the
unique Fe-N5 sites with axial N coordination on defective porous
carbon nanofibers (Fe-N5/DPCF) (Li Z. et al., 2022) (Figures 10D, E)

were prepared via the facile dicyandiamide-assisted annealing
method. Here, Fe is axially coordinated with N atoms on adjacent
N-doped carbon layers, and the unstable pyrrole nitrogen and
pyridine nitrogen sites on the CF substrate are removed, which
leave intrinsic defects (Figures 10F, G). The theoretical calculations
revealed that Fe-N5/DPCF plays a key role in boosting CO2RR
(Figure 10H). Unlike plane Zn-N4 sites, highly active asymmetric
Zn-N3+1 in Zn/NC NSs (Chen J. et al., 2022) (Figures 11A, B) was
developed. The Zn atom center is coordinated with four N atoms at
the edges of two adjacent graphite atoms to form a twisted Zn-N3+1

structure, which promotes H2O dissociation, accelerates
proton–electron coupling, and reduces the energy barrier of
*COOH (Figure 11C). Thus, its FECO is increased to 95% with a
maximum battery power density of 1.8 mW cm-2. It performs stable
runs for 100 cycles (~26 h) under 1.5 mA cm-2.

As reported, the catalytic effect of N-C configurations in CO2RR
is different and ranked as pyridine nitrogen > graphite nitrogen >
pyrrole nitrogen, and these configurations can be altered via
regulating the metal complex precursor or pyrolysis conditions
(Hu et al., 2021b). For richer pyridine nitrogen, nickel 8-
hydroxyquinoline complex (Ni-HQ) as a precursor mixed with
melamine is pyrolyzed into Ni-doped graphite nanocarbon (Ni-
Nx-2D/NPC) (Zeng et al., 2021) (Figures 11D–F). Pyridine nitrogen
improves CO2 capture capacity, and Ni-N sites inhibit the HER,
cooperatively promoting CO2RR selectivity under wide potential
and high current density. The FECO is continuously raised above
90% and even nearly approaches 100% (Figure 7N).

SACs with fully exposed sites and a unique coordination
environment improve the selective adsorption of specific
functional groups, activation of reactants, and regulation of
catalytic reactions (Chen et al., 2018; Liu L. et al., 2022). They
show great potential in the field of catalysis and would play a vital
role in future Zn–CO2 batteries.

4 Summary and outlook

For aqueous Zn-CO2 secondary batteries, the CO2RR process
captures and transfers CO2 into value-added products such as
COOH−/CH4 while also generating green electricity. In addition to
the opposite charge process, it rarely produces CO2 again, consuming
CO2 as a whole, which is in line with the CCUS strategy with broad
prospects. However, problems such as unstable reaction kinetics,
limited electrolyte environment, and poor product selectivity impede
the application of Zn–CO2 batteries. Here, catalyst design plays a
decisive role in obtaining high-performance Zn–CO2 batteries.

In this review, the structure and the involved reaction
mechanism of CO2RR/FAOR/OER in the aqueous Zn–CO2

battery have been discussed; the preparation method and the
strategy to develop cathode catalysts have also been summarized,
especially for SAC materials. In summary, carbon-based catalysts
contain excellent conductivity, large specific surface area, and
abundant resources, showing obvious advantages in superior
stability (Paul et al., 2019; Yuan and Lu, 2019; Hu et al., 2021a;
Wang J. et al., 2021), but they are far from meeting application
demands. Metal-based materials are considered effective catalysts
with special geometry (Back et al., 2018), lattice defects, dispersion,
and electron distribution (Jiang et al., 2018; Wang Y. et al., 2020).
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Alloys with low cost and toxicity are becoming their alternatives.
Furthermore, metal–carbon composite catalysts are being developed
to pursue the integration of excellent stability and catalytic activity
(Ding et al., 2019; Wang H. F. et al., 2020; Wang and Astruc, 2020).
To tap the potential of metal–carbon composite catalysts to the
fullest extent possible, the following strategy is adopted: 1) isolating
single-metal sites for fully exposed active sites; (Jiao et al., 2020); 2)
steady and high-conductivity carbon support (Sun et al., 2021).
Thus, single-atom catalysts (SACs) are initiated and applied in
Zn–CO2 batteries.

Cathode catalysts are expected to achieve high value-added and
high yields of products. More attention should be paid to product
selectivity for multi-carbon chemicals and their bi-functional
properties in both reduction and oxidation reactions for Zn–CO2

systems. Catalyst design and structure regulation/optimization at
the atomic level are recognized as feasible solutions. Herein, we
propose the following strategies (Figure 12):

1) Reasonably design the catalyst structure.

The construction of catalysts with a large specific surface area
and feasible pore structure is conducive to the accessibility of active
sites where the rich mesoporous structure is profitable for the
transport and storage of reactants and intermediates.
Furthermore, this structure maintains the catalyst’s stability, thus
preventing the collapse of the internal structure during battery
operation.

2) Promote catalyst conductivity.

Conductivity is a vital factor for both electrochemical mass
transfer and proton–electron coupling rates. It is possible to
introduce carbon frames, lattice defects, and heterostructures.

3) Develop catalytic sites with intrinsic activity.

FIGURE 10
(A) Schematic illustrations and (B) EDX mapping of Fe-SA/BNC. (C) Mechanism research of CO2RR pathway on FeN4 and FeN3B. Reproduced with
permission (Liu et al., 2022c). Copyright 2022, Elsevier. (D) Schematic illustrations of Fe-N5/DPCF. (E) HAADF-STEM image and STEM-EDS elemental
maps of Fe-N5/DPCF. (F) Fourier transformed curves of Fe K-edge EXAFS spectra. (G) Fe K-edge EXAFS fitting result of Fe-N5/DPCF, inset shows the
proposed 3D Fe-N5 structure. (H) Free-energy profiles of reaction intermediates in CO2RR. Reproduced with permission (Li Z. et al., 2022).
Copyright 2022, Wiley.
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Charge distributions around active atoms influence the
adsorption capacity of interaction intermediates/products,
resulting in product selectivity and efficiency. Tackling
competitive adsorption between *H, *COOH, *CO, and *OCHO
in the catalytic process is crucial to the targeted products.

4) Improve atom utilization and create a unique coordination
environment for SACs.

The adjustable number and coordination mode of N atoms in the
SAC present an asymmetric or twisted structure that disrupts uniform
charge distribution, resulting in highly desired catalytic properties.

In addition, aiming at the problems of self-corrosion, dendrite,
and even hydrogen evolution in the anode of Zn–CO2 batteries, the
reported SEI interface engineering strategy can effectively stabilize
the charge–discharge reaction process of the anode, inhibit the
formation of zinc dendrites, and reduce the HER process. The
excessive reaction of zinc can also be slowed by adding additives
to the zinc electrode or by using a polymer film to prevent direct
contact between zinc and the water-based electrolyte. Furthermore,
the presence of Zn can be altered. For example, Zn is deposited into
the collectors as graphene or stainless steel mesh, alternatively, or
combined with other metals such as Cu, forming alloys to enhance
the anode’s stability.

FIGURE 11
(A) Schematic illustrations and (B) TEM and EDS mapping of Zn/NC NSs. (C) Diagrams of different types of N atoms in Zn/NC NSs-T. Reproduced
with permission (Chen J. et al., 2022). Copyright 2022, Wiley. (D) Schematic illustrations and (E) HAADF and corresponding EDX mappings of Ni-Nx-2D/
NPC. (F) FE curves of Ni-Nx-2D/NPC cathode cells. Reproduced with permission (Zeng et al., 2021). Copyright 2021, Wiley.

FIGURE 12
Cathode catalyst design strategy for Zn–CO2 systems.
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At present, most Zn–CO2 battery devices are assembled in
H-type electrolytic cells. Their open-circuit voltage is 1–1.5 V, the
charge voltage is generally below 2.6 V, and the cycle number is
limited, which is far from commercial requirements. This limited
performance is caused by its special bipolar membrane in a two-
sided electrolyte environment and huge mass/volume of the
device. In order to further increase the current and voltage of
the device, the overall volume of the device should be compressed
as much as possible, and the asymmetric structure of the
membrane electrode and gas diffusion electrode should be
modified to reduce the contact resistance of each component.
On one hand, the hydrophilic and hydrophobic properties on
both sides of the membrane electrode can be used to extend the
service life of the anode and accelerate the charge–discharge
reaction at the three-phase boundary. In addition, the gas
diffusion layer can be increased to improve the amount of gas
dissolution and accelerate the process of proton–electron
coupling.

On the aforementioned bases, advanced in situ characterization
techniques such as Raman, XPS, XRD, DEMS, and EXAFS and
related theoretical calculations are suggested to deeply explore
further the electrochemistry mechanism/process in Zn–CO2

batteries, to guide the catalyst design, and to further increase the
development toward high-performance batteries, multi-function
devices, and/or multi-mode units with continuous expanding
application potential.
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