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The integration of a high proportion of wind power has brought disorderly impacts
on the stability of the power system. Accurate wind power forecasting technology
is the foundation for achieving wind power dispatchability. To improve the stability
of the power system after the high proportion of wind power integration, this
paper proposes a steady-state deduction method for the power system based on
large-scale wind power cluster power forecasting. First, a wind power cluster
reorganization method based on an improved DBSCAN algorithm is designed to
fully use the spatial correlation of wind resources in small-scale wind power
groups. Second, to extract the temporal evolution characteristics of wind power
data, the traditional GRU network is improved based on the Huber loss function,
and a wind power cluster power prediction model based on the improved GRU
network is constructed to output ultra-short-term power prediction results for
each wind sub-cluster. Finally, the wind power integration stability index is defined
to evaluate the reliability of the prediction results and further realize the steady-
state deduction of the power system after wind power integration. Experimental
analysis is conducted on 18 wind power farms in a province of China, and the
simulation results show that the RMSE of the proposedmethod is only 0.0869 and
the probability of extreme error events is low, which has an important reference
value for the stability evaluation of large-scale wind power cluster integration.
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1 Introduction

With the proposal of the “carbon peaking and carbon neutrality” goal, the utilization of
new energy for power generation has been elevated to a crucial strategic position (Wang
et al., 2021). Wind power utilization has a dual nature: on the one hand, its lack of pollution
and renewable nature make it more economically efficient from the perspective of generation
cost. On the other hand, the inherent intermittency, randomness, and uncertainty of wind
power make it difficult for power systems to schedule and affect the stable operation of the
power system (Kazari et al., 2018; Mostafaeipour et al., 2022). The high penetration of wind
power, in particular, significantly increases the uncertainty of power grid operation. If wind
power is not accurately grasped and reasonably used, it will reduce the economy and safety of
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power grid operation. Wind power forecasting technology is one of
the key technologies for realizing wind power utilization. The ultra-
short-term wind power cluster forecasting method provides wind
power forecasting results for the subsequent 4 h, which provide
technical reference for dispatchers to arrange unit combinations and
formulate power generation plans. For large-scale wind power
clusters, accurate wind power forecasting technology can improve
the absorption of wind power, increase the power system’s grasping
ability for wind power, and thereby enhance the stability of the
power system after wind power is connected to the grid (Ju et al.,
2019).

The current main ultra-short-term wind power cluster
forecasting methods are divided into two categories: physical
model and data-driven (Wu et al., 2020). The physical model
method is highly dependent on atmospheric physical
characteristics and requires support from a large amount of
meteorological observation data. If the mathematical description
of the wind power farm is accurate enough, the prediction accuracy
is often high. However, the performance of the prediction will be
seriously affected when the wind power farm is expanded or the
mechanical characteristics change (Dolatabadi et al., 2021). Data-
driven methods include support vector machines (Li et al., 2020),
extreme learning machines (ELMs) (Wan et al., 2020), and neural
networks (Nazir et al., 2020; Tang et al., 2022), which have made
significant breakthroughs in prediction accuracy compared with
physical prediction methods.

With the application of new generations of artificial intelligence
algorithms and the proposals of improvement methods such as
combined models and switching mechanisms, the prediction
accuracy of a single power prediction algorithm has gradually
improved (Carneiro et al., 2022). However, China’s wind power
development is transitioning from decentralized to centralized and
large-scale, and wind power farms are mostly connected to the grid
in a centralized manner. It is beneficial to improve wind power
prediction accuracy by using the smoothing effect presented by the
aggregation of wind power farms and promoting wind power
consumption. Therefore, wind power cluster prediction has
become extremely important (Mu et al., 2022).

For wind power cluster prediction methods, the principle of
superposition is relatively simple, which obtains the cluster power
prediction result by adding single-site power predictions and is
suitable for sparsely distributed and small-scale wind power farms
(Zong and Porté-Agel, 2020). The time-series extrapolation method
analyzes historical power data to predict future trends in time series.
As meteorological data are not sufficiently introduced, they are
significantly affected by the quality of power data. The statistical
upscaling method only needs to linearly upscale the predicted
output of the reference wind power farm to obtain the cluster
prediction result. This method can offset potential correlation
factors between different wind power farms’ data and has good
dynamic adaptability, but the selection criteria for the reference
wind power farms are difficult to determine (Yang et al., 2022). The
cluster division method divides the wind power farms in the region
into several wind sub-clusters according to the fluctuation patterns
of power and meteorological data and establishes a separate
prediction model for each sub-cluster.

The division of wind power clusters is generally based on the
spatio-temporal characteristics of meteorological and power data as

inputs, which are partitioned into finite cluster units through
clustering or other similarity measures. Predictive models are
established for each cluster unit separately. Wang et al. (2022)
used wind power as the input for a fuzzy clustering algorithm to
achieve cluster division. Zhao et al. (2021) clustered the fluctuations
of wind power and considered numerical weather prediction (NWP)
meteorological features for short-term wind power forecasting.
Abedinia et al. (2020) divided clusters by determining the
correlation of output features through empirical orthogonal
functions. Fan et al. (2020) proposed using NWP information of
the predicted period as input for cluster division. These references
used wind power, wind speed, and their constructed attributes as
features for clustering, but a single feature’s input may not guarantee
the rationality of cluster division when there are quality issues in
the data.

The current research on power prediction for large-scale wind
power clusters lacks consideration for the stability of wind power
integration. Under the condition of a high frequency of extreme
errors and inflated overall prediction accuracy, the rationality of the
application of prediction results cannot be guaranteed. Additionally,
the rationality of cluster division also has a major impact on
prediction accuracy. Based on the previously mentioned analysis,
a wind power cluster ultra-short-term power prediction method is
proposed to consider the stability of wind power integration. Based
on the stability evaluation results, further implementation of the
power system steady-state deduction is recommended after the wind
power grid connection is achieved. A multi-dimensional input
feature construction and an improved DBSCAN (density-based
spatial clustering of applications with noise) algorithm-based
wind power cluster division scheme are proposed, which divide
the wind power farms in the region into several subsets. Then, the
gated neural unit is improved to extract the temporal features of the
wind power cluster and provide the cluster power prediction results.
Finally, a stability evaluation index is constructed to assess the
reliability of the wind power prediction model, and the
effectiveness of the proposed method is verified in 18 wind farms
in a province in northeast China.

This paper is organized as follows: Section 2 improves the
DBSCAN algorithm and its clustering of wind farm groups. The
wind power cluster forecasting model based on the improved GRU
network is introduced in detail in Section 3. Section 4 describes the
framework for steady-state power system analysis based on large-
scale wind power clusters. The effectiveness of the proposed method
is verified in Section 5 based on actual wind farm data. Finally,
conclusions and future recommendations are presented in Section 6.

2 Wind power subset cluster division
based on the improved DBSCAN
algorithm

2.1 Improved DBSCAN algorithm

DBSCAN is one of the most typical density-based spatial
clustering algorithms, which clusters samples with high similarity
in the form of partitioning clusters, and clusters are defined as the
largest set of density-connected points (Mao et al., 2021). Therefore,
the DBSCAN algorithm can divide regions with sufficient data
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density into clusters and is less sensitive to noisy data. The
partitioning idea of wind power clusters based on the DBSCAN
algorithm is as follows. Input indicates that the status of all input
samples is marked as unclustered, an input sample is read, and then
the sample is judged as a core sample point according to the
neighborhood ε and threshold min Lns. If yes, a new cluster is
formed in the neighborhood of the sample, and then all points in the
neighborhood ε are added to the cluster. The cluster C is judged by
the black core sample in the neighborhood ε extending outward
continuously until the cluster C is no longer growing. The DBSCAN
algorithm is defined as follows:

Definition 1: The neighborhood Li is defined as shown in Eq. 1:

Nε Li( ) � Lj ∈ D
∣∣∣∣Ddist Li, Lj( )≤ ε{ }, (1)

where ε represents the density radius of the sample point, D
represents the data space of Li and Lj, and Li, Lj ∈ D. All sample
points whose spatial distance from Li does not exceed ε constitute
the neighborhood Li.

Definition 2: For Li ∈ D, the condition that Li is the core sample is
as follows: the neighborhood Li must meet the following conditions:

Nε Li( )| |≥min Lns. (2)

Definition 3: Given data space D(Li ∈ D), the conditions of direct
density reachability of Li and Lj are as follows:

Li ∈ Nε Lj( ), (3)
Nε Lj( )∣∣∣∣∣ ∣∣∣∣∣≥minLns, (4)

where, Eq. 3 presents that Li is within the ε neighborhood of Lj and
Eq. 4 presents that Lj is the core sample point.

Definition 4: Given data space D(Li ∈ D), the reachable densities
of Ln and L1 are as follows: existing L1, L2, L3, . . ., Li, . . .,
Ln (1≤ i≤ n), Li+1 starts from L1, there is a direct density
accessibility relation for ε and min Lns.

Definition 5: Given data space D(Li, Lj ∈ D), Li and Lj are
density-related condition as follows: any sample point
Lk(Lk ∈ D) exists, such that Li and Lj are both starting from Lk,
and there is a direct density accessibility relation for ε and min Lns.

Figure 1 shows the flow based on the improved DBSCAN
algorithm.

Through the aforementioned algorithm process, we can see
that all sample points must be traversed in order to
finally determine the cluster C. Figure 2 is a schematic
diagram of the core sample point segment search area. As
can be seen from the figure, the region for searching the core
track segment is an outsourcing ellipse with radius ε and density
threshold min Lns, and all samples in the ellipse region form the
final cluster.

FIGURE 1
Flowchart of the improved DBSCAN algorithm.

FIGURE 2
Diagram of the core sample search area.

FIGURE 3
GRU neural network structure.
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2.2 Clustering of wind power cluster sub-
regions based on the DBSCAN algorithm

The input features are a key factor affecting the output of cluster
algorithms. Since cluster algorithms generally perform feature

engineering separately, the paper characterizes the meteorological
and power fluctuation characteristics of each wind power farm by
manually constructing features. Salazar et al. (2022) pointed out that
hub-height wind speed and power fluctuations in NWP are far more
correlated than other meteorological attributes; so, wind speed is one

FIGURE 4
Spatio-temporal feature data structure.

FIGURE 5
Power system stability assessment framework.
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of the key constructed features. Using a 1-h observation window, the
variance between the wind speed and the average wind speed in the
observation window is extracted to describe the wind speed
fluctuations, as shown in Eq. 5.

F1 � 1
4

WS1 −WS( )2 + WS2 −WS( )2 + WS3 −WS( )2 + WS4 −WS( )2[ ],
(5)

whereWS1,WS2,WS3, andWS4, respectively, represent the wind speed
at 15 min, 30 min, 45 min, and 1 h within the observation window, . F1

represents the scatter of each wind speed point from the mean wind
speed in the observation window, which is the first constructed feature.

Similarly, the power variability within the 1-h observation
window is calculated using Eq. 5 as the second constructed
feature. The trend of wind speed quantification within the 1-h
observation window is shown in Eq. 6.

F3 � sign WS2 −WS1( ) + sign WS3 −WS2( ) + sign WS4 −WS3( )
+ sign WS5 −WS4( ),

(6)
where sign represents the sign function; P1, P2, P3, andP4,

respectively, represent the change trends of wind speed at 15 min,
30 min, 45 min and 1 h;WS5 represents the 15-min wind speed in the
next observation window; and F3 represents the change trend of wind
speed in the observation window, which is the third structural feature.

Similarly, the power change trend within the 1-h observation
window is obtained by Eq. 5 as the fourth structural feature. Finally,
a structural feature set is formed by F1, F2, F3, andF4, which are
used as the input of the improved DBSCAN algorithm to realize the
division of wind electronic clusters.

3 Wind power cluster prediction model
based on the improved GRU network

GRU is a simplified variation of the LSTM network, which is a
kind of gate recurrent unit network and is widely used in extracting

time-series features of time series. The update gate in the GRU is a
combination of the forget gate and the input gate in the LSTM
network, but the GRU model structure is simpler, which effectively
reduces the training time while ensuring the model prediction
accuracy (Qu et al., 2021; Xiao et al., 2023). The internal
structure of the GRU is shown in Figure 3.

Each GRU includes an u(t) and an r(t). At the time of t, the
GRU accepts the current x(t), the hidden state of the previous
h(t − 1), and the update gate performs two steps of forgetting and
remembering at the same time. The calculation determines how
much information to choose to input into the network and how
much to remember from past information; the reset gate determines
the amount of past forgotten information; the output h(t) of the
GRU network is finally formed by the dynamic control of the update
gate and the reset gate. The calculation method for each variable is as
follows:

u t( ) � ψ Wuh t − 1( ) + Uux t( )( ), (7)
r t( ) � ψ Wuh t − 1( ) + U rx t( )( ), (8)

�h t( ) � φ Wc r t( ) ⊗ h t − 1( )( ) + U cx t( )( ), (9)
h t( ) � u t( ) ⊗ h t − 1( ) + 1 − u t( )( ) ⊗ �h t( ), (10)

where Wu,Wr, andWc are the parameter matrices connecting the
output signal of the hidden layer; Uu, Ur, andUc are the parameter
matrices connecting the input signal; ψ(.) is a non-linear function;
and �h(t) is the intermediate memory state that mixes the cell state
and the hidden state. ⊗ is a logical operator that multiplies
corresponding elements in a matrix.

During the training stage, in order to reduce the sensitivity of the
model to abnormal data, the gradient update of the deep neural
network decreases with the decrease of the error, which is conducive
to speeding up the convergence speed, and the Huber loss function is
used as the measurement rule of the GRU network training loss
(Tang et al., 2021). The principle is as follows.

L y, f x( )( ) � 1
2
y − f x( )( )2 for y − f x( )∣∣∣∣ ∣∣∣∣≤ δ

δ y − f x( )∣∣∣∣ ∣∣∣∣ − 1
2
δ2 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

where y represents the actual value and f(x) represents the
predicted value. δ is a hyperparameter, which is introduced by
the loss function, and it determines how to treat outliers. If the
residual is greater than δ, we can use L1 to minimize the loss. If the
residual is less than δ, then we can use L2 to minimize the loss. In
this paper, the setting of δ is 0.1. The GRU model improved by the
loss function is less sensitive to the outliers of meteorological and
power input data, increasing the convergence speed, and it can
improve the accuracy of wind power prediction to some extent.

According to the wind power cluster division results, the wind
power farm data in each sub-cluster are fused with spatial data.
Taking a cluster containingm wind power as an example, the model
data structure with characteristic k steps as input is shown in
Figure 4. The characteristics of each wind power cluster are
combined and then processed into a 3-dimensional tensor whose
time series lags behind one time-point in turn. The first dimension
of the data is the current moment t, which represents the forecast
time. The second dimension is the characteristics of each wind farm,
which represent the spatial characteristics. The third dimension is

FIGURE 6
Loss curve.
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the temporal characteristics with sequential lags in time series. The
improved GRU network is used as the predictor to extract temporal
features from the fused data of spatial features to realize the power
prediction of sub-clusters. Finally, the ultra-short-term power
prediction of large-scale wind power clusters is realized by
superimposing the prediction results of each sub-cluster.

4 Framework for steady-state power
system analysis based on large-scale
wind power cluster forecasting

The traditional modeling approach for wind power cluster
forecasting is to first predict the power of each individual wind
power farm and then add up the predicted results to obtain the
forecasted power of the entire wind power cluster (Wu et al., 2021;
Ning et al., 2023). The rationale for this approach is that the
prediction units for individual wind power farms are relatively
small, and each wind power farm has relatively complete
historical data. Achieving high prediction accuracy for each wind
power farm will lead to higher accuracy for the regional wind power
cluster forecast. Based on this advantage, all the current provincial-
level wind power cluster power forecasts use this modeling method.

However, historical power analysis of individual wind power
farms shows that the high-frequency components of wind power
fluctuate more violently, reducing the predictability of wind power.
The randomness and volatility caused by such local effects are
difficult to reflect in NWP, making it difficult for prediction
models to extract such fluctuation characteristics. However,
within a certain spatial range, wind power farms with similar
output can smooth out this random fluctuation to some extent,
resulting in a smoother aggregated power curve and improved
predictability.

Based on the aforementioned analysis, dividing wind power
farms in a region into several clusters and modeling them separately
can improve the prediction accuracy for each cluster, thereby
improving wind power forecasting accuracy and enhancing the
stability of power system operation after wind power integration.
The steady-state extrapolation framework for power systems based
on the forecast results of large-scale wind power clusters is shown in
Figure 5.

The establishment of this framework involves the following
three steps:

i) Partitioning wind power sub-clusters: the DBSCAN algorithm
was improved based on Eqs 1–4, features were constructed
representing the fluctuation characteristics of wind power speed
and wind power according to Eqs 5, 6, they were used as inputs
for the improved DBSCAN algorithm, and the wind power
farms in the region were partitioned into several clusters.

ii) Ultra-short-term power prediction for wind power clusters: the
data were merged within the same wind power cluster, spatial
data tensors were constructed, the improved GRU neural
network was used to extract the temporal characteristics of
the wind power cluster, and the wind power cluster forecast was
output.

iii) Steady-state deduction of power systems: stability evaluation
indicators for wind power prediction were constructed, the

stability and accuracy of the wind power prediction model
were evaluated comprehensively based on traditional wind
power error indicators, and the steady-state deduction of
power systems was further realized.

5 Experimental analysis

5.1 Dataset and prediction metrics

The data used in this study consist of 6 months (January to July)
of actual power generation data and corresponding NWP data with
15-min resolutions from 18 wind power farms located in northeast
China with a total installed capacity of 2,564.81 MW. The
meteorological variables included in the NWP dataset are wind
speed, temperature, humidity, and pressure. Wind direction was not
included as a feature in this study. The first 6 months of data were
used as the training set, and the last month data were used as the
testing set. To ensure fairness in evaluating the correlation between
each feature variable and power, both the NWP features and power
were normalized to the [0, 1] range using the normalization
algorithm shown in Eq. 12.

x′ � x − x min

x max − x min
, (12)

where x and x′, respectively, represent the normalized and original
feature or power values; xmin and xmax, respectively, represent the
minimum and maximum values of the feature or power. After
prediction, the resulting values are denormalized to zero, the
maximum output range, to restore their physical meaning. The
denormalization principle is shown in Eq. 13.

x � x′ x max − x min( ) + x min. (13)
To reduce the impact of abnormal data on prediction accuracy

(Dong et al., 2023), the following pre-processing steps were taken:

1) Power values exceeding the installed capacity were reassigned to
the installed capacity;

2) Negative power values were set to zero;
3) For time points where the power is zero, the corresponding wind

speed value was set to zero.

The deep learning network designed in this paper consists of
three GRU network layers with 16, 32, and 16 neurons, respectively.
The last GRU layer is connected with a fully connected layer, and the
16-step wind power prediction results are directly output. The
training parameters are as follows: {epoch:50, batch_size: 128,
droup_out:0.2}. This paper uses a CPU for training, and the
parameters of the computer are as follows: {CPU: Intel(R)
Core(TM) i5-7300HQ CPU @ 2.50 GHz 2.50 GHz, RAM: 16.0 GB}.

The loss curve modeled by Cluster 1 is shown in Figure 6. MSE
loss declines slowly, with oscillations occurring in the middle of the
process, while Huber loss declines faster and has a more stable
downward trend.

In the past, the index for ultra-short-term wind power
prediction often selected the average forecast value within 4 h.
However, in the “Technical Regulation for Wind Power
Prediction,” the assessment has been modified to the fourth hour,
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namely, the results of the 16th step of the prediction (Demolli et al.,
2019). Therefore, in this study, the normalized root mean square
error (RMSE) and normalized maximum absolute error (MAE) were
used as the final evaluation criteria to evaluate the performance of
the 16th-step prediction (Zhao et al., 2022).

The calculation of normalized RMSE is shown in Eq. 14:

RMSE � 1
Cap

�������������
1
N

∑n
i�1

xi − yi( )2,√
(14)

where Cap represents the rated capacity of the wind power cluster,
xi represents the actual wind power generation, yi represents the
predicted wind power generation, and n is the number of samples in
the testing set.

The calculation of normalized MAE is shown in Eq. 15:

MAE � 1
nCap

∑n
i�1

xi − yi

∣∣∣∣ ∣∣∣∣. (15)

In addition, the extreme error frequency (SA) index was
established to evaluate the stability of the wind power prediction
model, using 40% of the installed capacity as the threshold for
extreme errors. The calculation is shown in Eq. 16:

IDi �
1, yi − ŷi

∣∣∣∣ ∣∣∣∣/Cap≤ 0.4

0, yi − ŷi

∣∣∣∣ ∣∣∣∣/Cap> 0.4
⎧⎨⎩

SA � num IDi � 0( )
n

(16)

where IDi is the criterion for determining whether a sample is an
extreme error. If the absolute error value is greater than 40% of the
installed capacity, it is considered an extreme error.

The calculation of the extreme error bandwidth ratio (EWR) of
wind power prediction results is shown in Eq. 17:

EWR � max yi − ŷi( )∣∣∣∣ ∣∣∣∣ + min yi − ŷi( )∣∣∣∣ ∣∣∣∣
2*Cap

. (17)

During the assessment period, if the extreme error frequency is
less than 4% and the normalized RMSE is less than 15% of the
installed capacity, it is considered that the power system meets the
static stability requirements during long-term operation. If the
extreme error bandwidth gradually increases in the 1–16 step
prediction results for the next 1–4 h and remains below 40% of
the error bandwidth, then it is considered that the power system is in
dynamic stability within the next 4 h from the forecast time. It
should be noted that the perspective of the power system steady-
state deduction in this study starts from the perspective of the power
grid and evaluates its impact on the power system after being
connected to the grid based on the comprehensive indicators of
wind power prediction. High prediction accuracy and stable model
performance are required to ensure the stable operation of the power
system after connection. If the model performance is unstable,
regardless of the overall accuracy during the assessment period,
stable operation of the power system cannot be guaranteed.

5.2 Analysis of cluster results

The iteration number of the clustering algorithm was set to
50 times, with a cluster quantity of 3. The final clustering results of
each cluster and the relative positions of each wind power farm are
shown in Figure 7:

Cluster 1: including 7 wind power farms, namely, Wind Power
Farms 2, 5, 8, 13, 16, 17, and 18.

Cluster 2: including 8 wind power farms, namely, Wind Power
Farms 3, 4, 6, 9, 10, 12, 14, and 15.

Cluster 3: including 3 wind power farms, namely, Wind Power
Farms 1, 7, and 11.

The cluster results show that the improved DBSCAN algorithm
can effectively identify spatially adjacent wind power farm and
group them into the same cluster. This indicates the rationality
of using the improved DBSCAN algorithm for cluster analysis.

FIGURE 7
Cluster partitioning results.
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To further verify the rationality of the clusters’ division, a
visualization analysis was conducted on the normalized power and
wind speed of the wind power farms in Cluster 1. The correlation
coefficient matrix of the power output of each wind power farm is also
provided, as shown in Figure 8. (Note: Wind Power Farms 1, 7, and
11 are close to each other and share the same NWP data). The
correlation coefficient (I) is calculated as shown in Eq. 18.

I � cov x1, x2( )�������������
D x1( ) × D x2( )√ . (18)

Based on the analysis of the previous figure, after cluster
division, the power outputs of various wind power farms within
the same cluster have certain similarities. Strictly speaking, wind
power farms’ output values that are close in distance should
exhibit highly similar states. However, during the wind turbine
climbing phase between sampling points 192 and 384, there are
also differences in power output curves between different wind
power farms. Due to factors such as unit maintenance,
malfunctions, and power limitations, the relationship between
wind power farms’ output and single-unit output is not strictly

linearly proportional. Therefore, from the correlation coefficient
matrix perspective, the correlation coefficients among the power
outputs of various wind power farms within the same wind power
cluster do not uniformly maintain high values. For example, the
power correlation coefficient between wind power farm 13 and
wind power farm 18 is only 0.56. From the analysis of wind speed
curves, wind speed trends among the various clusters of wind
power farms are relatively similar. Thus, introducing wind speed
fluctuation characteristics in clustering features can reduce errors
caused by using pure power features.

The normalized power and wind speed, and the correlation
coefficient matrix of the normalized power output, for each wind
power farm in Clusters 2 and 3 are presented in Figure 9.

5.3 Analysis of wind power cluster prediction
results

The normalized RMSE andMAE indicators of the three clusters’
power predictions are shown in Figure 10. The normalized RMSE

FIGURE 8
Visualization of Cluster 1 partitioning results. (A) Power output curve of Cluster 1. (B)Wind speed curve of Cluster 1. (C)Correlation coefficient matrix
of power output for each wind farm.
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and MAE indicators for Cluster 1 are 0.1018 and 0.0796,
respectively; for Cluster 2, they are 0.0602 and 0.1050,
respectively; and for Cluster 3, they are 0.0272 and 0.0914,
respectively. The prediction RMSE and MAE indicators for all
three clusters do not exceed 10% of the installed capacity,

indicating that the wind power cluster prediction model
proposed in this paper has high prediction accuracy.

To further verify the performance of wind power cluster power
prediction, the test set prediction results for each of the three clusters
were visualized. Figure 11 shows the results of the 16th step of ultra-

FIGURE 9
Visualization of division results of Clusters 2 and 3. (A) Power output curve of Cluster 2. (B)Wind speed curve of Cluster 2. (C) Power output curve of
Cluster 3. (D) Wind speed curve of Cluster 3. (E) Correlation coefficient matrix of Cluster 2. (F) Correlation coefficient matrix of Cluster 3.
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short-term prediction, where the predicted curve is still able to track
the actual power curve very well. It should be noted that predicting
wind power at the cluster level cannot overcome the time delay
problem that exists in single-farm prediction. That is, there is a
notable time delay between the predicted power sequence and the
actual power sequence on the waveform. By shifting the predicted
sequence forward according to the prediction step, its fluctuation
trend almost coincides with the actual power. Due to the presence of
the time delay problem, the prediction results for high-power points

tend to be lower, while those for low-power points tend to be higher
in the overall prediction results. Cluster 1 has a lower installed
capacity and thus more high-frequency noise signals in its power,
making it difficult to weaken fluctuations through convergence
effects. In contrast, Clusters 2 and 3 have higher installed
capacities, resulting in better tracking of the actual power curves
and higher prediction accuracy than Cluster 1.

The prediction results for the entire region are shown in
Figure 12, where the prediction results for the three wind power

FIGURE 10
Prediction indicators of Clusters 1, 2, and 3.

FIGURE 11
Visualization of cluster prediction results. (A) Prediction results for Cluster 1. (B) Prediction results for Cluster 2. (C) Prediction results for Cluster 3.

FIGURE 12
Visualization of regional prediction results.
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clusters are combined to obtain the prediction results for the entire
region’s wind power farms. The RMSE is 0.0869, and the MAE is
0.094. The mean absolute error is approximately equal to 10% of the
installed capacity, indicating that the model’s performance accuracy
can be guaranteed.

We offer a comparison of several different prediction models,
including DBSCAN_LSTM(D_LSTM), DBSCAN_CNN(D_CNN),
KMeans_LSTM(K_LSTM), KMeans_GRU(K_GRU), and the
persistence method. The comparison index is the normalized
RMSE of wind power forecast in the future 4 h. The comparison
results are shown in Figure 13. For the prediction of the future 4 h,
the error of the model proposed in this paper is the lowest. Among
them, the KMeans algorithm has a poor effect on cluster division,
and LSTM has poor performance in predicting cluster wind power
compared with GRUs; baseline persistence method of time series
prediction has the worst predictive performance.

In addition, we compared the other two prediction patterns.
Pattern 1: power prediction is carried out separately for all wind
farms, and the final results are added to get the regional power
forecast sum. Pattern 2: the total power of the region is taken as the
prediction target, and the power prediction results of 4 h are directly
output. The performance of the comparison is RMSE in the 4 h; the
comparison results are shown in Figure 14. Compared with the other
two patterns, the prediction model proposed in this paper has the
lowest prediction error.

5.4 Analysis of steady-state power system
analysis results for a regional grid

During the 1-month assessment period, a total of 59 extreme
errors occurred in the wind power clusters in the region, with a
frequency of 2.048%, which is not higher than the required 4%.
Thus, the large-scale wind power cluster ultra-short-term wind
power prediction method proposed in this paper can satisfy the
static stability requirements of the power system.

The extreme error bandwidth ratio and the percentage of
extreme errors at each prediction step to the extreme error
bandwidth for 16-step wind power prediction during the
assessment period are shown in Figure 15. The extreme error
bandwidth for 16-step prediction gradually increases, but the
upward trend is not significant for future steps 7, 8, and 9,
indicating that the model proposed in this paper can suppress
extreme errors as the prediction step increases. At the 16th
prediction step, the proportion of extreme errors is 34.0546%.
This result suggests that, under the stable evaluation system
proposed in this paper, the wind power prediction accuracy of
the wind power cluster in the region can meet the requirements,
ensuring stable operation of the power system after grid connection.

6 Conclusion

The proposed power system steady-state deduction method,
based on the reliability of large-scale wind power cluster power
prediction, has improved the stability of power system operation
after mass wind power grid connection. The conclusions are as
follows:

FIGURE 13
Performance comparison of different algorithms.

FIGURE 14
Performance comparison of different prediction patterns.

FIGURE 15
Extreme error bandwidth ratio for 16-step prediction.
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(1) The improved DBSCAN algorithm can effectively divide wind
power clusters based on the constructed wind speed and wind
power fluctuation characteristics. The divided wind power
clusters have relatively similar actual distances and similar
actual power outputs.

(2) The ultra-short-termwind power cluster power predictionmethod
based on the improvedGRUalgorithm can achieve high prediction
accuracy with an RMSE for the fourth hour prediction below 10%
of the installed capacity and stable model performance.

(3) Under the power system stability evaluation system constructed in
this paper, the proposed ultra-short-term wind power prediction
model can effectively improve the operation stability of the power
system after a wind power grid connection, with a narrow extreme
error bandwidth and a low frequency of extreme errors during the
assessment period occurring below 4%.

The next step of this work will further improve the power system
stability evaluation indicators and comprehensively evaluate the
performance of wind power prediction models from both the
grid and generation sides, analyzing their impact on the stable
operation of power systems after the wind power grid connection.
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