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This work aims to evaluate different error estimations of the shape and scale
parameters of the Weibull probability density function of wind speed measured at
the Fujairah site over a 1-year period. This study estimates trends in the variation of
Weibull parameters usingmoving averages and Markov series methods. The focus
is on the scale and shape factors, which are evaluated by mapping monthly mean
wind speeds into a Weibull probability distribution function. Due to the imprecise
nature of these factors, multiple data simulations are used to predict Weibull
factors based on data measuring interpolations. A procedural algorithm is
proposed to select the overall best forecast based on several estimation
methods that evaluate raised prediction errors. A probabilistic analysis is
followed to predict future wind speed and wind energy based on variations in
the scale and shape factors. This study focuses on the scale factor variation as it is
found to be more dominant than the Weibull shape factor. The forecasted wind
speed is checkedwith themeasured value in futuremonths and found to bewithin
trend values. The results suggest that the proposed algorithmprovides an accurate
and reliable method for predicting future wind speed and energy output.
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1 Introduction

Wind energy is a rapidly growing industry that requires accurate forecasting of wind
speed for effective power generation and grid management. The accuracy of wind speed
forecasting is crucial for ensuring efficient utilization of wind energy resources and
minimizing costs associated with power generation. The traditional method of wind
speed forecasting relies on deterministic models that are based on historical data and do
not account for the uncertainty associated with wind speed prediction. To address this
limitation, recent research has focused on developing probabilistic models that estimate the
uncertainty in wind speed prediction. One such approach is based on error estimation and
joint probability prediction of the parameters of the Weibull probability density function
(PDF). The Weibull PDF is widely used to model wind speed distribution and has been
shown to provide accurate predictions of wind speed. In this approach, the error in wind
speed forecasting is estimated using past forecast errors and is used to adjust the Weibull
parameters. The joint probability of the parameters is then predicted using a Bayesian
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framework, which incorporates the uncertainty associated with
parameter estimation. The resulting probabilistic forecast
provides a range of possible wind speed outcomes and their
associated probabilities, which can be used for decision making
in wind energy management. Deterministic and probabilistic
forecasting models have been covered over the last decades for
the prediction of wind power generation. Given a set of
measurement data, deterministic forecasting models are used to
provide prediction series of the wind power output. Users can
estimate the closest expectation of output wind generating,
depending on the evaluation of the model used and its
estimation errors. Several deterministic forecasting models have
been developed to predict the wind power output as accurately as
possible (Giebel et al., 2020).

Probabilistic forecasting methods, on the other hand, are
nowadays the interest of attention for researchers because, unlike
deterministic forecasting, probabilistic forecasts can provide further
information about the uncertainty of forecasting. While
deterministic methods provide an overall expectation of wind
power generation, probabilistic methods offer wider future
information for possible wind power generation, with prediction
intervals and distribution patterns. Probabilistic forecasts could be
used effectively in several applications, such as wind power trading
in electricity markets (Pinson et al., 2007), the optimal flow of power
generation and distribution (Jabr, 2013), and stochastic programs
for unit uncertainty commitments (Wang Q. et al., 2012). In brief,
Lei et al. (2009) categorized deterministic forecasting methods into
four types, each with different characteristics, whereas Foley et al.
(2012) presented an overview of the implemented benchmark
techniques and uncertainty analysis. Soman et al. (2010)
classified deterministic forecasting methods with time scale
horizons, whereas Wang X. et al. (2012) presented further
reviews of power forecasting models. Jung and Broadwater
(2014) reviewed the forecasting accuracy of the models based on
the variable factors, whereas Zhang et al. (2014) reviewed overall
probabilistic forecasting models and presented their possible
evaluations. Similarly, Wu et al. (2016) presented fundamental
concepts of probabilistic methodologies, whereas Yan et al.
(2015) focused on the principles and features of wind power

forecasting uncertainty analysis PDFs, such as Gaussian, Raleigh,
and Rician distributions, which are widely used distributions of the
wind speed characteristic, except in cases where parameters such as
shape and scale factors in Weibull distribution are unreasonable or
when specific distributions cannot be applied. On the other hand,
there are cases where the predictive error distribution varies
depending on the time scale, such as very short-term, short-term,
mid-term, and long-term scales (Hodge and Milligan, 2011). Pinson
(2012) and Tastu et al. (2014) proposed a modified generalized
normal distribution function of the wind regime. Bofinger et al.
(2002) argued that wind power output should not be considered a
single variable of the Gaussian distribution, but rather it should be
considered as a double-bound variable. Zhang et al. (2013) used a
hybrid model consisting of versatile probability distribution for
economic power dispatch. Figure 1 displays different
classifications and categories of methods and technologies
(Bazionis and Georgilakis, 2021) that have been applied and
implemented to improve wind power forecasting and reduce any
error estimations. Therefore, it is important to consider the
advantages and disadvantages of each method and where to use it.

It can be noted from Figure 1 (Bazionis and Georgilakis, 2021)
that there exist many related and interconnected methods for solving
forecasting problems, but they are mainly categorized into
deterministic and probabilistic approaches. Probabilistic forecasting
is important not only for energy market operation but also in decision
making in power systems for proper power supply.

Spatial–temporal forecasting is recently employed as an
interaction between wind parks (Bofinger et al., 2002; Tastu
et al., 2014), which focuses on increasing the accuracy of
predictions by sharing information from neighboring wind farms
as important predictor indicators and tools. Machine learning, deep
learning, and artificial intelligence techniques are all being
implemented too, which prove to be important future
methodologies (Tatsu et al., 2011; Zhang and Wang, 2018). One
aspect that has been focused on is ramp events, which pose a threat
to power systems as wind power penetrates the global power system
more (Cui et al., 2017; Taylor, 2017) due to their dependency on
factors such as weather conditions, different time scales, input data
accuracy, and multiple nearby locations.

FIGURE 1
Structure of the types of methods used for wind power forecasting (Bazionis and Georgilakis, 2021).
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Overall, this approach has shown promising results in
improving the accuracy of wind speed forecasting and reducing
the associated uncertainty. It has the potential to enhance the
performance of wind energy systems, increase energy production,
and reduce costs. This work demonstrates how to use a procedural
algorithm using measured wind speed data to forecast extracted
energy by predicting the shape and scale factors of the Weibull PDF
of wind characteristics at the site. As forecasting cannot be predicted
accurately, an algorithmized scheme is intended to implement four
different methods for future prediction of the wind speed and to
estimate any error of each method using four different estimators, as
well as a joint probability evaluator of both shape and scale factors to
determine variations in the extracted energy forecast.

2 Procedural algorithm

The mean long-term fluctuation of the wind speed is estimated
to be within 10%, whereas the short-term fluctuation over the first
4 months of the logged period is more than 20%. The wind direction
changes seasonally from southeastern in summer to northwestern in

winter. The site wind speed pattern is largely Weibull, with a mean
wind speed of around 4 mph. In this work, a combination of
deterministic and probabilistic methods is implemented to secure
accurate forecasting. The first step of this work is to collect annual
wind speed data using a logger. Table 1 lists site data at Fujairah,
located NE of the Emirates, on Oman’s gulf coastline.

The annual mean wind speed and direction are measured every
10 s with the wind speed sensor located at 10 m above ground level.
Data are logged and recorded together with other meteorological
parameters, such as temperature, pressure, humidity, and solar, on
the SD card. Figure 2 shows the annual wind speed measured every
10 s, but due to the calm nature of wind speed, signal data were
averaged over a day. Hence, less occasionally, sporadic gusts that are
blown a few times a year, each lasting for a couple of hours, are
eliminated and can be considered noise. It can be noted that wind
speed is maximum during the November–March period with
maximum fluctuations, whereas much calmer periods are
recorded during summer. In general, the site is affected
dominantly by western winds in winter and eastern winds in
summer.

The first 11 months starting on 20 February 2020, as day 1, are
used for the different methods which are applied for forecasting
future wind speed, taken to be month 12, as a reference for
comparing the different methods used.

The fluctuating nature of the site wind is highly random and
difficult to predict in time and spatial domains, yet by focusing onwindy
periods, a comparative study is focused on the inherent nature of wind
speed and direction. The average annual wind speed is 4.0726 mph,
with a maximum speed of 14.8175 mph during this confined period. It
can be noticed that the wind speed is concentrated at around 2–5 mph,
whereas the wind direction is mostly southern to be in the range of
18°C–21°C, with a spike at around 300°, which is NW in direction. The
annual statistics of wind speed measurements are shown in Figure 3
with both a histogram and cumulative histogram.

Figure 4 demonstrates the procedures that are carried out on
measured data to predict the characteristics of the wind speed
regime by determining the scale and shape factors of the wind
speed Weibull PDF.

TABLE 1 Wind Site Characteristics at the Fujairah site.

Parameter Value

Latitude (deg N) 25,007′N

Longitude 56,018′E

Mean wind speed at 10 m 4.072664 mph

Mean wind direction 182.46510

Average temperature 280°C

Mean pressure 900–1100 m bar

Relative humidity 50%–100%

Air density 1.188 kg/m3

Terrain Flat land

Obstacles Hills

Surface roughness class 0.5 Sa

FIGURE 2
Wind speed measurements over a period of 1 year of data. The
wind speed is in mph.

FIGURE 3
Wind speed histogram and cumulative histogram with most
variations occurring in the beginning. (MATLAB capture).
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As shown, four differentmethods are used to determine the average
of the Weibull shape parameter K and Weibull scale parameter C:
monthly average, moving forward average, moving backward average,
and theMarkov series. In addition, four different estimators are used to
check for errors in the methods: maximum likelihood estimation
(MLE), maximum A posteriori (MAP), minimum mean square
error (MMSE), and linear minimum mean square error (LMMSE).
Finally, a procedure is implemented to determine the joint Gaussian
probability of K and C and variations in their nominal values. It is to
declare here that the abovementioned raw wind speed data are
duplicated from a previous research work by the author and used
as a base foundation for this work here.

Table 2 summarizes the assessment of wind speed residuals,
using FFT and wavelet decomposition functions in MATLAB, in
which the average values of the synthesized and original signals are
found to be equal with the normalized error between them at level 1,
found to be 4.9175e-14. The synthesized signal is reconstructed from
the decompositions of the original signal, according to wavelet type
name and levels.

2.1 Prediction of K and C parameters

Prediction of Weibull PDF factors K and C is determined by
invoking several MATLAB functions, such as wblfit (), wblrnd (),
wblstat (), and wblplot (),, on the logged data that have been
measured over a 1-year period.

2.2 Monthly average

Monthly averages of data are used to find K and C values as
depicted in Table 3, in which the first 11 months are used for
prediction and month 12 is for checking the prediction. This is
plotted in Figure 5 for parameters K and C, respectively, together
with the trend curves according to 2nd-order polynomials relating K
and C with the number of months m, and R is the square root error,
which is displayed in the plots as well.

It is seen that the forecast for the 12thmonth is C = 3.95, whereas
it is measured to be 4.0772. The error is negligible.

FIGURE 4
Procedural algorithm of methods used in this work.
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For theK constant, it is forecasted to be 2.4, whereas it is measured
to be 1.6639. The error is large and not in line with our expectations
due to the abnormal measured value of K in the 12th month, which is
not in line with all previous measurements in the first 11 months.
From the graph, a value in the range of 2–3 is more appropriate.

2.3 Forward-moving monthly average

In this method, the accumulated averages of the forward-moving
months are used for the forecasting of K and C values for the 12th
month, to be C = 4.3 and K = 2.3, whereas their values are 4.0772 and
1.6639, respectively. Asmentioned, the last measured value of K is not
consistent due to the probable sporadic nature of the measured value.

Table 4 depicts the monthly measured values of K and C over the first
11 months, with Figure 6 showing the variations of K and C, together
with their trends according to 2nd-order polynomials. It can be noted
that in this method, both K and C are nearly constant C, and their
expectations are within measured values.

2.4 Backward-moving monthly average

Similarly, the values of K and C for the first 11 months are listed
in Table 5, with their forecasted values for the 12th month to be C =

TABLE 2 Wind speed residual assessment.

Parameter Value

Mean 9.531 e−05

Median −0.1781

Mode −0.2372

Maximum 5.77

Minimum −3.190

Range 8.966

Standard deviation 1.287

Median absolute deviation 0.6037

Mean absolute deviation 0.912

L1 norm 334.7

L2 norm 24.63

Maximum norm 5.77

TABLE 3 Wind speed residual assessment.

Month Period C K

1 20/2/20–20/3 5.5906 1.7672

2 20/3–20/4 5.5287 2.1135

3 20/4–20/5 5.3799 2.8555

4 20/5–20/6 4.4156 3.7129

5 20/6–20/7 4.4228 4.5645

6 20/7–20/8 4.2204 5.0579

7 20/8–20/9 4.0477 3.3730

8 20/9–20/10 3.1992 7.3857

9 20/10–20/11 3.5303 3.4115

10 20/11–20/12 4.5589 3.5535

11 20/12–20/1 5.1210 3.5978

12 20/1/21–20/2 4.0772 1.6639

FIGURE 5
Weibull factors K and C evaluated by monthly averages.

TABLE 4 Wind speed residual assessment.

Month Period C K

1 20/2/20–20/2/21 4.5908 2.3547

2 20/3–20/2/21 4.4845 2.5665

3 20/4–20/2/21 4.3668 2.7904

4 20/5–20/2/21 4.2449 2.8601

5 20/6–20/2/21 4.2231 2.7891

6 20/7–20/2/21 4.1857 2.6832

7 20/8–20/2/21 4.1595 2.5457

8 20/9–20/2/21 4.1707 2.4542

9 20/10–20/2/21 4.3608 2.4002

10 20/11–20/2/21 4.6369 2.3853

11 20/12–20/2/21 4.6380 2.1451

12 20/1/21–20/2/21 4.0772 1.6639
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4.6 and K = 2.4, compared with their measured values for the first
11 months to be 4.5908 and K = 2.3547. Figure 7 displays the
variations of both K and C, together with their trends based on the
2nd-order polynomials. It can be noticed that the error is negligible
between the forecasted and measured values, and they vary almost
linearly with the months.

2.5 Markov series

For the value of factor C of the Weibull PDF, a Markov series
is selected with states {3 4 5 6}, which corresponds to percentage
probabilities of {0.16 0.22 0.28 0.33}, obtained by rounding the
values in Table 3 and then calculating probability percentages.
Hence, the following transition probability matrix TM is
formed:

TM �
0.0 1.0 0.0 0.0
0.25
0.0
0.0

0.0
0.5
0.0

0.75
0.5
0.5

0.0
0.0
0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
and the next states are evaluated to be {0.055 0.3 0.47 0.165}.
Therefore, the maximum probability is estimated to be 0.47,
corresponding to a value of factor C equal to 5, with the nominal
expected total value found to be 4.715 compared with 4.0772. A
similar Markov series for the K value is formed with states {2 3 4 5 7}
corresponding to percentage probabilities of {0.1 0.14 0.2 0.24 0.3}.
Hence, the transition probability matrix is

TM �

0.5 0.5 0.0 0.0 0.0
0.0 0.5 0.25 0.0 0.25
0.0
0.0
0.0

0.0
0.5
1.0

0.0
0.0
0.0

1.0
0.5
0.0

0.0
0.0
0.0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

with forecasted states {0.05 0.54 0.035 0.32 0.07}, and the maximum
probability is 0.54, corresponding to the nominal value of 3,
compared with the expected total value of 3.9. It can be noted
that forecasting errors are minimum.

3 Estimation errors of the forecasted K
and C values

MAP, MLE, MMSE, and LMMSE (Miller and Childers, 2012)
will be used here to estimate errors by selecting the most probable
value for a given observation. Following the previous four
measurements, Table 6 displays the four forecasted values of K
and C. Table 7 displays the estimated errors in K and C using the
four aforementioned methods.

The observations and detection of K and C values give a correct
value plus an error, which is needed to provide their best-estimated
values. In this case, it is assumed that for series X = [K1, K2, K3, K4] or
[C1, C2, C3, C4], there exists value Y to be the maximum likelihood
(ML) of either K or C. As previously mentioned in the monthly
averages method, the value of measured K is not likely valid, whereas
a value between 2 and 3 is more in line within expectation.

FIGURE 6
Weibull factors K (displayed as a dashed line) and C (displayed as a
solid line) with their trends (dotted), evaluated using forward-moving
monthly averages.

TABLE 5 Wind speed residual assessment.

Month Period C K

1 20/2/20–20/3 5.5906 1.7672

2 20/2/20–20/4 5.6189 1.9340

3 20/2/20–20/5 5.5665 2.0973

4 20/2/20–20/6 5.3063 2.1878

5 20/2/20–20/7 5.1475 2.2709

6 20/2/20–20/8 5.0140 2.3418

7 20/2/20–20/9 4.8842 2.3663

8 20/2/20–20/10 4.7042 2.3528

9 20/2/20–20/11 4.5785 2.3502

10 20/2/20–20/12 4.5752 2.3967

11 20/2/20–20/1/2021 4.6317 2.4492

12 20/2/20–20/2/2021 4.5908 2.3547

FIGURE 7
Weibull factors K and C evaluated with backward-moving
monthly averages.
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3.1.Maximum likelihood

In general, for any length (N) of observations (X), it is required
to maximize the conditional PDF of X with Y; fX|Y (x|y). For the
MLE, it is assumed that each X is an independent Gaussian random
variable with mean Y and variance σ2e , and hence, it is possible to
determine fX|Y(x, y) as (Miller and Childers, 2012)

fX|Y x, y( ) � 1

2πσ2
e( ) N

2
exp − 1

2σ2e
∑N

i�1 xi − Y( )2{ }. (1)

For the maximum likelihood estimation, Y is modeled to be of a
uniform distribution of constant value; i.e., fY(y) does not depend
on y since it is constant over all allowable values of y values, and
hence, it is needed to maximize only fX|Y(x|y). That is, there is no
prior knowledge about the distribution of Y. Differentiating with
respect to y and setting the value equal to zero requires that

∑N

i�1(xi − Y) � 0, and hence, the MLE estimator is given by

YML � 1
N
∑N

i�1xi, (2)

which is merely the average value; that is, KML = 2.8 and CML = 3.4.

fY|X y, x( ) � fX|Y x
∣∣∣∣y( )fY y( )

fX x( ) . (3)

3.2 Maximum A posteriori

It is required to find Y that maximizes fY|X(y, x) (Y and X are
jointly Gaussian variables of a normal PDF), which can be expressed as

fX|Y x, y( )fY y( ) � 1

2πσ2e( ) N
2
exp − 1

2σ2e
∑N

i�1 xi( − Y)2{ }
1����
2πσ2t
√ exp − Y − μt( )2

2σ2t
( ). (4)

The denominator of (3) is not a function of Y, so it is needed
only to maximize the numerator.Differentiating with respect to Y

and setting the result equal to zero for maximum value yields the
MAP estimator.

MAP �
1
N∑N

i�1Xi + μkσ
2
e

Nσ2
k

1 + σ2e
Nσ2

k

. (5)

It is of note that 1
N∑N

i�1Xi is the average of all observations.
Therefore, the MAP estimator can be considered equal to the
average, skewed by prior knowledge of wind speed PDF. In our
example, the number of methods used to predict wind speed, N = 4,
and μK is the mean of measured values, K = 2.8. Assuming a
Gaussian variance of K, σ2K, to be 20% of the K range = 0.15 and
for the Gaussian error, σ2e , to be 10% of the nominal value = 0.28, the
result obtained is as follows:

KMAP � 2.8 + 2.8 0.28( )
4 0.15( )

1 + 0.28
4 0.15( )

� 2.808.

Similarly for C, N = 4, μC = 3.4, σ2c � 1.4, and σ2e � 0.34.

CMAP � 3.4 + 3.4 0.34( )
4 1.4( )

1 + 0.34
4 1.4( )

� 2.244.

3.3 Minimum mean square error

A third estimation to be used is the MMSE to minimize the
square mean error E [(yi-ym)^2], where operator E [] is the mean
operator, yi is the true value, and ym is the estimated value. In our
case, the estimated values of K and C are the averages of the four
implemented methods as 2.8 and 3.4, respectively.

3.4 Linear minimum mean square error

This estimation is similar to MMSE but with E[(yi − ym)2]
replaced by E[( a1y1 + a2y2 + a3y3 + a4y4{ } − ym)2], which leads to

TABLE 6 Four forecasted values of K and C.

Measured values Monthly average Forward-moving average Backward-moving average Markov series

K (1.6639) 2.6 2.3 2.4 3.9

C 4.0772 3.95 4.3 4.6 4.72

The error in the K value (shown in bracket) is performed according to a more likely measured value of K to be in the range of 2–3.

TABLE 7 Four forecasted values of K and C.

X Error Error Error Error

(y1 − ym)2 (y2 − ym)2 (y3 − ym)2 (y4 − ym)2

K 2.8 0.04 0.25 0.16 (1.96)

C 3.4 0.3025 0.81 1.44 1.7424

The table shows K in the first row and C in the second. X is the estimated value. The error in the K value (shown in bracket) is performed according to a more likely measured value of K to be in

the range of 2–3. It can be deduced that the values of K and C are indeed the average values of 2.6 and 3.95, respectively.
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yLMMSE �
1
N∑N

i�1yi

1 + σ2e
σ2t +μ2t( )N

. (6)

Substituting the same values used in MAP, i.e., N = 4, μK is the
mean of measured values of K = 2.8. The Gaussian variance of K, σ2k,
is assumed to be 20% of the K range = 0.15 (ignoring the last value),
and the Gaussian error, σ2e , is assumed to be 10% of the nominal
value = 0.28. Hence,

KLMMSE �
1
N∑N

i�1Ki � 2.8

1 + 0.282

0.152+2.82( )4
� 2.8.

Similarly for C, N = 4, μC = 3.4, σ2c � 1.4, and σ2e � 0.34.

CLMMSE �
1
N∑N

i�1Ci � 3.4

1 + 0.342

1.42+3.42( )4
� 3.4.

It can be deduced that the estimated values of K and C using the
four different types of estimation are indeed within the range of their
evaluations by the four implemented methods.

4 Prediction of the joint probability of K
and C

The probability of wind speed occurrence P (as a percentage of
hours/year per mph) is normally expressed by the Weibull
distribution function (Hodge, 2010) as

P v, k, c( ) � K

C

v

C
( )K−1

exp − v /c( )K[ ]. (7)

As the logged wind speed resembles a sharp Weibull pattern, a
value of K is chosen. The scale parameter C can be estimated by
integrating (7) over the whole range of wind speeds.

Vmean � ∫
∞

0

v
K

C

v

C
( )K−1 exp − v

C
( )K[ ]dv. (8)

It can be assumed that both K and C are defined each with a
value plus an error that is modeled as a Gaussian random
variable with zero mean and with a defined variance, and
hence, they themselves are Gaussian variables with a PDF
equal to

fX x( ) � 1����
2πσ2

√ exp − x −m( )2
2σ2

( ). (9)

Substituting values related to K and C from previous
interpretations, with mean values of 2.6 and 3.95 and variances of
approximately σk � 0.2 and σc � 0.7, respectively, yields

fK k( ) � 1�������
2π 0.2( )2
√ exp − K − 1.2( )2

2 0.2( )2( ) � 2e−12.5 K−1.2( )2 , (10)

fC c( ) � 1�������
2π 0.7( )2
√ exp − C − 2.2( )2

2 0.7( )2( ) � 0.57e− C−2.2( )2 . (11)

On the other hand, the joint probability of N independent the
PDF’s fXn for X random variables is expressed as

fX x( ) �∏N

n�1fXn xn( ). (12)

Hence, for random variables K and C, it yields

fK,C k, c( ) � fK k( )fC c( ). (13)
K and C are correlated with some correlation factor ρ; hence,

(13) is modified with an assumed value of ρkc = 0.5 into

fK,C k, c( ) � 1

2πσkσc
������
1 − ρ2kc

√ exp

K−μk
σk

( )2 − 2ρ K−μk
σk

( ) C−μc
σc
( ) + C−μc

σc
( )2

2 1 − ρ2( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
(14)

and substituting the mean and variance values of K and C leads
tofK,C(k, c) � .069 e− 0.96(K−.2)2−0.252(K−.2)(C−.7)+0.302(C−.7)2{ }. It is of
note that

fK,C k, c( ) � fK|C k|c( )fC c( ) � fC|K c|k( )fK k( ). (15)
It would be useful here to check variations in the probability of

wind speed in the response of any variation in C according to its
Gaussian PDF (Miller and Childers, 2012). Hence,
fV(v) � fV|C(v|c)fC(c), which can be reduced to

fV v( ) � K

C

v

C
( )K−1 e − v/

C( )K[ ]
0.57e− C−2.2( )2{ }. (16)

Figure 8 depicts probabilities of wind speed at different values of scale
factor C, when it is varied by ± 20% around its Gaussian PDF nominal
mean with a range of values of 2–4, keeping the shape factor K constant,
since variations of scale factor are more dominant than the shape factor
(Majid, 2021). When the variation of the Weibull shape factor K is
inconsistent, then the joint probability depicted in (14) should be used,
since determining both factors as accurately as possible is important to
forecast wind speed probability and, hence, the extracted wind energy.

5 Conclusion

An algorithm was proposed to estimate the scale and shape
parameters of the Weibull probability density function (PDF) that

FIGURE 8
Probability of wind speed due to variations in the scale factors of
the wind speed Weibull PDF.
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characterizes the wind regime at the Fujairah site. This was performed by
averaging the results from four simulation methods. To evaluate the
accuracy of the analysis, different error estimation techniques, such asML,
MAP, MMSE, and LMMSE, were employed. The accuracy of the analysis
was verified using the Markov series method. To predict the effects of
variations in the Weibull PDF scale factor on wind speed forecasting and
wind energy production, a detailed joint probability analysis was
conducted. It was observed that a 20% variation in the Weibull PDF
scale factor has a significant impact on wind speed forecasting. Therefore,
this factor was identified as the major factor to be varied.
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