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A smart grid is a new type of power system based on modern information
technology, which utilises advanced communication, computing and control
technologies and employs advanced sensors, measurement, communication
and control devices that can monitor the status and operation of various devices
in the power system in real-time and optimise the dispatch of the power
system through intelligent algorithms to achieve efficient operation of the power
system. However, due to its complexity and uncertainty, how to effectively
perform real-time prediction is an important challenge. This paper proposes
a smart grid real-time prediction model based on the attention mechanism
of convolutional neural network (CNN) combined with bi-directional long and
short-term memory BiLSTM.The model has stronger spatiotemporal feature
extraction capability, more accurate prediction capability and better adaptability
than ARMA and decision trees. The traditional prediction models ARMA and
decision tree can often only use simple statistical methods for prediction, which
cannot meet the requirements of high accuracy and efficiency of real-time
load prediction, so the CNN-BiLSTM model based on Bayesian optimisation
has the following advantages and is more suitable for smart grid real-time
load prediction compared with ARMA and decision tree. CNN is a hierarchical
neural network structure containing several layers such as a convolutional layer,
pooling layer and fully connected layer. The convolutional layer is mainly used
for extracting features from data such as images, the pooling layer is used for the
dimensionality reduction of features, and the fully connected layer is used for
classification and recognition. The core of CNN is the convolutional operation,
a locally weighted summation operation on the input data that can effectively
extract features from the data. In the convolution operation, different features
can be extracted by setting different convolution kernels to achieve feature
extraction and classification of data. BiLSTM can capture semantic dependencies
in both directions. The BiLSTM structure consists of two LSTM layers that
process the input sequence in the forward and backward directions to combine
the information in both directions to obtain more comprehensive contextual
information. BiLSTM can access both the front and back inputs at each time
step to obtain more accurate prediction results. It effectively prevents gradient
explosion and gradient disappearance while better capturing longer-distance
dependencies. The CNN-BiLSTM extracts features of the data and then optimises
them by Bayes. By collecting real-time data from the power system, including
power, load, weather and other factors, our model uses the features of CNN-
BiLSTM to deeply learn real-time load data from smart grids and extract key
features to achieve future load prediction. Meanwhile, the Bayesian optimisation
algorithm based on the model can optimise the model’s hyperparameters, thus
improving themodel’s prediction performance. Themodel can achieve accurate
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prediction of a real-time power system load, provide an important reference for
the dispatch and operation of the power system, and help optimise the operation
efficiency and energy utilisation efficiency of the power system.
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CNN, BiLSTM, bayesian optimization, smart grid, load forecast

1 Introduction

Smart grid real-time load forecasting refers tomachine learning,
data mining, statistics, and other methods to forecast the power
load in the grid system in real time (Aravind et al., 2019). This
can help grid operators to better dispatch power resources and
improve the reliability and efficiency of the grid (Luo et al., 2022).
The main challenge of real-time electric load forecasting for smart
grids is the diversity and complexity of data. The load data in the
grid system involves multiple dimensions, such as time, location,
and load type, as well as various noises and anomalies. Therefore,
suitable data pre-processing and feature extraction methods are
needed to improve the accuracy and reliability of the prediction
(Liu et al., 2013).Therefore, our research is motivated by the fact
that the power system requires more accurate and real-time load
forecasting with the development of smart grids. Traditional load
forecasting methods often fail to meet these requirements, so a
more accurate and real-time load forecasting method needs to be
investigated. Deep learning models can handle large amounts of
data. They can automatically learn features and patterns from the
data, so they are widely used for load forecasting in power systems.
The hyperparametric algorithm based on Bayesian optimisation
can further improve the prediction performance of deep learning
models, so it has been introduced into power system load
forecasting. This study aims to explore an efficient and accurate
load forecastingmethod to support smart grids’ reliability, efficiency
and security. Smart grid real-time load forecasting can be applied
in the power market, power dispatch, and energy trading, and
it has a wide range of application prospects (Xiang et al., 2019).
Common methods used to predict real-time load in smart grids are
traditional time-series modeling, machine learning, and recurrent
neural network methods.

Traditional time seriesmodelingmethod: Traditional time series
modeling mainly includes ARMA and ARIMA, which are simple
models requiring only endogenous variables without the help of
other exogenous variables, but can only capture linear relationships
but not non-linear relationships in essence because they need stable
time series data or are stable after differencing (He and Ye, 2022).
Based on the characteristics of smart grid real-time load, it is difficult
for the traditional time series modeling method to make accurate
forecasts, and it is difficult to ensure the long time validity of the
model in the environment of the constantly changing real-time load
of the smart grid because the traditional time series forecasting
model is not adjusted once it is trained (Li et al., 2023).

Machine learning method: This model uses machine learning
algorithms, such as support vector machine (SVM) (Cabán et al.,
2022), Bayesian Optimization (BO) (Wu et al., 2022), logistic
regression, etc. Predict changes in financial time series data by
processing and testing data sets. The advantage of this model is that

it is easy to understand and fast enough to handle the interaction
of non-linear features (Estrella et al., 2019). Still, the disadvantage
is that the smart grid real-time load is affected by many different
factors, so the performance of machine learning methods is not
sufficient to meet people’s need (Chen B.-R. et al., 2022).

Recurrent neural network method: This model uses deep
learning algorithms such as recurrent gating units (GRU) (Li et al.,
2018), deep recurrent neural networks (RNN) (Papadaki et al.,
2022), generative adversarial networks (GAN) (Song et al., 2020),
etc., to learn from large amounts of data by automatically extracting
data. The advantages of this model are powerful learning ability and
the more significant the amount of data, the better the performance
and portability. However, the disadvantages are high hardware
requirements and poor portability, too dependent on data, and not
very interpretable.

Based on the advantages and disadvantages of the above
models, this paper proposes a prediction model combining an
attention-basedmechanismof convolutional neural network (CNN)
(Niu et al., 2022)and bi-directional-long short-termmemory neural
network (BiLSTM) (Song et al., 2021). The output results are then
passed through the BiLSTM network, which can be more accurate
than the LSTM model. Finally, they are subjected to Bayesian
optimization to achieve adaptive optimization of smart grid real-
time load data by adjusting the parameter values in real time with
Bayes. Finally, the CNN-BiLSTM-BOmodel is composed.Themain
holdings of this paper include Model design: 1. based on CNN-
BiLSTM structure, a deep learning model for power system load
forecasting is designed. The model can extract the spatial features
of load data using CNN and the time series features of load data
using BiLSTM to predict future loads accurately. 2. Hyperparameter
optimisation: Bayesian optimisation algorithm is used to optimise
the hyperparameters of the model to improve the prediction
performance of the model. The Bayesian optimisation algorithm
can find the optimal combination of hyperparameters quickly by
adaptively adjusting the parameter search space to improve the
generalisation ability and stability of the model. 3. Real-time load
forecasting: The model is applied to real-time load forecasting,
and the forecasting performance of the model is verified by actual
data. Real-time load prediction is an important part of smart grid
dispatching and operation. Accurately predicting load change trends
can improve the efficiency and security of the power systems. The
contribution points of this paper are as follows.

• The ability to handle non-linear relationships that cannot be
taken by traditional timing modeling and its applicability is
broader than that of conventional timing modeling.
• It is more capable of learning and interpretable than machine
learning models such as decision trees and support vector
machines.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1193662
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1193662

• Compared with deep learning models such as
FNN(Zhang et al., 2023), GAN, and GRU models, using
BiLSTM models instead of RNN models can process
sequence data more efficiently, preserve long-term data more
permanently, and addBayesian optimizationmodels to improve
its prediction accuracy further.

The rest of the paper presents recent related work in Section II.
Section III offers our proposed methods: overview, convolutional
neural network (CNN); bidirectional-long short-term memory
neural network (bidirectional-LSTM, BiLSTM); Bayesian
optimization; The fourth part presents the experimental part,
including practical details and comparative experiments. The fifth
part is the summary.

2 Related work

2.1 ARMA model

ARMA (Chen et al., 2022a) model is an important model for
studying time series, which is based on a mixture of autoregressive
model (AR) (Xu et al., 2020) and moving average model (MA
(Zhang et al., 2019)), and is often used in market research for
forecasting market size and long-term tracking studies. It differs
the non-stationary data by judging whether the time series data is
smooth or not, then judges the model suitable for the time series
as well as performs model sizing, and finally performs parameter
estimation to generate themodel and uses themodel for forecasting.

The advantage of ARMAmodel is that it can be applied to many
time series, and it can be used to evaluate the goodness of the model
in the diagnosis of the model, which is very useful for forecasting.
However, when the ARMA model is used to forecast the data, the
prediction error becomes larger and largerwith the extension of time
compared to the short-term prediction results.

2.2 Decision tree model

A decision Tree (Ning et al., 2020) is a machine learning model
for solving classification and prediction problems and belongs to a
supervised learning algorithm.The decision tree starts from the root
node, analyzes each feature of the training data, selects an optimal
solution, and then splits the training data set into subsets so that
the training data set has the best classification under the current
conditions and if it does, then constructs leaf nodes, and if it is still
not well classified, then continues to split it, and so on recursively
until all training data sets are correctly classified, or there are no
convenient features. After the above operation, the decision treemay
have a good classification ability for the training dataset. Still, it
may not have the same effect on the unknown dataset. To avoid the
overfitting phenomenon, the generated tree needs to be pruned to
simplify the tree and achieve better generalization ability.

Decision tree models are risk-based decision-making methods,
so in the context that decision trees are nowadays more mature,
they are also used in various fields such as artificial intelligence,
medical diagnosis, planning theory, cognitive science, engineering,
data mining, etc.

2.3 GRU model

GRU (Gate Recurrent Unit) is a Recurrent Neural Network
(RNN) type. Like LSTM (Long-Short Term Memory), GRU is
a variant of LSTM, which has a more straightforward network
structure than LSTM and is more effective than LSTM. In LSTM,
three gate functions are introduced: input gate, fo, getting gate, and
output gate. The GRUmodel has one less “gate” than the LSTM, but
the functions are comparable and more practical.

GRU is widely used in speech processing, natural language
processing, and other fields such as language modeling, machine
translation, and text generation because they are suitable for
processing sequential data (Ning et al., 2023).

3 Methodology

3.1 Overview of our network

The CNN-BiLSTM model based on Bayesian optimization
is proposed in this paper to predict smart grid real-time load
data, which can effectively prevent the problems of gradient
explosion and gradient disappearance. The model combines the
advantages of convolutional neural network (CNN) and bi-
directional long and short-term memory network (BiLSTM) and
uses a Bayesian optimisation algorithm to automatically tune the
hyperparameters to improve the prediction performance of the
model. We will briefly describe each model and its relationship;
CNN: CNN is a deep learning model commonly used in image
processing and computer vision. It can extract different levels of
feature representations from the original image through multi-
layer convolution and pooling operations, thus enabling task the
classification and recognition of images. In theCNN-BiLSTMmodel
based on Bayesian optimisation, CNN is mainly used to extract
the spatiotemporal features of the load data. BiLSTM: BiLSTM is
a deep learning model commonly used in sequence modelling and
natural language processing. It can capture long-term dependencies
in time-series data and achieve accurate prediction of future data by
combining forward and reverse LSTM units. In the CNN-BiLSTM
model based on Bayesian optimisation, the BiLSTM is mainly
used to model spatiotemporal features and achieve prediction
of real-time load. Bayesian optimization: Bayesian optimization
is an optimisation algorithm which describes the uncertainty of
the objective function by building a Gaussian process model and
updating the hyperparameters of the model according to Bayes’
theorem to achieve the optimisation of the objective function.
In the CNN-BiLSTM model based on Bayesian optimisation, the
Bayesian optimisation algorithm is mainly used to adjust the
model’s hyperparameters, including the learning rate and batch size,
improving the prediction performance and generalisation ability
of the model. Interaction relationship of the three: the CNN-
BiLSTM model based on Bayesian optimisation achieves efficient
and accurate modelling for real-time load forecasting of the smart
grids by combining the advantages of CNN and BiLSTM and
using Bayesian optimisation algorithm to tune the hyperparameters
automatically. CNN is mainly used to extract the spatiotemporal
features of load data. Bilstm is mainly used.The CNN is mainly used
to extract the spatiotemporal features of load data, the BiLSTM is
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FIGURE 1
Schematic diagram of real-time charge model of smart grid based on
CNN-BiLSTM under Bayesian optimization.

mainly used to model the spatiotemporal features and realise the
prediction of future load, and the Bayesian optimisation algorithm
is used to automatically adjust the hyperparameters of the model
to improve the accuracy and practicality of the prediction model.
The flow chart of the model is shown in Figure 1. First, the smart
grid real-time load data is input, and the data is preprocessed and
normalized in the data input layer. Then the dataset is put into
the CNN unit for feature extraction. To better extract the dataset’s
features, the convolutional layer with a one-dimensional structure
is chosen here to reduce the dataset’s dimensionality. The feature
sequence is finally output after pooling, sampling, merging, and
reorganizing by the fully connected layer. After that, the feature data
are entered into the BiLSTM layer for smart grid real-time load data
feature learning, and then Bayesian optimization is performed to
obtain the optimal parameters of themodel, improve the accuracy of
prediction, optimize the CNN-BiLSTM structure, and finally output
the prediction results.

The CNN-BiLSTM-BO model includes three parts: CNN
module, BiLSTM module, and Bayesian optimization. The three
parts complete the prediction of smart grid real-time load data
through their advantages, and the model’s overall structure is shown
in Figure 2.

3.2 CNN model

Convolutional Neural Network (CNN) is a deep feed-forward
neural network with local connectivity and weight sharing. As one
of the deep learning algorithms, it can capture the local features
and spatial structure of images, so CNN is widely used in image
classification, target detection, etc. It is one of the most commonly
used models at present (Zhibin et al., 2019). The primary role of
the convolution layer is feature extraction. The convolution layer
convolves the input image with convolution kernels, and multiple
convolution kernels can be convolved separately to extract more
features. The feature map obtained by convolution is then pooled in
the pooling layer, which can significantly reduce the amount of data
to discard useless information and consolidate operations without

reducing the most significant features.The CNN can be divided into
one-dimensional CNN(Cai et al., 2021) andmultidimensional CNN
according to the dimensionality. One-dimensional CNN has a more
vital feature extraction ability in time series data processing, so this
paper uses one-dimensional CNN to process smart grid real-time
load data. Its model structure diagram is shown in Figure 3.

Considering the complexity of financial time-series data, we
introduce a one-dimensional CNN based on its more robust feature
extraction capability so that it can improve the performance of
the overall prediction model. The structure of the one-dimensional
CNN is shown in Figure 3, where the data are put into the
convolution layer, where the convolution kernel ϕ acts on the input
data Xa ∈ Yl×f at the ath time step to extract the feature matrixPa =
{Pa,1,Pa,2,…,Pa,l−1} ∈ Yt×d l denotes the length of the time step; f
denotes the feature dimension; t denotes the length of the output
feature; and d denotes the dimension of the output feature, whose
size is set by the filter.

Assuming that the inputXa ∈ YB×lin× f in , and output isZa ∈
YB×lout× fout , then we can obtain the mathematical expression of the
1D convolution layer as follows

Z [i, j, :] = β [j] +
lin−1

∑
k=0

ϕ [j,k, :] ⋆X [i,k, :] (1)

In Eq. 1, the symbol ⋆ is the mutual correlation operation, B
is the size of a training data set, lin and lout are the numbers of
channels of input data and output data, respectively, fin and fout are
the lengths of input data and output data, andN represents the size of
the convolution kernel thought.ϕ ∈ Ylout×lin×N is the one-dimensional
convolution kernel of the layer, β ∈ Ylout is the bias layer for this layer.

3.3 BiLSTM model

The LSTM only inputs information from the forward sequence
into the neural network prediction results, and it is difficult to
perceive the backward data content when training the model, so
it is prone to problems such as gradient inflation or gradient
disappearance when dealing with connections betweenmore distant
node links, while the BiLSTM can better retain the information
provided bymore distant nodes.The BiLSTM layer is a combination
of forward LSTM and backward LSTM. The BiLSTM model uses
sequential and inverse order calculations for each sentence to obtain
two sets of hidden layer representations. Then the final confidential
layer representation is obtained by vector stitching, which improves
the performance on more comprehensive time-series data. In the
BiLSTM structure, each LSTM cell has three gating structures,
forgetting gate, input gate, and output gate, as shown in Figure 4.

Compared with LSTM, which can only input the information of
forward sequence into the neural network for prediction, BiLSTM
contains a forward LSTM unit and a backward LSTM unit; each
LSTMunit is consistent with the structure of LSTM, and the forward
and backward units are independent of each other, and according to
the existing studies, BiLSTM is better than LSTM in the prediction
of time series data.

We can see that the computational process of the forward LSTM
structure in the BiLSTM network is similar to that of a single LSTM.
By combining the forward hidden layer state and the reverse hidden
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FIGURE 2
The overall detailed flow chart of the smart grid real-time charge model based on CNN-BiLSTM under Bayesian optimization.

FIGURE 3
Operation process of one-dimensional CNN model in real-time load forecasting of smart grid.

layer state, we can obtain the hidden layer state of the BiLSTM
network as shown in (2)

h⃗t = LSTM(ht−1,xt) ,

h⃗t = LSTM(ht+1,xt) ,

ht = αh⃗+ βh⃗t,

(2)

In (2), χt ,h⃗t, h⃗t are the input datas, the output of the forward LSTM
implicit layer and the output of the reverse LSTM implicit layer at

time t, respectively; α and β are constant coefficients, denoting the
weights of h⃗t and h⃗t.

3.4 Bayesian Optimization

Bayesian Optimization is a method that uses the information
from previously searched points to determine the next search
point for solving black-box optimization problems with low
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FIGURE 4
Calculation process of BiLSTM unit in real-time load forecasting
process of smart grid.

dimensionality. It is a model-based sequential optimization method
that can obtain a near-optimal solution to a model with little
evaluation cost (Chen Z. et al., 2022). Bayesian optimization is
commonly used in text classification, multi-category real-time
prediction, and sentiment discrimination. Meanwhile, Bayesian
optimization is alsomore widely used for sequential data prediction.
Its structure diagram is shown in Figure 5.

3.4.1 Bayesian optimization
Themodel under the optimal hyperparameter combination can

significantly improve the model’s prediction accuracy, so we need to
optimise the hyperparameters of the model. Bayesian optimization,
whose parameter optimisation function expression is shown in (3)

χ* ∈ argmaxx∈χ f (x) (3)

In (3), x is the value of the hyper value parameter to be optimized;
f(x) is the performance function.

Gaussian Process (Song et al., 2020).
The probabilistic agent model for the Bayesian optimization

process uses a Gaussian model, given a specific objective function
f, input space is x ∈ R.

Dataset D = {(x1,y1) , (x2,y2,)⋯(xn,yn)}, there are n samples,
where yi = f (xi).Then the Gaussian probability model can be
expressed as follows

f ∼ GP[μ (x) ,k(x,x′)] (4)

FIGURE 5
Flow chart of Bayesian module for optimizing CNN-BiLSTM
computing model.

μ (x) denotes the mean value function, and μ (x) = E[f(x)]. The
mean value function is usually set to 0. k(x,x′) denotes a covariance
function, for any variable x,x′ there is k(x,x′) = Cov[f(x),f (x′)].

3.4.2 Acquisition functions
The acquisition function used in this paper is GP-UCB(Gui-

xiang et al., 2018). The expression of the function is as follows

λ = argmax{μ (λ) + β1/2σ (λ)} (5)

This function finds the point that maximises the confidence
interval of the Gaussian process by taking a weighted sum of
the mean and covariance of the posterior distribution. Where
μ(λ) stands for the mean value,σ(λ) represents the covariance, β1/2

represents the weight value (Table 1).

4 Experiment

4.1 Datasets

Thispaper uses the data from ISO-NE, Elia, Singapore Electricity
Load, and NREL databases as raw data.

ISO-NE: ISO-NE is the name given to New England’s electricity
and energy sector, which manages the electricity system and market
operations in New England (Derbentsev et al., 2020). ISO-NE’s
primary responsibilities include its responsibility for producing,
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processing, and delivering electricity to end-users in the
process, retail and industrial sectors (Shen et al., 2017); ensuring
the safe, reliable, and economic operation of the electricity
system; and managing the electricity market; facilitating cross-
border electricity transactions and energy market ISO-NE’s
service area includes Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, and Vermont. ISO-NE provides
a wide range of data, including load, cost, production, and
supply.

Elia: Elia is Belgium’s electricity high-voltage transmission
grid and is responsible for managing the country’s high-
voltage transmission network to ensure the security and
stability of Belgium’s electricity supply (Peng et al., 2022).
Celia’s main responsibilities include planning, building,
operating, and maintaining Belgium’s high-voltage transmission
grid and managing the transmission network’s market
operations and electricity trading. Elia is also responsible
for interconnecting with the transmission grids of other
European countries to facilitate cross-border electricity
trading. El aims to achieve a secure and reliable sustainable
energy supply and support Belgium’s economic and social
development.

NREL: NREL (National Renewable Energy Laboratory) is
a national United States. Department of Energy laboratory
dedicated to advancing the research and development of renewable
energy and energy efficiency technologies. NREL’s mission is to
promote the development and commercialization of renewable
energy technologies through innovation and scientific and
technological breakthroughs that support United States. energy
security and environmental sustainability (Zou et al., 2022b).
NREL’s research areas cover various renewable energy technologies
such as solar, wind, biomass, and geothermal energy, energy
storage, energy system integration, building energy efficiency, and
other related areas. NREL also collaborates with other research
institutions, industry, and government on several international
collaborative projects to advance the development of renewable
energy technologies worldwide. NREL has run Laboratory
facilities and technology platforms, including a solar photovoltaic
laboratory, wind energy laboratory, bioenergy laboratory, energy
system integration center, etc., provides important support and
guarantee for the research and development of renewable energy
technologies, and also provides a large amount of data for
analysis.

The electricity load in Singapore refers to the nationwide
demand for electricity in various sectors, including industrial,
commercial, and residential. As Singapore’s economy and
population continue to grow, the electricity load is also increasing
rapidly (Zou et al., 2022a). Singapore’s electricity load is mainly
supplied by oil-fired, natural gas, and imported electric city. To
meet future electricity demand and environmental requirements,
the Singapore government is actively promoting the development
of renewable energy and energy efficiency technologies to reduce
dependence on fossil fuels and promote sustainable energy
development.

Here we use four selected data sets as the original
data and put them into the model for prediction by
calculating their maximum and minimum values and standard
deviations (Table 2).

FIGURE 6
Comparison of different models for complex data inference time.

4.2 Experimental setup and details

To demonstrate the performance of our model, we designed
several experiments to validate it. First, we compared our model
with several other models in terms of inference time for complex
data, and to prevent experimental chance, we further demonstrated
the superiority of our model by comparing the training time of the
model with other models and the performance of different models
at different levels of complexity. We also designed experiments
on its AUC and number of parameters, and finally, we compared
the computation time and accuracy of the four data sets under
different models, and we can see that the computation rate, the
number of parameters required, and the experimental results of
the CNN-BiLSTM-BO model are significantly better than those of
othermodels.Therefore, ourmodel can better predict the smart grid
real-time load data.

4.3 Experimental results and analysis

In Figure 6, it is easy to see that in the performance for complex
data, the other three models are inferior to ours regarding inference
time for the same complex data. CEEMDAN and CNN-LSTM
perform almost the same for a large amount of complex data, but
inevitably, they both take longer inference time than our model for
the same amount of complex data, and our model has faster speed.

Figure 7 compares the training time of the different models
on the data. We compare the training time with the three models.
We can see that there is almost no difference in the time required
to train SVM and BP Network for a small amount of data with
a slightly medium and large amount of data, and in the case of a
medium amount of data, SVM almost catches up with our model.
The training time of our model is shorter than the other three
experimental models for both small and large amounts of data, so it
can significantly reduce the time consumed to train the model and
enable the model to make more contributions simultaneously.

In this set of experiments (Figure 8), we use three models to
compare the performance of different levels of difficulty data8. It
is evident from the experiments that the version of each model
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FIGURE 7
Comparison of data training time under different models.

FIGURE 8
Performance at different levels of model complexity.

FIGURE 9
The number of flops required for different models.

decreases as the complexity of the data increases. Still, our model
reduces the least, so our model can cope with data of various
difficulty levels.

In this set of experiments (Figure 9), we test the computational
flops of each model. The experimental results show that the

FIGURE 10
Comparison of AUC under different models with several groups of
data.

FIGURE 11
Number of parameters required for different models.

most significant computational rollover required is the ARIMA
model. The minor computational flops required is the BP Network,
followed by our experimental model. Although our model is not
the best-performing one in this group of experiments, our model
outperformsCNN-LSTM,which proves that the performance of our
model is substantially improved after Bayesian optimization, thus
providing solid experimental results to demonstrate the feasibility
of our model.

In this set of experiments (Figure 10), we selected several
groups of panel data. By comparing the AUC of our model when
computing with the AUC of the chosen locations of panel data when
computing with the GNN model, we can verify the performance of
the AUC of different models when calculating with other panels.
All experimental results of our model after several sets of data
comparisons show that the performance of the AUC of our model
when facing panel data is more robust than GNN.

This set of experiments (Figure 11) compares the size of the
number of parameters required by different models11. After a series
of experiments, we can find that, among the selected models, GNN
operation requires the most parameters, CEEMDAN operation
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FIGURE 12
Comparison of computing time of different models.

FIGURE 13
Comparison of the accuracy of different models on the dataset.

requires slightly fewer parameters than GNN, LSTM operation
requires significantly fewer parameters, and our model is lower
than LSTM. Our model also has a very brilliant performance
regarding the number of parameters necessary for the operation;
fewer parameters can reduce the burden of the model and related
work and make the model better at calculating the data.

This is the flow chart of the Algorithm 1 of the model; firstly,
the smart grid real-time load data is input, the data is pre-processed
and normalized in the data input layer, then the data set is put
into the one-dimensional CNN unit for feature extraction, the
data set is processed for dimensionality reduction, and the feature
sequence is finally output after pooling sampling and merging and
reorganization in the fully connected layer, then the feature data is
entered into the BiLSTM layer for smart grid real-time load feature
learning, and then Bayesian optimization is performed to get the
optimal parameters of the model to improve the accuracy of the
prediction, and the final output of the forecast is superior.

In this set of experiments (Figure 12), we trained our four
selected data sets in multiple models, and it is not difficult to find
that the results of the experiments on all four data sets show that
GNN takes the longest computing time, while our model has the
shortest computing time in the face of the remaining four models,
and the time required is even close to half of that of GNN.This set of
experiments powerfully demonstrates the superiority of our model’s
computing speed and significantly reduces the time required for our
work, but also provides experimental data to prove the feasibility of
choosing our model.

In the last group of experiments (Figure 13), we used four
models to conduct experiments on the four data sets we selected to
compare the accuracy of the experiments. From the experimental

Algorithm 1. Algorithmic representation of the training process in this paper.

TABLE 1 Formula parameter meaning table.

Parameter name The meaning represented by the parameter

⋆ Themutual correlation operation

B The size of a training data set

lin The numbers of channels of input data

lout The numbers of channels of output data

fin The lengths of input data

fout The lengths of output data

N The size of the convolution kernel thought

ϕ ∈ Ylout×lin×N The one-dimensional convolution kernel of the layer

β ∈ Ylout The bias layer for this layer

results, we can find that SEEMDAN, LSTM, and BPNetwork have
different performances in dealing with other data sets, i.e., the
accuracy of the three models selected in this group, except our
model, varies significantly in the face of different data. This is fatal
to the accuracy and precision of the experiments. If the models do
not have stable experimental stability in the face of other data, the
testing results are not convincing. Then our model, in the f of the
performance of the four data sets we have selected, accuracy does not
vary significantly and can be said to be the same, so it can guarantee
the accuracy of the experimental results, which canmake our testing
results have better accuracy and persuasive power.

Table 3 compares the accuracy, computation, and parameter size
of the models mentioned in the paper with our model. The table
shows that our model has significant advantages in these aspects.
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TABLE 2 Data sets from different databases.

Database Count Mean Max Min Standard deviation

ISO-NE Ayub et al. (2020) 2580 1781.42 2760.59 655.36 486.35

Elia Jia et al. (2020) 2466 21,135.44 31,371.25 13,127.29 3141.62

Singapore electricity 2535 3200.64 5628.43 1834.41 563.01

NREL Mohamed et al. (2020) 2632 1813.41 2804.92 731.52 501.43

TABLE 3 A comparison of different models.

Model Accuracy ↑ Flops(G) ↓ Parameters(M) ↓ AUC ↑

CEEMDAN Cao et al. (2019) 0.921 126.53 168.13 0.831

GNN Cheng et al. (2022) 0.880 175.67 159.99 0.835

SVM Khalid et al. (2019) 0.823 112.50 113.43 0.838

BP Network Qian and Gao (2017) 0.8432 87.34 127.15 0.841

ARIMA Siami-Namini and Namin (2018) 0.894 150.66 168.27 0.846

LSTM Yan and Ouyang (2018) 0.931 112.43 97.86 0.848

CNN-LSTM Livieris et al. (2020) 0.945 122.23 98.21 0.852

Albogamy et al. (2021) 0.885 121.36 98.73 0.862

Aslam et al. (2021) 0.895 102.33 98.61 0.878

Yao et al. (2021) 0.945 110.13 94.61 0.893

Ours 0.963 95.32 91.45 0.951

5 Conclusion and discussion

In this paper, a smart grid real-time load prediction model
based on Bayesian optimization of CNN-BiLSTM is proposed,
which effectively solves the problem of gradient disappearance and
gradient explosion while improving the accuracy and practicality
of the model, the more vital feature extraction ability of the one-
dimensional CNN, first, the smart grid real-time load data is first
input into the one-dimensional CNNnetwork, and after convolution
for feature extraction into the pooling Simplify the feature data.
Then the simplified feature data is input into the BiLSTM network;
BiLSTM is based on a kind of LSTM extension, which can better
retain the information provided by the nodes at a longer distance;
BiLSTM memory network has two directions of transmission layer
compared to the LSTM network can handle more data volume at
the same time. It has a more efficient exploration efficiency for
predicting smart grid real-time load.

Nevertheless, our model still has some shortcomings, as the
BiLSTM network is used instead of the LSTM network. Hence,
the operation speed is more complicated, which may impact the
operation rate, and the number of parameters required will increase
year-on-year because of the complexity of deep learning and the
degree of model combination.

Smart grid real-time load forecasting is an important technology
that has many functions (Aslam et al., 2020).The following are

the roles of conducting smart grid real-time load forecasting:
1. Optimize power system operation: Smart grid real-time load
forecasting can help power system managers to rationally deploy
power resources according to load demand to ensure stable and
reliable power system operation. 2. Improve the efficiency of the
power system: Through smart grid real-time load forecasting,
power system managers can better understand the demand of
power loads, thus optimizing the operation efficiency of the
power system and reducing energy waste and cost. 3. Promote
the application of renewable energy: Smart grid real-time load
forecasting can help power system managers more accurately
predict the production and supply of renewable energy, thus better
planning and managing the application of renewable energy and
promoting the development and utilization of renewable energy.
4. Improve the operation of energy markets: Smart grid real-
time load forecasting can provide energy market participants with
more accurate electricity load forecasts and market information,
facilitating the efficient process and development of energy
markets.

Therefore, smart grid real-time load forecasting is indispensable
for both power system managers and the whole grid system.
Our smart grid real-time load forecasting model can help power
system managers to forecast the demand of power load more
accurately for better planning and management of power system
operation.
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