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Ultra-short-term power load forecasting (USTPLF) can provide strong support
and guarantee the decisions on unit start-up, shutdown, and power adjustment.
The ultra-short-term power load (USTPL) has strong non-smoothness and
nonlinearity, and the time-series characteristics of the load data themselves are
difficult to explore. Therefore, to fully exploit the intrinsic features of the USTPL,
a stochastic configuration networks (SCNs) USTPLF method based on K-means
clustering (K-means) and empirical mode decomposition (EMD) is proposed.
First, the load data are decomposed into several intrinsic mode functions (i.e.,
IMFs) and residuals (i.e., Res) by EMD. Second, the IMFs are classified by K-means,
and the IMF components of the same class are summed. Third, the SCNs is used
to forecast the electric load on the basis of the classified data. Lastly, on the basis
of the real load of Shenzhen City, the proposed method is applied for emulation
authentication. The result verifies the efficiency of the proposed measure.

KEYWORDS

ultra-short-term power load forecasting, feature extraction, stochastic configuration
networks, empirical mode decomposition, K-means clustering

1 Introduction

1.1 Literature review

Ultra-short-term power load forecasting (USTPLF) is an essential reference for real-
time dispatching orders and a fundamental basis for determining real-time tariffs, grid
peaking, and valley filling (Lin et al., 2022; Lin et al., 2022). In recent years, the increase
in distributed energy sources and the grid connection of new energy generation has led
to the strong nonlinearity, non-smoothness, and randomness of ultra-short-term power
load (USTPL), which brings challenges to USTPLF. Accurate USTPLF can realize the
advanced control of automatic generation, reduce the adjustment pressure on automatic
generation control, guarantee the stable operation of the power system, and enhance
the efficiency of grid dispatch (Yan et al., 2021; Pham et al., 2022; Sun and Cai, 2022).
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Research on power load forecastingmethods. USTPLF ismainly
divided into traditional statistical methods and machine learning
methods. The traditional statistical methods mainly include the
linear regression model (Liang and Tang, 2022), the Kalman filter
method (Guo et al., 2022), and the time series model (He et al.,
2022). Literature (Kim et al., 2022) used the curve extrapolation
method for USTPLF based on short-term load forecasting results,
eliminating the influence of holidays and load inflection points
on the forecasting results. Literature (Guan et al., 2013) used
the Kalman filter to generate prediction intervals and perform
USTPLF automatically. Traditional statistical methods have high
data requirements and cannot obtain accurately predicted load
values when dealing with large amounts of nonlinear load data.
Machine learning methods mainly include BP neural networks
(Chen et al., 2023; da Silva and de Andrade, 2016), support vector
machines (SVM) (Jiang et al., 2020), and deep learning (Tan et al.,
2020). In Literature (Huang et al., 2022), a two-way weighted
LS-SVM was used for USTPLF, which proved the characteristic
of “large near and small far” for USTPLF. It did not rely
on long-range data and considered near-term load data more.
However, the fast leave-one-out method could not find the
optimal parameters of the LS-SVM, which affected the prediction
accuracy. Literature (Madhukumar et al., 2022) first used phase
space reconstruction to find the intrinsic pattern between load
data, established an SVM load prediction model after determining
the import and output data, and optimized the SVM parameters
by using an improved particle swarm algorithm to enhance the
model prediction capability. Literature (Mir et al., 2021) adopted
an enhanced firework algorithm to find the optimal weights
and thresholds of the extreme learning machine to overcome
the problem of model instability caused by randomly generated
weights and thresholds of the extreme learningmachine in USTPLF.
Literature (Gunawan andHuang, 2021) used a stochastic distributed
embedding framework and a BP neural network to solve the
problem of low accuracy of USTPLF caused by a small amount of
data. However, the BP is prone to overfitting when the import data
are significant. In Literature (Xuan et al., 2021), the tree model in
the lightweight gradient boosting machine (Light-BM) was used
to evaluate the importance of each import feature quantitatively.
At the same time, an attention mechanism was introduced to
give different weights to different time series information, which
overcomes the problem of easy loss of crucial information in
gated recurrent neural networks when the import time series is
longer. Additionally, in the field of wind power forecasting, several
studies have proposed novel models to enhance the accuracy of
wind power prediction. For instance, the study by (Shahid et al.,
2021) presented a novel genetic LSTM model for wind power
forecast, which leverages the genetic algorithm to optimize the
LSTM network parameters and improve the forecasting accuracy.
Furthermore, in financial market forecasting, the study conducted
by (Bukhari et al., 2020) proposed a Fractional Neuro-Sequential
ARFIMA-LSTM model, which integrates the ARFIMA model with
LSTM to forecast financial market dynamics more accurately In
Literature (Ageng et al., 2022), a method of USTPLF based on an
extreme gradient enhancement algorithm (XGBOOST) combined
with a long- and short-term memory neural network (LSTM) was
proposed to enhance the accuracy of USTPLF by using XGBOOST
for point prediction and then using LSTM for probabilistic

prediction.Themachine learningmethod is good at handling a large
amount of nonlinear data. It has a good generalization ability to
anonymous data, but it often affects the USTPLF accuracy due to
improper human-set parameters.

A study on the Import feature of USTPLF. USTPLF is usually
influenced by the load data in the hours before the moment
to be predicted and external factors, e.g., wind force and wind
direction do not change much during this period; hence, the
external factors, such as wind force and wind direction, are not
considered in USTPLF (Bouktif S et al., 2018). Tapping the laws
of the electric load data themselves is the key to improving
the accuracy of USTPLF. Literature (Zhao et al., 2019) used the
attention mechanism to assign different weights to the import
data so that the gated recurrent unit (GRU) focuses on learning
important information, which overcomes the disadvantage that the
GRU tends to lose sequence information in the learning process
and improves the prediction efficiency. However, the attention
mechanism only exploits the shallow features of the load data and
does not perform deep mining of the data themselves. Literature
(Li et al., 2017) utilized wavelet decomposition to decompose the
load and a second-order gray neural network to predict and sum
the components. Another study by (Shahid et al., 2020) introduced a
novelWave nets long short-termmemory paradigm for wind power
prediction, which combines the Wave nets model with LSTM to
capture the long-term dependencies in wind power time series data.
Literature (Kong et al., 2020) used multiple clustering analysis to
filter the import features, wavelet decomposition to classify the load
into high- and low-frequency components, a convolutional neural
network (CNN) to predict the high-frequency components, and a
multiplexed CNN (MCNN) to predict low-frequency components.
Cluster analysis and wavelet decomposition can fully exploit the
inherent features and patterns of load data and enhance the
accuracy of USTPLF. Although the wavelet decomposition method
can decompose load sequences, the selection of wavelet basis
functions and decomposition layers has a significant impact on
the decomposition effect for sequences with poor stability, which
increases the prediction difficulty. Literature (Tang et al., 2019)
decomposed the load sequence into different modal components
via empirical mode decomposition (EMD) and predicted the
modal components through deep belief networks and bi-directional
recurrent neural networks. In Literature (Li et al., 2020), the EMD
with adaptive noise was used to decompose the load sequence into
different components, and the SVM with optimized parameters
using the whale algorithm was employed to predict the different
components with enhanced prediction accuracy. The EMDmethod
is adaptive and can decompose the load on the basis of its
time-series characteristics without artificially setting parameters,
simplifying the prediction difficulty. Therefore, the decomposition
of the prediction model’s import load data can explore the data’s
laws. However, it also increases the prediction time and reduces
the prediction efficiency because of the excessive decomposed
components. A brief summary of the studied literature is presented
in Table 1. In the research of power load forecasting, machine
learningmethods such as neural networks, support vectormachines,
and deep learning have shown excellent performance in handling
large amounts of nonlinear data. Researchers have employed
techniques such as attention mechanisms, wavelet decomposition,
and clustering analysis to uncover the intrinsic patterns and features
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TABLE 1 Literature review summary.

Ref Method Forecasted variable Augmentation strategies

Huang et al. (2022) LS-SVM The load values for a future time period —

Madhukumar et al. (2022) SVM Ultra-Short-Term Power Particle swarm algorithm

Mir et al. (2021) ELM Ultra-Short-Term Power Enhanced firework algorithm

Gunawan and Huang, (2021) BP Ultra-Short-Term Power The stochastic distributed embedding
framework and the backpropagation (BP)
neural network

Xuan et al. (2021) Light-BM The load values Attention Mechanism

Shahid et al. (2021) LSTM Wind power GA

Bukhari et al. (2020) LSTM Financial market ARFIMA-LSTM

Ageng et al. (2022) LSTM Ultra-Short-Term Power Combining XGBOOST and LSTM

Zhao et al. (2019) GRU Ultra-Short-Term Power Attention Mechanism

Li et al. (2017) Second-order Gray Neural Network The load values for a future time period Wavelet Decomposition

Shahid et al. (2020) LSTM Wind power WN-LSTM.

Kong et al. (2020) MCNN Ultra-Short-Term Power Multiple clustering analysis and Wavelet
decomposition

Tang et al. (2019) BRNN Ultra-Short-Term Power EMD

Li et al. (2020) SVM Ultra-Short-Term Power EMD whale algorithm

of load data, aiming to improve prediction accuracy. However,
the decomposition methods may increase prediction time and
reduce efficiency. Therefore, when selecting a forecasting method,
it is necessary to consider the characteristics of load data and the
requirements for prediction accuracy.

1.2 Motivation

Despite the widespread application of data-driven methods
in feature construction and model training, they are not
without limitations. One notable drawback is their excessive
reliance on parameter optimization algorithms, such as particle
swarm optimization or the whale optimization algorithm, which
necessitates parameter tuning and manual intervention. This
reliance adds complexity and subjectivity to the methods. Another
significant limitation is the substantial impact of parameter
selection on the results. In certain methods, such as selecting
wavelet basis functions and determining decomposition levels, the
choice of parameters heavily influences the prediction outcomes.
Determining the appropriate parameters often requires expertise
and rigorous experimental investigation, further complicating the
methods and introducing uncertainty. Additionally, the need for
different parameter settings across diverse datasets and problems
can impede the methods’ generalizability.

These limitations pose challenges and constraints in the practical
application of data-driven methods. To overcome these issues, a
novel approach that integrates Empirical Mode Decomposition
(EMD), K-means clustering, and stochastic configuration networks
(SCNs) has been proposed. This approach offers a unique and
innovative solution that effectively addresses the aforementioned

limitations, thereby enhancing the accuracy and robustness
of load forecasting. Finally, the ultra short term power load
(USTPL) has strong non smoothness and nonlinearity, making it
difficult to explore the time series characteristics of the load data
itself.

1.3 Contributions

This approach makes the following contributions:

(1) It introduces a combined method based on Empirical Mode
Decomposition (EMD), K-means clustering, and stochastic
configuration networks (SCNs) for ultra-short-term load
forecasting. By decomposing the load data into Intrinsic Mode
Functions (IMFs) and residuals using EMD, and then classifying
the IMFs with K-means clustering, the method effectively
explores the intrinsic features of the load data.

(2) The utilization of stochastic configuration networks as the
training model is a significant contribution. SCNs possess
adaptive characteristics and require minimal manual parameter
settings. They are capable of leveraging the key information in
the load sequence and achieving accurate predictions.

(3) By using the classified components as input features for training
SCNs, the method reduces the dependence on parameters, thus
enhancing the reliability and efficiency of ultra-short-term load
forecasting.

In summary, the proposed approach based on EMD, K-means,
and SCNs effectively tackles the limitations of data-driven methods
while enhancing the accuracy and robustness of load forecasting.
By effectively extracting the intrinsic features of historical load

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1182287
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Pang et al. 10.3389/fenrg.2023.1182287

FIGURE 1
Description of the USTPLF problem.

FIGURE 2
Strategy diagram of the USTPLF method.

data and reducing dependence on parameters, this approach
offers a more efficient and accurate solution for ultra-short-term
load forecasting, surpassing the performance of LSTM and SVM
models.

The study is organized as follows: Section 2 provides the
background and objectives of the research, highlighting the
existing challenges in the field and clarifying the research purpose

and questions. Section 3 introduces the methodology or strategy
employed to address the research problem. Section 4 presents
the approach used for feature extraction from the load data.
Section 5 describes the application of the K-means clustering
algorithm to group the load sequences. Section 6 outlines the
load forecasting model based on stochastic configuration networks.
Section 7 provides a description of the dataset used in the study.
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FIGURE 3
Flowchart of EMD breakdown load data.

2 Problem description

The difference between the USTPLF and the short-term power
load forecast is that it follows the principle of large near and small
far, i.e., the first n hours of the time to be forecasted are crucial for
the USTPLF. Short-term power load forecasting is to forecast a load
of a day on the day to be forecasted simultaneously. It cannot take
into account the interactions between the loads at each moment
on the day to be forecasted, whereas USTPLF is hourly granular.
The accuracy rate is higher, and the moment to be forecasted is
very close to the first n hours. External influencing factors, such
as wind force, wind direction, and humidity, do not change much.
Therefore, in USTPLF, external influences on the load are usually
not considered. The key to improving the accuracy of USTPLF is
digging deeper into the laws in the load data themselves. Traditional
forecasting methods have limited ability to map nonlinear data, and
the LSTM has excessive artificially set parameters, which is prone to
the problem of time series information loss and affects its forecasting

accuracy. SCNs are suitable for USTPLF given the advantages
of less artificially set parameters, high intelligence, and shorter
time required for forecasting. The application of our research lies
in Ultra-Short-Term Power Load Forecasting (USTPLF). USTPLF
aims to accurately predict power load variations in the near future.
This application is crucial for the operation and scheduling of
power systems, enabling power companies to plan generation
capacity, optimize grid operations, and enhance energy utilization
efficiency. The problem description of USTPLF is shown in
Figure 1.

3 Strategy structure

Suppose only the extrinsic features of load data are observed
without digging deeper into the intrinsic features of the load data
themselves. In this case, the prediction accuracy will decrease,
and the prediction time will increase. EMD can decompose
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FIGURE 4
Flowchart of K-means cluster with IMFs.

the original load data into several load sequence components
to explore the original load data’s intrinsic features deeply. K-
means can integrate the components to reduce the prediction
time. Therefore, this study proposes an SCNs ultra-short-term
load forecasting method based on K-means and EMD. First,
missing load data are filled. Second, EMD is used to decompose
the load data into several IMFs and residuals to reduce the
randomness and volatility of the load data. Third, K-means is
used to classify several components, and the components contained
at the center of each cluster are summed. Lastly, the summed
components are imported to stochastic configuration networks
for training. The mean absolute error (MAE), mean absolute
percentage error (MAPE), and root-mean-square error (RMSE)
are chosen to measure the performance of the prediction method.
The specific implementation strategy of the method is shown in
Figure 2.

4 Load data feature extraction

USTPLF predicts the load changes in the next few hours.
During this period, the weather, temperature, humidity, and other
external factors have minimal changes, so the influence of external
factors on the load is not considered. When forecasting, only
observing the external characteristics of the load data and not
digging into the internal laws of the load data themselves will reduce
the forecasting accuracy. Therefore, determining how to mine the

inherent characteristics of load data is important. The load series
is decomposed into IMFs and residuals by EMD (Gloersen and
Huang, 2003) in accordance with the time scale of the load data
themselves. Each IMFs represents the characteristic components
of the load series on this time scale. The characteristic law of
each IMF is the characteristic law of the load data themselves.
The composition of the IMF must meet two characteristics:①The
difference between the number of extreme points and the number
of zero points of the intrinsic mode component cannot be greater
than 1. ② The average value of the upper and lower envelopes
of the eigenmode components at any time is zero (Yang et al.,
2018).

Algorithm 1 is a method used for Empirical Mode
Decomposition (EMD) of historical power load data.The algorithm
takes historical power load data and a preset value R as input,
and it outputs the power load sequence components and the
residual error of the power load series, R(t). The algorithm begins
by extracting all maximum points (e max(t)) and minimum
points (e min(t)) from the load data (P(t)). It then calculates
the average of the load data and generates a new load series
based on this average. Next, the algorithm checks if the difference
between the number of extreme points and the number of zero
points is not greater than 1 and if specific conditions are met.
If these conditions are satisfied, the algorithm selects the first
Intrinsic Mode Function (IMF), which represents a characteristic
component of the load series on a particular time scale. It also
calculates the residual of the load series. The algorithm further
evaluates if the residual is less than the preset value R and if it
represents a monotonic load sequence. If both conditions are met,
the algorithm retains the residual as part of the decomposition
process. Otherwise, it returns to step 1 and repeats the process
with the historical power load data. The specific steps of EMD
decomposition of power load data are shown in Figure 3;
Algorithm 1.

5 K-means of load series

After load feature extraction, the load data are decomposed
into several IMFs and residuals. If all the IMFs and residuals are
imported into the SCNs as import data for training, it will lead to
a large amount of data and increase the prediction time. Given its
real-time characteristics (Ding et al., 2020), USTPLF requires high
forecasting speed. K-means is used to integrate IMFs and residuals
to reduce the import data of the SCNs and enhance the forecasting
speed. First, K-means centers are built, and the coordinates of the
clustering centers are determined. Then, the Euclidean distances
of each IMF, each residual, and the cluster center are calculated.
The calculation formula is shown in Formula (1), and each IMF
and each residual are classified in accordance with the Euclidean
distance. Lastly, the IMFs of the same category are added, and
the added components are used as the import data of the SCNs
ultra-short-term load forecasting model. The process is shown in
Figure 4.

dj = √
n

∑
s=1
(xs − p fs)

2 (1)
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FIGURE 5
SCNs ultra-short-term load forecasting model.

Input: Historical power load data

P(t),t = 1,2,⋯,4032; Preset value R

Output: Power load sequence component

fIMFk(t),k = 1,2,⋯,9, Residual error of power load

series R(t)

1:  Extract all maximum points emax(t) and minimum

points emin(t) in load data P(t)

2:  Calculate the average: eav1(t) =
emax(t)+emin(t)

2

3:  Calculate new load series T1(t) = P(t) −eav1(t);

4:  If the difference between the number of

extreme points of T1(t) and the number of zero

points is not greater than 1 and eav(t) = 0

5:   The first IMF fIMF1(t): = T1(t)

6:   Calculate the residual of load series

R1(t) = P(t) − fIMF1(t)

7:    IfR1(t) is less than the preset value R and

is a monotonic load sequence

8:     The residual R(t): = R1(t)

9:    Else

10:     The historical power load data P(t): = R1(t)

go to step 1

11:    End if

12:  Else

13:   The historical power load data P(t): = T1(t) go

to step 1

14:  End if

Algorithm 1. EMD decomposes historical power load data

where xs(s = 1,2,⋯,n) is the load value of the IMF component,
and p fs( f = 1,2,⋯,z; s = 1,2,⋯,n) is the coordinate value of the f th
cluster center.

6 Load forecasting model based on
stochastic configuration networks

SCNs have the advantages of fewer parameters set manually,
automatically adjusting the weight of each unit in accordance
with the prediction error, avoiding the problem of affecting
the accuracy of load forecasting caused by improper parameter
selection, and rapid selection of hidden parameters through its
evaluation function, thus improving the forecasting efficiency.
Therefore, SCNs are used to forecast USTPLswith high accuracy and
speed requirements. SCNs are random-weighted neural networks
with a supervision mechanism proposed by Wang and Li, (2017).
Their structure includes an input layer, a variable hidden layer,
and an output layer. Unlike the traditional feedforward neural
network, SCNs can start from a small network with minimal human
intervention, randomly select import weights and thresholds,
gradually increase the number of hidden layer neuron nodes,
and use the least squares method to calculate the output weights
and thresholds until the training accuracy of the network meets
the termination conditions. In addition, SCNs add an evaluation
function for random parameters and adaptively select the range of
random parameters.

Suppose we build an SCNs model with L-1 hidden layer nodes,
and its basic mapping relationship is

fL−1(X) = β
TH =

L−1

∑
j=1

βjgj(w
T
j X+ bj)(L = 1,2,…,m; f0 = 0) (2)
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FIGURE 6
IMFs and Res after load data decomposition.

FIGURE 7
Effect of the clustering of each component.

where βj is the output weight matrix of the jth hidden layer
node; X = {X1,X2,…,XN} is the import characteristic matrix, e.g.,
X1 = [x1,x2,⋯xM]T; wj and bj are the import weight and threshold
matrix of the jth hidden layer node, respectively; gj is the sigmoid
activation function.

gj = g(w
T
j X+ bj) =

1
1+ exp(−wT

j X+ bj)
(3)

FIGURE 8
Training error value corresponding to the number of hidden layer
nodes.

When the model is calculated for the first time, the difference
between the model output and the real value is defined as

eL−1 = f − fL−1 = [eL−1,1,eL−1,2,…,eL−1,m] (4)
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FIGURE 9
Comparison between predicted and actual values of four components. (A) First component predicted value. (B) Second component predicted value.
(C) Third component predicted value. (D) Predicted value of the fourth component.

FIGURE 10
Comparison between total predicted value and actual value.

where eL−1 represents the difference between the number of different
nodes, and eL−1,K is the difference of corresponding characteristics of
different nodes.

When the error does not meet the set value, gL and bg are
randomly generated in accordance with Formula (5)–Formula (7),

and the updated output weight value βL is calculated. A hidden
layer node is added, and the model output is updated to
fL(X) = fL−1(X) + βLgL to achieve the purpose of correcting the
residual. As a result, the output predicted value is closer to the real
value, and the update process is until the error meets the set value.
The update function is

⟨eL−1,q,g2L⟩ ≥ b
2
gδL,q,q = 1,2,⋯m (5)

βL,q =
⟨eL−1,q,gL⟩

‖gL‖
2 ,q = 1,2,…,m (6)

{{{
{{{
{

δL =
m

∑
q=1

δL,q

δL,q = (1− r− μL)‖eL−1,q‖
2

(7)

The evaluation function is defined as follows:

ξL,q =
(eL−1,q(X)T • gL(X))

2

gL(X)
T • gL(X)

− (1− r− μL)eL−1,q(X)
T • eL−1,q(X) (8)

where gL(X) = gL(w
T
LX+ bL); 0 < r < 1; μL is a sequence of non-

negative real numbers. The larger the value of the evaluation
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TABLE 2 MAE, MAPE, and RMSE of the four methods.

Prediction method MAE/MW MAPE/% RMSE/MW

EKSCNs 178.94 1.69 216.34

SCNs 569.74 5.71 687.97

EKSVM 389.01 3.63 473.37

EKLSTM 389.53 4.20 558.07

function ξL,q, the better the model parameter configuration,
and the faster the convergence of the stochastic configuration
networks.

The construction of the SCNs ultra-short-term load forecasting
model is shown in Figure 5. The model comprises 144 neurons in
the input layer, 261 neurons in the hidden layer, and 48 neurons
in the output layer. The algorithm starts with initialization and
enters a while loop. In each iteration, it performs nested loops
to randomly assign weights and calculate the evaluation function
and error. If the evaluation function meets certain criteria, the
weights are stored. If the stored set is not empty, the algorithm
finds the weights that maximize the evaluation function and
generates a matrix. Otherwise, it randomly fetches weights and
continues the process. After the iterations, the algorithm calculates
the optimal output weight and output error. It then updates the
weights and continues the loop until the specified conditions are
met. Finally, the algorithm returns the predicted value of load series
components in the time period to be predicted. The detailed steps
of the SCNs ultra-short-term load forecasting model are given in
Algorithm 2.

7 Example analysis

7.1 Dataset description

This study adopts Shenzhen’s power load data set from June 2
to 13 July 2017, with a total of 42 days of load data. The sampling
interval of load data is 15 min, with a total of 4,032 data points. The
time period to be predicted is 12:00–24:00 on July 13.

The power load data set is checked. If there is a missing value, it
is filled with the average value.The data in this dataset are complete,
and whether to fill in missing values is optional.

7.2 Performance evaluation index

MAE, MAPE, and RMSE are used as evaluation indicators of
prediction methods. The calculation formulas are as follows:

MAE = 1
N

N

∑
i=1
|y′i − yi| (9)

MAPE = 1
N

N

∑
i=1
|
y′i − yi
yi
| × 100 (10)

RMSE = √ 1
N

N

∑
i=1
(y′i − yi)

2 (11)

where y′i is the predicted load value, and yi is the actual load value.

Input: Power load sequence component

X = {X1,X2,…,XN},N = 21; Expected output

corresponding to the power load sequence

component T = {t1,t2,…,tN}; Number of neurons in

the maximum hidden layer of SCNs Lmax; Error

tolerance ε; Maximum number of random

configurations Tmax; Value range of random

weight ϒ = {λmin,…,λmax};

Output: Predicted value of load series

components in the time period to be predicted

P = (P1,P2,⋯,Pm),m = 48

1:  Initialization:e0 = [t1,t2,…,tN]T,0 < r < 1,Ω,W = ϕ;

2:  whileL ≤ Lmax and ‖e0‖F > ε, do

3:   forλ ∈ ϒ, do

4:    fork = 1,2,…,Tmax, do

5:     Randomly assign wL and bL from intervals

[−λ,λ]M and [−λ,λ], respectively;

6:    CalculategL(X) =

[gL(w
T
L
x1 +bL),gL(w

T
L
x2 +bL),…,gL(w

T
L
xN +bL)];

7:    Calculate the evaluation function ξL,K;

8:    CalculateμL = (1−r)/(L+1);

9:     ifmin{ξL,1,ξL,2,…,ξL,K} ≥ 0then

10:      Store wL and bL in W and ξL =
K

∑
k=1

ξL,k in Ω;

11:     else

12:      go to step 7

13:     end if

14:    end for

15:    ifW is not an empty set then

16:     Find the w*
L
and b*

L
that make ξL the largest

in Ω, and then generate the matrix [g*
1
,g*

2
,…,g*

L
]

17:     Break (go to step 24)

18:    else

19:     Randomly fetch τ ∈ (0,1−r), update r:

r = r+τ, go back to step 7

20:    end if

21:   end for

22:           Calculate the optimal output

weight[β*
1
,β*

2
,…,β*

L
] = argminβ‖f −

L

∑
j=1

βjgj(w
T
j
X+bj)‖

23:   Calculate output erroreL = eL−1 −β*TL g*
L
;

24:   To updatee0: e0 = eL−1; L: L = L+1;

25:  end while

26:  Returnβ*
1
,β*

2
,…,β*

L
; w* = [w*

1
,w*

2
,…,w*

L
]; b* = [b*

1
,b*

2
,…,b*

L
]

Algorithm 2. SCNs

7.3 Historical load data decomposition

The EMD method is used to decompose the historical power
load data, and a total of 10 components are obtained, including
9 IMFs and 1 residual, which are recorded as e1–e10. The
decomposed load series is shown in Figure 6. The frequency of each
IMF component is relatively stable and shows evident periodicity.
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FIGURE 11
Comparison of errors of the four measures.

FIGURE 12
Comparison between the predicted values of the four methods and
the real values.

Through its periodicity, the characteristics of the load series can be
mined.

From Figure 6, the EMD decomposes the historical power load
data into 10 components. If these 10 components are imported into
the SCNs as import data for training, the calculation amount and
prediction time of the model will increase. Therefore, to enhance
the prediction speed, K-means is used to integrate all components,
which are then used as import data for prediction.The center point is
set to 4, and the effect of clustering each IMF component and Res is
shown in Figure 7. Each component is divided into four categories.
The components in the same category are added to obtain the new
load series components d1–d4. The new components d1–d4 are
predicted as the import data of the stochastic configuration networks
model, and the sum of the four prediction results is the USTPLF
result.

7.4 Parameter settings of stochastic
configuration networks

Before USTPLF, the SCNs should be trained. The evaluation
index used in training is the RMSE of the load forecast value

FIGURE 13
Scatter chart of the predicted values of the four methods and the
actual values.

and the actual value. The relationship between the training error
of SCNs and the number of hidden layer nodes is shown in
Supplementary Appendix SA1 and Figure 8.

From the figure, when the number of hidden layer nodes is
small, the training error of SCNs is significant and does not change
as the number of nodes increases. When the number of hidden
layer nodes increases to 13, the training error of SCNs decreases
significantly, continues to decrease as the number of nodes increases,
and finally tends to stabilize. At this time, the trainingRMSEof SCNs
is 0.2155%.

The specific parameter settings of SCNs are as follows: number
of neurons in themaximumhidden layer Lmax = 300, error tolerance
ε = 0.001, random weight range ϒ = [ 0.1,0.15,0.2, … ,8], and
maximum number of random configurations Tmax = 50.

7.5 Load forecasting and analysis

This study sets every 3 days as a sample, having a total of 39
groups of samples. Of them, 80% are taken as the training set, with a
total of 32 groups of samples; 20% are taken as the test set, with a total
of 7 groups of samples.The import data of each group of samples are
the load data of the first and second days of the sample and the load
data of the third day from 00:00 to 11:45, a total of 144 data; the
output data are the load data of the third day from 12:00 to 23:45,
a total of 48 data. The first load series component d1, the second
load series component d2, the third load series component d3, and
the fourth load series component d4 are imported into the SCNs for
training. The predicted values are compared. The actual load values
in the 12:00–24:00 time period of each load series component to be
predicted are shown in Figure 9. The predicted values of the four
components are added to determine the load values of the period
from 12:00 to 24:00 on the day.The comparisonwith the actual value
is shown in Figure 10.

The four methods are programmed separately, and the
numerical examples are analyzed.
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(1) Method 1: The historical power load data without EMD and K-
means processing are taken as the import data to build the SCNs
model, which is called SCNs.

(2) Method 2:The four load series components obtained after EMD
and K-means processing are taken as import data, four SVM
models are constructed, the prediction results are summed, and
the method is called EKSVM.

(3) Method 3:The four load series components obtained after EMD
and K-means processing are taken as import information, four
LSTM models are set, the prediction results are summed, and
the method is called EKLSTM.

(4) The proposed measure in this thesis is to construct four
SCNs models and sum the prediction results by using the
four load series components obtained after EMD and K-
means processing as import data. The method is named
EKSCNs.

TheMAE, MAPE, and RMSE of the four measures are shown in
Table 2. The error between the predicted value and the real value
at 48 time points in the time period from 12:00 to 24:00 on 12
July 2017 is shown in Figure 11. Figure 12 presents a comparison
between the predicted loads of the four methods and the real
loads at 48 time points. The scatter plots between the predicted
values of the four methods and the actual values are given in
Figure 13. The smaller the difference between the predicted and
actual values, the closer the point in the figure is to the diagonal
line.

From Figures 11–13; Table 2, when SCNs are also used, the load
series components obtained after EMD and K-means processing
and used as import data show reductions of 390.8 MW, 4.02%, and
471.63 MW in MAE, MAPE, and RMSE, respectively, compared
with the historical load data that are not preprocessed. This
result verifies the effectiveness of using EMD and K-means in
preprocessing historical load data. In the same case of EMD
and K-means processing, EKSCNs is the closest to the slant,
without abnormal points, and its MAE, MAPE, and RMSE are
smaller than those of EKSVM and EKLSTM. The curve trend
is closer to the real load, which verifies the effectiveness of
using SCNs.

8 Conclusion

In this study, EMD is used to decompose the historical load
data into various components. K-means is employed to sum the
decomposed components by category to establish the EKSCNs
USTPLFmodel. Finally, the load forecasting value of the 12:00–24:00
period of the day to be predicted is obtained. An example proves the
effectiveness of the proposed method.

(1) Through EMD, the historical load data are decomposed into
various IMFs and residuals, and the inherent characteristics of
the load series are mined to enhance the prediction accuracy.

(2) The decomposed components are added by K-means, which
reduces the number of import data and avoids the problem of
increasing workload and slowing down prediction speed caused
by importing all components into stochastic configuration
networks for training.

(3) Compared with the SVM and the LSTM, the SCNs has the
advantage of fewer parameters set manually and avoids the
trouble of forecast precision decline on account of improper
parameter selection.
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