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Due to excellent power and energy density, low self-discharge and long life,
lithium-ion battery plays an important role in many fields. Directed against the
complexity of above noises and the strong sensitivity of the common Kalman filter
algorithm to noises, the state of charge estimation of lithium-ion battery based on
extended Kalman filter algorithm is investigated in this paper. Based on the
second-order resistor-capacitance equivalent circuit model, the battery model
parameters are identified using the MATLAB/Simulink software. A battery
parameter test platform is built to test the charge-discharge efficiency, open-
circuit voltage and state of charge relationship curve, internal resistance and
capacitance of the individual battery are tested. The simulation and experimental
results of terminal voltage for lithium-ion battery is compared to verify the
effectiveness of this method. In addition, the general applicability of state of
charge estimation algorithm for the battery pack is explored. The ampere-hour
integral method combined with the battery modeling is used to estimate the state
of charge of lithium-ion battery. The comparison of extended Kalman filter
algorithm between experimental results and simulation estimated results is
obtained to verify the accuracy. The extended Kalman filter algorithm
proposed in this study not only establishes the theoretical basis for the
condition monitoring but also provides the safe guarantee for the engineering
application of lithium-ion battery.
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1 Introduction

Establishing the carbon-free alliance and developing new sustainable and high-efficiency
energy storage device have become an effective method to come up with the ever-increasing
energy problems (Chen et al., 2019; Hao et al., 2020a). The durability and safety are the key
factors to ensure the smooth operation of energy storage device (Hao et al., 2020b; Hao et al.,
2022; Lane et al., 2020). Lithium-ion battery is a kind of efficient green energy due to their
excellent power density, high energy density, low self-discharge, wide temperature range and
long lifetime. Due to these characteristics, lithium-ion battery plays an important role in
many electronic products, such as electric automobile, notebook computer and mobile
phone (Hao et al., 2019; Shi et al., 2022). At present, the technical bottleneck of lithium-ion
battery is accompanied by the problems of high-performance battery development and
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maintenance caused by the increasing power demand. The battery
management system (BMS) can be used to utilize the storage
capacity rationally and monitor the working state precisely of the
battery pack systems (Hao et al., 2018; Iurilli et al., 2019). The State
of charge (SOC) estimation precisely in BMS not only improve the
power transmission performance and increase the safety of the
battery, but also decrease the over-charging and over-discharging
and prolong the using life of the battery (Dang et al., 2022; Yang
et al., 2022). Up to now, the determination of lithium-ion battery
model is also needed to be studied. In addition, the SOC is indicated
as the residual energy stored in the battery, but there is no uniform
evaluation method of SOC estimation (Iurilli et al., 2019).

The lithium-ion battery model can be determined by three
methods, including the electrochemical model (Hao and Xie,
2021; Liu et al., 2022; Wang et al., 2022), the machine learning
model or data-driven model (Hong et al., 2023; Wang et al., 2023;
Zhang et al., 2023) and the equivalent circuit model (Tran et al.,
2021; Chang et al., 2022). For the electrochemical model, the
internal reaction mechanism of battery is revealed from the
electrochemical point of view. The advantage of the
electrochemical model is that it can analyze the internal
reactions of the lithium-ion battery during the operation
process, and the physical significance of the model
identification parameters is clear relatively. But the
disadvantage of this model is that it is very difficult to
establish and identify the battery model parameters, and the
different material types of the battery needs to establish different
electrochemical models (Xu L. et al., 2022). So this model is not
suitable for battery management and is generally used in the
battery design phase. For the machine learning model or data-
driven model, the internal parameters of lithium-ion battery
show high nonlinearity characteristics during the reaction
process because the neural network has the advantages of
good self-learning and high nonlinearity (Wang et al., 2021;
Zhang et al., 2023). A clustering-based data partitioning
method and a partitioned all-season coverage model
established by the spiral self-attention neural network to
perform real-time multi-forward-step temperature prediction
for battery systems were presented by authors in (Hong et al.,
2023). The results demonstrated that the partitioned training
model has excellent online prediction performance for
nondifferentiated real-world vehicle operation in all climates.
This method requires a great amount of experimental data to
support the construction of the battery model. For the equivalent
circuit model, it can be used to describe the voltage features of
lithium-ion battery in the charging and discharging processes.
The battery can be equivalent to circuit configuration, and the
variation between voltage and current is reflected by the
combination of various electronic components. The dynamic
and static characteristics of the battery can be well displayed
by appropriate circuit configuration in the charging and
discharging processes (Chen et al., 2021). Compared with the
electrochemical model and machine learning model or data-
driven model, the equivalent circuit model has obvious
advantages: 1) It can be used in various types of batteries
because of its strong adaptability; 2) it can be described by
mathematical expression; 3) identification of this model
parameters is much easier than that of other models.

Generally, the SOC estimation comprises the following
techniques: coulomb counting technique (Jeong et al., 2014),
open circuit voltage (OCV) technique (Tong et al., 2015),
impedance spectroscopy technique (Qahouq and Xia, 2017),
diverse intelligent technique (Hu et al., 2018) and Kalman filter
(KF) technique (Wang et al., 2020). For the coulomb counting
technique, the SOC of battery is estimated by integral approach,
the coulomb-counting technique is the most commonly used
approach for SOC estimation by integral approach due to its
simplicity and ease of implementation (Li et al., 2017). But the
precision is influenced by initial SOC and cumulative calculation
error. For the impedance spectroscopy technique, the precision of
SOC estimation is affected by the battery life, battery geometry,
electrodes material and working temperature. The diverse
intelligent technique was proposed in the literature by
simulating the complicated nonlinear relationship between SOC
and its influencing factors were based on artificial neural networks
method (Hossain et al., 2017), support vector regression method
(Hansen and Wang, 2005), fuzzy logic method (Salkind et al.,
1999). In addition, the fractional-order method was attracted
growing attention in the arena of BMS. The fractional-order
method and its model parameter identification for LIBs based
on the time-domain data was studied by authors in (Wang et al.,
2015). A fractional-order equivalent circuit model was established
and parameterized by authors in (Hu et al., 2018) to co-estimate
the SOC and state-of-health (SOH) using a hybrid genetic
algorithm/particle swarm optimization method. Comparative
studies showed that it improves the modeling accuracy
appreciably from its second- and third order counterparts. The
diverse intelligent technique is highly dependent on the quality and
quantity of training samples and data (Dang et al., 2022). The KF
method generally has good path tracking performance and high
accuracy, which is an effective online SOC estimation method
(Meng et al., 2017; Dang et al., 2022). In addition, KF method also
can be applied to SOC estimation for different dynamic lithium-
ion battery models. Based on equivalent circuit model, the
nonlinear properties of SOC estimation can be exhibited using
KF method. Therefore, the nonlinear Kalman filter algorithms,
such as extended Kalman filter algorithm and sigma point Kalman
filter algorithm, are applied to estimate the SOC of battery (Wang
et al., 2017; Rzepka et al., 2021). A dual fractional-order extended
Kalman filter was put forward to realize simultaneous SOC and
SOH estimation in the investigation by Hu et al. (2018). The
probability distribution function is obtained through the
determined sampling point in the sigma point Kalman filter
algorithm. Compared with above algorithm, the extended
Kalman filter algorithm uses the first order Taylor expansion to
obtain the nonlinear function. This algorithm plays an important
role in the SOC estimation of battery due to the accuracy and
effectiveness (Chin et al., 2018; Yang et al., 2022). Firstly, the initial
value estimation of lithium-ion battery using extended Kalman
filter algorithm can significantly reduce the estimation error.
Secondly, the extended Kalman filter algorithm can be corrected
quickly and has good self-correcting ability when the estimation
error is large. Finally, in early calibration stage of the battery,
measurement error and Gaussian white noise error are occurred
because of the measurement sensor itself, but extended Kalman
filter algorithm can effectively eliminate these errors.
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However, the established lithium-ion battery model
determines the precision of the SOC estimation, which is
closely associated with the parameter identification of the
battery. In order to reduce the calculation time, the SOC
estimation process of extended Kalman filter algorithm needs to
be decreased, which may require a choice between computational
accuracy and computational efficiency. In addition, the
identification parameters of battery model are different due to
the different conditions. The variation of identification parameters
causes the battery model error, which affects SOC estimation
results. However, the parameter identification of lithium-ion
battery with the nonlinear time varying property is very
complicated especially when the battery in different charging
and discharging states. A linear SOC estimation model with a
posterior measurement calibration based on the common KF
algorithm was proposed by authors in (Wu et al., 2021). This
algorithm not only needs the battery estimation model to have high
precision, but also requires to exactly characterize the estimation
process noise and measurement noise existed in the battery. But
these noises cannot be characterized precisely using the common
KF algorithm in the battery estimation model due to the
randomness and complexity of these noises and the
susceptibility of the common KF algorithm to noises.

In view of the complexity of above noises and the strong
sensitivity of common KF algorithm to noises, a SOC estimation
method of lithium-ion battery using an extended Kalman filter
algorithm is proposed in this paper. Based on the second-order
resistor-capacitance (RC) equivalent circuit model, the battery
model parameters are identified using the MATLAB/Simulink
software. A battery parameter test platform is built to test the
charge-discharge efficiency, open-circuit voltage and SOC
relationship curve, internal resistance and capacitance of
individual battery are tested. The simulation and experimental
results of the terminal voltage for lithium-ion battery are
compared to verify the effectiveness of this method. In
addition, the general applicability of SOC estimation
algorithm for the battery pack is explored. The ampere-hour
integral method combined with the battery modeling is used to
estimate the SOC of lithium-ion battery. The comparison of
extended Kalman filter algorithm between experimental results
and simulation estimated results is obtained to verify the
accuracy.

The main contributions of this paper can be summarized as:
1) We propose a SOC estimation method of lithium-ion battery
using an extended Kalman filter algorithm. The ampere-hour
integral method combined with the battery modeling can be used
to estimate the SOC of lithium-ion battery. 2) Based on the
second-order resistor-capacitance equivalent circuit model, we
identify the battery model parameters by MATLAB/Simulink
software. The fitting curves are obtained based on the curve
between open circuit voltage and the state of charge. 3) We
further verify the accuracy of extended Kalman filter algorithm
between experimental and simulation results. The extended
Kalman filter algorithm proposed in this study not only
establishes the theoretical basis for the condition monitoring
but also provides the safe guarantee for the engineering
application of lithium-ion battery.

2 Methods and models

2.1 Second-order RC equivalent circuit
model

In order to ensure the stability and accuracy of lithium-ion
battery model, it is necessary to determine the mathematical
relationship among battery characteristic parameters, including
the capacity, internal resistance, OCV and SOC. Before
establishing the mathematical relationship, the type of
battery model is clarified. The second-order RC equivalent
circuit model consisting of two RC circuits and a resistor in
series is used to determine the lithium-ion battery model in this
paper, which is shown in Figure 1. The two RC circuits in this
model represent the influence factors caused by concentration
polarization and the variation of battery parameters caused by
electrochemical polarization. According to Kirchhoff’s law, the
second-order RC equivalent circuit model (Ren et al., 2020) is
given by

UOCV � U1 + U2 + IR0 + Ud

I � U1

R1
+ C1

dU1

dt

I � U2

R2
+ C2

dU2

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where UOCV, a function of SOC, is the OCV of the lithium-ion
battery. Ud is the terminal voltage that can be measured directly. R0

is the Ohmic internal resistance, R1 is the concentration polarization
resistance, R2 is the electrochemical polarization resistance, C1 is the
concentration polarization capacitance, C2 is the electrochemical
polarization capacitance, I is the load current. Eq. 1 can be
rewritten by

Ud � UOCV − U1 − U2 − IR0

dU1

dt
� I

C1
− U1

R1C1

dU2

dt
� I

C2
− U2

R2C2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

FIGURE 1
Second-order RC equivalent circuit model consisting of two RC
circuits and a resistor in series of lithium-ion battery.
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2.2 Battery model parameters identification
method

In order to improve the SOC estimation precision of lithium-
ion battery, the SOC estimation model is established by
MATLAB/Simulink software. In addition, the characteristic
parameters of battery model are identified by the Battery
module in MATLAB/Simulink. The parameters identification
method is to solve the problem of R0, R1, R2, C1, and C2

parameters in the battery model based on OCV-SOC data
collected in the simulation process. Then the parameters
identification method can be applied to the measurement data
of actual battery to realize the parameter identification of second-
order RC equivalent circuit model. The battery model parameters
identifications in the simulation process mainly include the
capacity identification, the charging and discharging efficiency
identification, the OCV-SOC curves identification, the resistance
and capacitance identifications.

In order to predict the SOC of lithium-ion battery precisely,
the maximum usable capacity of lithium-ion battery should be
obtained to eliminate the influence of charging efficiency on the
overall simulation process. It is assumed that the lithium-ion
battery is considered fully charging when the current is less than
0.03 C. The two-stage charging method of battery is used, which
is called the hybrid pulse capability characteristic experiment
when the charging and discharging cycles number reaches a
certain number. The charging and discharging processes are
performed at the room temperature 25°C. Firstly, the lithium-
ion battery is charged at constant current until the battery voltage
reaches 4 V. Secondly, the lithium-ion battery is charged at
constant voltage, so that the charging voltage of the battery is
maintained at 4 V, and the charging is stopped when the charging
current is lower than 0.03 C. Five charging and discharging
repeatability experiments are performed and the average
capacity of lithium-ion battery are obtained in this paper, as
shown in Table 1. The maximum capacity of lithium-ion battery
is 32.28 Ah.

Due to the energy loss induced by electrochemical
polarization, concentration polarization and other
electrochemical phenomena, as well as the electric energy loss
caused by the internal resistance and circuit of the battery in the
charging and discharging processes, the energy cannot be 100%
converted into chemical energy and stored in the battery in the
charging process, and the stored energy cannot be 100% released
to the load in discharging process. There is a problem of the
energy conversion efficiency in the charging and discharging
processes. Generally, capacity efficiency DODc or energy
efficiency DODe can be used to evaluate the energy conversion
and utilization in the charging and discharging process (Khaki
and Das, 2023), which are shown by

DODch
c � Cch

Cn

DODdis
c � Cdis

Cn

DODch
e � Wch

Wn

DODdis
e � Wdis

Wn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where DODch
c and DODdis

c are the charging capacity efficiency and
the discharging capacity efficiency of lithium-ion battery,
respectively. Cch, Cdis, and Cn are the actual input capacity, the
actual output capacity and the nominal capacity, respectively.
DODch

e is the charging electrical energy efficiency, DODdis
e is the

discharging electrical energy efficiency. Wch, Wdis, and Wn are the
actual input electrical energy, the actual output electrical energy and
the nominal electrical energy, respectively. The charging and
discharging efficiency of battery in the current research is about
98.21%.

The OCV-SOC curve of the battery in charging and discharging
process is obtained, as shown in Figure 2A. The quintic term fitting
curves are obtained based on OCV-SOC curve and the conventional
residual error is 0.82%, as shown in Figure 2B. The relationship
between OCV and SOC of lithium-ion battery is given by

OCV � 4.5465 + 0.0161 · SOC − 7.8443 · SOC2 + 2.1203 · SOC3

−3.9585 · SOC4 + 2.1945 · SOC5 (4)

2.3 MATLAB/Simulink method

The second-order RC equivalent circuit diagram for lithium-ion
battery in MATLAB/Simulink software is shown in Figure 3. The
circuit element is confirmed in Simulink Library Browser according
to the second-order RC equivalent circuit diagram. Each
controllable circuit element is controlled using the Lookup Table
(1-D) module, which is used to load data directly associated with
SOC into the module. The output ports of voltmeter and ammeter
are connected with PS-Simulink module, which is a module that
converts the physical signals into the digital signals on Simulink
platform. In the outermost layer, the PMC_Port module is used to
realize the contact between internal encapsulation and external
physical signal. Finally, the current and terminal voltage are
transmitted to the ammeter and voltmeter in real time, and then
the data is transmitted out of the package through the Outport
module.

In the conventional charging process of lithium-ion battery,
the constant-current charging is generally adopted to reach the
steady-state voltage designed by the target battery firstly, and
then constant-voltage charging is adopted to continue charging.
This is because constant-current charging with large current
significantly improves the charging rate of the battery.
Although high current charging can improve the charging
efficiency of the battery, it cannot avoid the problem of virtual
high voltage at the end of charging process due to the
enhancement of the concentration polarization internal
resistance of battery. Therefore, by using the constant voltage

TABLE 1 Capacity of lithium-ion battery during the five charging and
discharging repeatability experiments.

Experiment
number

1 2 3 4 5 Average

Capacity (Ah) 32.42 32.25 32.13 32.37 32.26 32.28
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charging mode at the end of constant current charging process,
the depth of discharge (DOD) of battery can be utilized to the
maximum available capacity as much as possible by reducing the
charging current. For the current charging and discharging
strategy, the charging mode of constant current followed by
constant voltage can not only increase the charging efficiency
of the battery, but also reduce the damage to the system in
charging process.

A lithium-ion battery model for most popular battery types in
the MATLAB/Simulink software is adopted to simulate the charging
and discharging processes of the battery. The nominal voltage,
current and rated capacity are set to 47.84 V, 0.736 A and 23 Ah.
The initial SOC is 95% and the battery response time is 1 × 10−4 s.
The charging and discharging simulation model in the MATLAB/
Simulink software of lithium-ion battery is shown in Figure 4. In
addition, the load is set to 65Ω during simulation process, the
discharge mode is set to SOC from 95% to 90%, the simulation time
is set to 10 min.

2.4 Extended Kalman filter algorithm

The extended Kalman filter algorithm can not only handle with
the problems of linear system, but also solve some problems of
nonlinear system. The Kalman filter algorithm theory is a recursive
method used to deal with the problem of discrete data linear
filtering, it consists of the state equation and the observation
equation (Yang et al., 2022), which can be expressed as

xk+1 � Ak · xk + Bk · uk + wk wk ~ 0, Qk( ) (5)
yk � Ck · xk +Dk · uk + vk vk ~ 0, Rk( ) (6)

where xk, yk and uk are the state quantity, the observed quantity (the
output quantity) and the external excitation at time k. Ak is the
transfer matrix, which can reflect the influence of the previous
moment on the current state. Bk and Ck are the input matrix and the
output matrix, respectively. Dk is the feedforward matrix, which can
reflect the influence of the state on the observation. wk and vk denote
the stochastic process noise and the observation measurement noise

FIGURE 2
OCV-SOC curve of lithium-ion battery in the charging and discharging process: (A) OCV-SOC curve; (B) quintic term fitting curves.

FIGURE 3
Second-order RC equivalent circuit diagram for lithium-ion battery in MATLAB/Simulink software.
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respectively, which are Gaussian white noise with no correlation and
zero mean (Hu et al., 2018). Qk and Rk denote the stochastic process
noise covariance and the observation measurement noise
covariance, respectively,

The extended Kalman filter algorithm processing for SOC
estimation can transform the nonlinear problem into the linear
problem through the Gaussian reduced order (Hu et al., 2018). The
state equation and the observation equation of extended Kalman
filter algorithm are given by (Wu et al., 2021; Wu et al., 2022; Ge
et al., 2022)

xk � f xk−1, uk−1( ) + wk wk ~ 0, Qk( ) (7)
yk−1 � h xk−1, uk−1( ) + vk vk ~ 0, Rk( ) (8)

where f(xk−1, uk−1) and h(xk−1, uk−1) are the nonlinear state
function and the nonlinear measurement function related to
system state, respectively. Since the extended Kalman filter
algorithm can perform the second order Taylor series expansion
of the nonlinear part, it could well describe the dynamic response of
second-order RC equivalent circuit model (Xu X. D. et al., 2022).
Consequently, for any observation point xk−1* , f(xk−1, uk−1) and
h(xk−1, uk−1) are expanded by using Taylor series expansion and the
higher order terms are ignored, which can be expressed as

f xk−1, uk−1( ) ≈ f xk−1* , uk−1( ) + zf xk−1, uk−1( )
zxk−1

∣∣∣∣∣∣∣
xk−1�xk−1*

(xk−1 − xk−1* )
(9)

h xk−1, uk−1( ) ≈ h xk−1* , uk−1( ) + zh xk−1, uk−1( )
zxk−1

∣∣∣∣∣∣∣
xk−1�xk−1*

(xk−1 − xk−1* )
(10)

LetAk−1* � zf(xk−1 ,uk−1)
zxk−1 |xk−1�xk−1* andCk−1* � zh(xk−1 ,uk−1)

zxk−1 |xk−1�xk−1* , Eqs. 9,
10 can be rewritten as

f xk−1, uk−1( ) ≈ Ak−1* xk−1 + [f xk−1* , uk−1( ) − Ak−1* xk−1* ] (11)

h xk−1, uk−1( ) ≈ Ck−1* xk−1 + [h xk−1* , uk−1( ) − Ck−1* xk−1* ] (12)
The specific algorithm of extended Kalman filter is divided

into six steps, which can be expressed as displayed in Table 2,
where Pk-1 indicates the variance matrices of state estimation
error. Rk represent the variance matrices for vk. The general flow
of first-order extended Kalman filter algorithm is shown in
Figure 5. The voltage and current data are input into the
second-order RC equivalent circuit model module. The model
identification parameters R0, R1, C1, R2, and C2 are inputted into
the extended Kalman filter algorithm module after second-order
RC equivalent circuit model parameter identification for SOC
estimation.

The SOC estimation model based on the extended Kalman
filter algorithm using MATLAB/Simulink software is shown in
Figure 6. The input of the SOC estimation model is the _.mat file
under different working conditions, which includes sampling
step time, sampling voltage, sampling current and SOC
measured value. The package model diagram of the extended
Kalman filter algorithm based on MATLAB/Simulink software is
shown in Figure 6A. The specific module of the extended Kalman
filter algorithm is shown in Figure 6B. The charging and
discharging data obtained by specific module as the main
body is imported into extended Kalman filter algorithm
package model. It should be noted that the sampling step
time is 6.25 × 10−2 s per step.

3 Results and discussion

3.1 Charging and discharging parameters
identification

For the current charging and discharging strategy, the
charging mode of constant current followed by constant

FIGURE 4
Charging and discharging simulation model in the MATLAB/Simulink software of lithium-ion battery.
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voltage can not only increase the charging efficiency of the
battery, but also reduce the damage to the battery in charging
process. The changing curves of SOC, the current and terminal
voltage with the time of lithium-ion battery are shown in
Figure 7. The initial SOC of lithium-ion battery is about 95%
and the simulation time is set to 10 min. The SOC of the battery
in discharging process is set from 95% to 90%.

The second-order RC equivalent circuit model of lithium-ion
battery model in current research is shown in Figure 1. When the
lithium battery is in constant current discharging, according to Eqs.
1, 2, the terminal voltage is expressed by

Ud t( ) � UOCV − IR0 − IR1 1 − e−
t

R1C1( ) − IR2 1 − e−
t

R2C2( ) (13)

It is assumed that the voltage across the capacitor is considered
equal, then

U1 0( ) � IR1 1 − e−
t

R1C1( )
U2 0( ) � IR2 1 − e−

t
R2C2( )

⎧⎪⎨⎪⎩ (14)

The change of terminal voltage from Ud (t
−) to Ud (t

+) is mainly
caused by the voltage drop on the Ohmic internal resistance R0. The
Ohmic internal resistance R0 is given by

R0 � UOCV − Ud t( )
I

(15)

Let τ1 � R1C1 and τ2 � R2C2, Eq 13 can be rewritten by

Ud t( ) � UOCV − IR0 − a 1 − e−
t
τ1( ) − c 1 − e−

t
τ2( ) (16)

where the identification parameters of battery model are R1 � a
I,

R2 � c
I, C1 � Iτ1

a and C2 � Iτ2
c .

In order to identify above battery model parameters,
these parameters are fitted using least squares method
according to different SOC simulations. The identification
parameters of the lithium-ion battery model described
by second-order RC equivalent circuit model are shown in
Table 3.

3.2 Relationship between SOC and model
identification parameters

Five individual lithium-ion battery samples are selected by
normal distribution method. The model identification parameters
of five individual lithium-ion battery samples are identified through
the charging and discharging experiments. The comparison between

TABLE 2 Six steps of extended Kalman filter algorithm.

Six steps of extended Kalman filter algorithm

Step 1: Assign the initial values x0
* to the system when k =

0: x0* � E[x0], P0 � E[(x0 − x0
*)(x0 − x0

*)T]

Step 2: State estimation xk−1* time update: xk−1* � f(x*k, uk)

Step 3: Covariance error Pk-1 time update: Pk−1 � Ak−1* Pk−1A* T
k−1 + Bk−1* Qk−1B* T

k−1

Step 4: Calculate Kalman gain Kk: Kk � Pk−1C*
k
T(C*

kPk−1Ck
*T + Rk)−1

Step 5: State estimation x*k measurement update: x*k � xk−1* + Kk(yk − h(xk−1* , uk))

Step 6: Covariance error Pk measurement update: Pk � (I − KkC*
k)Pk−1

FIGURE 5
General flow of first-order extended Kalman filter algorithm.
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FIGURE 6
SOC estimation model based on the extended Kalman filter algorithm using MATLAB/Simulink software: (A) package model diagram; (B) specific
module of the extended Kalman filter algorithm.

FIGURE 7
Changing curves of the SOC (A), the current (B) and the terminal voltage (C) with the time of lithium-ion battery.
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simulation and experimental results of terminal voltage described by
second-order RC equivalent circuit model is shown in Figure 8. The
research results show that the terminal voltage of simulation results
is in conformity with that of the experimental results, and the
comparison error is 0.3%.

The relationships between SOC and OCV, model identification
parameters R0, R1, C1, R2, and C2 of five individual lithium-ion
battery samples are shown in Figure 9. According to results of SOC-
OCV curves, the OCV of five individual lithium-ion battery samples
has a good consistency with the variation of SOC from 0.10 to 1.00,
as shown in Figure 9A.

The resistance to current flow is internal resistance when the
lithium-ion battery is being charged and discharged, which is an

important indicator of energy loss performance of the battery. In
general, there are two kinds of internal resistance, the ohmic internal
resistance and the polarized internal resistance, inside lithium-ion
battery. On the one hand, the Ohmic internal resistance mainly
consists of contact resistance among the positive and negative
electrodes, the electrolytes and separator, which is relevant to the
dimension and material of battery. On the other hand, the
polarized internal resistance includes electrochemical
polarization resistance induced by polarization in the
electrochemical reaction and the concentration polarization
resistance induced by the concentration difference in the
polarization process. In addition, the internal resistance of
battery varies with time in charging and discharging processes

TABLE 3 Identification parameters of the lithium-ion battery model described by second-order RC equivalent circuit model.

SOC R0 (mΩ) R1 (mΩ) C1 (F) R2 (mΩ) C2 (F) OCV (V)

0.95 1.3634 0.09357 935059.7 0.48739 17687.4 4.179

0.90 1.3509 0.12778 543835.4 0.51087 16312.1 4.141

0.85 1.3447 0.19026 394294.0 0.56609 16073.8 4.009

0.80 1.3230 0.23013 284010.6 0.55435 16986.1 4.061

0.75 1.3223 0.43343 156240.9 0.54130 19657.3 4.002

0.70 1.3223 0.76043 126811.7 0.49391 20765.6 3.976

0.65 1.3137 0.86652 211285.0 0.45522 22551.6 3.951

0.60 1.2919 0.47522 395322.0 0.42070 21530.9 3.922

0.55 1.2795 0.21896 668195.6 0.40652 22022.3 3.863

0.50 1.4099 0.15122 417223.7 0.45696 17326.9 3.834

0.45 1.3975 0.18522 349906.7 0.45261 18065.5 3.800

0.40 1.3789 0.28583 238814.4 0.43826 19435.7 3.749

0.35 1.3602 0.42909 216190.2 0.42143 22011.6 3.736

0.30 1.3416 0.55870 218172.0 0.39283 22310.7 3.658

0.25 1.3106 0.52826 309011.4 0.37078 22778.7 3.551

0.20 1.3671 0.32557 435253.0 0.34143 22408.7 3.480

0.15 1.3298 0.25313 508368.6 0.33109 24535.8 3.448

0.10 1.4876 0.20174 572257.7 0.32235 24857.7 3.387

0.05 1.4701 0.20191 569267.4 0.32239 24755.2 3.323

FIGURE 8
Comparison between the simulation and experimental results of the terminal voltage described by second-order RC equivalent circuit model.
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due to the electrode composition, lithium ions concentration and
temperature changes with reaction time.

The Ohmic internal resistance R0, which is instantaneous, varies
from 1.29 mΩ to 1.49 mΩ, with the overall error of less than 15% (as
shown in Figure 9B), which meets the engineering application
demand of lithium-ion battery. It is assumed that the ohmic
internal resistance obeys Ohm’s law as a whole. The
concentration polarization resistance R1 and the electrochemical
polarization resistance R2 are shown in Figures 9C, E. The

concentration polarization resistance R1 fluctuates with the
increase of SOC. The concentration polarization resistance is
maximum when SOC are 0.30 and 0.70, while the concentration
polarization resistance is minimum when SOC are 0.10, 0.50, and
0.95. It is assumed that the concentration of lithium ions is uniform
inside the battery before charging and discharging process. The
diffusion rate of lithium ions is lower than electrochemical reaction
rate in charging and discharging process, which causes the
accumulation of electrical charge and then the concentration

FIGURE 9
Relationships between the SOC (from 0.10 to 1.00 or from 0.05 to 0.95) and OCV, model identification parameters R0, R1, C1, R2, and C2 of five
individual lithium-ion battery samples: (A) SOC-OCV; (B) SOC-R0; (C) SOC-R1; (D) SOC-C1; (E) SOC-R2; (F) SOC-C2.
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polarization. The concentration polarization time (microsecond
range) is much less than the electrochemical polarization time
(sub-millisecond range). So the concentration polarization
resistance increases with SOC from 0.05 to 0.3. However, the
accumulated electrical charge is consumed with electrochemical
reaction of lithium-ion battery, and the concentration
polarization resistance decreases with the increase of SOC from
0.30 to 0.50, as shown in Figure 9C. The variation trend of
concentration polarization capacitance is opposite to that of
concentration polarization resistance, as shown in Figure 9D.
Since the electrochemical reaction time is in the order of
microseconds, the electrochemical polarization resistance
increases with the increase of SOC as a whole, as shown in
Figure 9E. So the variation trend of electrochemical polarization
capacitance is opposite to that of electrochemical polarization
resistance, as shown in Figure 9F. The model identification
parameters of five lithium-ion batteries have a certain error when
SOC from 0.05 to 0.20, as shown in Figures 9C–F, which is mainly
due to the redistribution of resistance and capacitance in the initial
charging and discharging processes.

According to the data results in Figure 9, the OCV and model
identification parameters R0, R1, C1, R2, and C2 of lithium-ion
battery when SOC = 0.50 are obtained, as shown in Table 4. The
average values, variances and distribution intervals of OCV and
model identification parameters also can be obtained. Take the
OCV as an example, the average value is �UOCV � 4.140V, the
variance is σ2 � 1

4 ·∑4

i�1(Ui − �UOCV)2 � 5.000 × 10−7, the
maximum SOC and minimum SOC are Umax � 4.141V and
Umin � 4.140V. The simulation and experiment results
between OCV and time of lithium-ion battery when SOC =
0.50 are shown in Figure 10A, which indicates that this
battery model has good precision. The average error of OCV
for simulation result is 0.023% when SOC = 0.50, as shown in
Figure 10B.

3.3 SOC estimation based on the extended
Kalman filter algorithm

To make the evaluation more clarity, the comparison results of
SOC estimation and corresponding error of lithium-ion battery
between the current method and the previous method studied by
authors in (Liu et al., 2016) are proposed, which is shown in
Figure 11. The results of the experiment and SOC estimation
results using current method and the previous method of fully

charged lithium-ion battery are shown in Figure 11A with 1C
discharging rate. It can also be seen that the SOC estimation
results of the current model is consistent with the experiment
results and the fractional order model (Liu et al., 2016). A certain
error is existed between integer order model and other method. The
error of SOC estimation between current method and previous
method is shown in Figure 11B. The maximum relative errors of
current estimation model, fractional order estimation model and
integer order estimation model are 1.63%, 1.62% and 2.94%,
respectively. The reason is that the SOC estimation method
based on the extended Kalman filter algorithm can precisely
describe the battery state and timely adjust the Kalman gain
matrix according to the measurement information and the
updated real-time battery information. Due to the significant
hysteresis effect between fractional order model and integral
order model, the inaccurate SOC estimated by the extended
Kalman filter algorithm can be amended during the iteration
process.

The state variable of SOC estimation based on the extended
Kalman filter algorithm for lithium-ion battery is
xk � [ SOCk U1,k U2,k ]T. The external excitation of system is
uk � Ik. According to the ampere-hour integral method, The
SOC is expressed as the ratio of the remaining capacity after a
period of using time to the total capacity Qn after fully charging of
the battery. So the SOC can be expressed by coulomb counting as
(Xu C. et al., 2022)

SOC t( ) � SOC t0( ) −
∫t

t0
I t( )ηdt
Qn

(17)

where SOC(t0) indicates the state of charge at initial time t = t0.
Qn is the total capacity after fully charging of the battery, η is the
Coulomb efficiency relevant to the charging current, discharging
current and working temperature. t) is the working current for
the battery, which its forward direction is specified as the
discharging direction.

The discretization form of Eq. 2 is

Ud,k � UOCV SOCk( ) − U1,k − U2,k − IkR0

U1,k � e
−Δt
τ1 U1,k−1 + 1 − e

−Δt
τ1( )Ik−1R1

U2,k � e
−Δt
τ2 U2,k−1 + 1 − e

−Δt
τ2( )Ik−1R2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(18)

where k (k = 1, 2, . . . , n) denotes the discretization step with a
sample interval of Δt. τi = RiCi (i = 1, 2). And Eq 17 can be written as

TABLE 4 Model identification parameters of lithium-ion battery when SOC = 0.50.

Model identification parameters Average value Variance Maximum value Minimum value

OCV (V) 4.140 5.000 × 10−7 4.141 4.140

R0 (mΩ) 1.373 7.470 × 10−4 1.410 1.348

R1 (mΩ) 0.167 1.500 × 10−4 0.183 0.151

R2 (mΩ) 0.446 1.111 × 10−4 0.457 0.430

C1 (F) 4.357×105 2.947×108 4.624×105 4.172×105

C2 (F) 1.941×104 1.848×108 2.091×104 1.733×104
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SOCk � SOCk−1 − ηΔt
Qn

Ik−1 (19)

The state space model equation of the system was linearized by
first-order Taylor series expansion, and the matrix parameters after
linearization of first-order extended Kalman filter algorithm are
expressed as follows

A*
k[ ] � zf xk,uk( )

zxk

∣∣∣∣∣ xk�x*k[ ] �

1 0 0

0 e
−Δt
τ1 0

0 0 e
−Δt
τ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bk[ ] �

−ηΔt
Qn

R1 1 − e
−Δt
τ1( )

R2 1 − e
−Δt
τ2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C*
k[ ] � zh xk,uk( )

zxk

∣∣∣∣∣ xk�x*k[ ] �

zUOCV SOCk( )
zSOCk

−1

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, Dk[ ] � −R0[ ]

(20)

Combining Eqs. 18–20, the state-space equations bymatrix form
for SOC estimation of the battery can be concluded as

SOCk+1

U1,k+1

U2,k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 0

0 e
−Δt
τ1 0

0 0 e
−Δt
τ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOCk

U1,k

U2,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

−ηΔt
Qn

R1 1 − e
−Δt
τ1( )

R2 1 − e
−Δt
τ2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ik[ ] + wk[ ]

Ud,k[ ] � zUOCV SOCk( )
zSOCk

−1 −1[ ]
SOCk

U1,k

U2,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − Ik[ ] R0[ ] + vk[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

The linearized discrete equation of the nonlinear system is given
by (Wu et al., 2021; Wu et al., 2022; Ge et al., 2022)

xk+1[ ] � A*
k[ ] · xk[ ] + Bk[ ] · Ik[ ] + wk[ ] (22)

yk[ ] � C*
k[ ] · xk[ ] + Dk[ ] · Ik[ ] + vk[ ] (23)

FIGURE 10
Relationships between theOCV and time of lithium-ion battery when SOC= 0.50: (A) comparison between the simulation and experimental results;
(B) average error of OCV.

FIGURE 11
Comparison of SOC estimation and corresponding error of lithium-ion battery between the current result and the previous result studied by authors
in (Liu et al., 2016): (A) SOC estimation; (B) error of SOC estimation.
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According to the general flow of first-order extended Kalman filter
algorithm as shown in Figure 5, the parameters identified by the second-
order RC equivalent circuit model are input into the program to fit the
function expressions between each parameter and SOC firstly. Then, the
circuit parameter values of each parameter under the SOC are input
initially to obtain the initial value of state variable. The voltage, current,
linearized parameter matrix and initial parameter data are put into the
recursive method of extended Kalman filter algorithm, and the new
SOC value and capacitance polarization voltage are obtained, that is, the
first recursive process is completed.

The initial state variable of SOC estimation for the lithium-ion
battery is assumed as x0 � [ 0.95 0 0 ]T based on the extended
Kalman filter algorithm. The Covariance error time update is
x0 � [ 0.95 0 0 ]T. The stochastic process noise covariance and
the observation measurement noise covariance are Q �
1 × 10−6 0 0

0 1 × 10−6 0
0 0 1 × 10−6

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ and R = 0.001, respectively.

The SOC estimation results of lithium-ion battery based on the
extended Kalman filter algorithm are shown in Figure 12. In order to
verify the accuracy of battery estimation model, the simulation
results based on extended Kalman filter algorithm are compared
with the experimental results. The comparison between simulation
results obtained by the extended Kalman filter algorithm based on
MATLAB/Simulink and experimental results is shown in
Figure 12A. The results show that the simulation results obtained
by the extended Kalman filter algorithm based on MATLAB/
Simulink are in good consistent with experimental results. The
SOC error of simulation result is shown in Figure 12B. The SOC
estimation results based on MATLAB/Simulink converge quickly
and its error is about 0.02%, which reflects the precision of the
extended Kalman filter algorithm.

4 Conclusion

At present, the technical bottleneck of lithium-ion battery is
accompanied by the problems of high-performance battery
development and maintenance caused by the increasing power

demand. Therefore, the state of charge estimation of battery
management system has become a wide concern research topic in
the field of lithium-ion battery. The state of charge estimation of
lithium-ion battery based on extended Kalman filter algorithm is
investigated in this paper. Based on the second-order resistor-
capacitance equivalent circuit model, the battery model parameters
are identified using the MATLAB/Simulink software. The quintic term
fitting curves are obtained based on the curve between the open circuit
voltage and the state of charge, and the conventional residual error is
0.82%. The variation trend of concentration polarization capacitance is
opposite to that of concentration polarization resistance. The model
identification parameters of five lithium-ion batteries have a certain
error when state of charge from 0.05 to 0.20, which is mainly due to the
redistribution of resistance and capacitance during the initial charging
and discharging processes. The comparison of extended Kalman filter
algorithm between experimental results and simulation estimated
results is obtained to verify the accuracy. The results show that the
simulation results obtained by the extended Kalman filter algorithm
based on MATLAB/Simulink are in good agreement with previous
experimental results. The extended Kalman filter algorithm proposed in
this study has high effectiveness and accuracy to estimate SOC, which
not only establishes the theoretical basis for the condition monitoring
but also provides the safe guarantee for the engineering application of
lithium-ion battery.
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