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In a distribution system, sparse reliable samples and inconsistent fault
characteristics always appear in the dataset of neural network fault detection
models because of high impedance fault (HIF) and system structural changes.
In this paper, we present an algorithm called Generative Adversarial Networks
(GAN) based on the Reptile Algorithm (GANRA) for generating fault data and
propose an evolution strategy based on GANRA to assist the fault detection of
neural networks. First, theGANRA generates enough high-quality analogous fault
data to solve a shortage of realistic fault data for the fault detection model’s
training. Second, an evolution strategy is proposed to help the GANRA improve
the fault detection neural network’s accuracy and generalization by searching
for GAN’s initial parameters. Finally, Convolutional Neural Network (CNN) is
considered as the identification fault model in simulation experiments to verify
the validity of the evolution strategy and the GANRA under the HIF environment.
The results show that the GANRA can optimize the initial parameters of
GAN and effectively reduce the calculation time, the sample size, and the
number of learning iterations needed for dataset generation in the new grid
structures.

KEYWORDS

generative adversarial networks, few sample, Reptile algorithm, meta learning, high
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1 Introduction

The pole-to-ground faults are the most likely short-circuit faults in distribution
systems, which are mainly caused by insulation degradation. The pole-to-ground faults
can be either low impedance faults or high impedance faults (HIFs) depending on the
grounding impedance (Xi et al., 2021). The pole-to-pole faults are generally low impedance
faults and more easily to be found (Salomonsson et al., 2007). Under the HIFs, the
fault current is not sufficient to trip the overcurrent relays due to high grounding
impedance. The typical zero-sequence voltage waveforms of high impedance fault and low
impedance fault is shown in Figure 1A. Therefore, a better way to prompt HIFs should
be proposed. Recently, the applications of neural networks in a HIF detection model,
especially in the distribution system, are widely reported. Flauzino et al. (2006) propose
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a model for discriminating HIF by combining artificial neural
networks (ANN) with several statistical techniques. But it mainly
focuses on designing practical applications, and the details of
ANN are ignored. Ye et al. (2016) discuss a distribution system
faults’ classification by combining a traditional BP neural network
with wavelet packet technology. However, this conventional neural
network is used less due to the low training speed and complex
connection. Considering these shortcomings of traditional BP
neural networks; Zhang (2018) uses Convolutional Neural Network
(CNN) as the HIF detection model and exploits the hidden
characteristics from the decomposition of the HIF waveform
to develop CNN’s classification capability. CNN is considered
to be promising as the identification fault model because of
its good performance in reducing training time and connection
complexity.

Applying neural networks in distribution system fault detection
provides new possibilities for improving fault detection accuracy
and even detecting faults with obscure characteristics (such asminor
current faults). However, the particularity of small probability faults
and frequent changes in the distribution system grid structure
(Geng et al., 2013) directly lead to a shortage of reliable training
data, which limits the practical application scope of neural networks.
In recent literature, some solutions have been proposed for the
above defects. In emphasizing hidden fault features, Wan and Zhao
(2018) use Hilbert-Huang transform with wavelet packet transform
preprocessing (WPT-HHT) to process the transient zero-sequence
current. In solving the problem of rare realistic data, Xie (2019)
restores a relatively accurate PSCAD customized model based on
the summer real grid operation mode to increase the number
of reliable samples. Nevertheless, the simulation samples cannot
always fit a frequently changed system. Usually, the regular updating
of the simulation model is hard to keep up with the positive
changes in the natural system; Wang (2020) proposes a virtual fault
sample generation method based on a multiple up-down sampling
procedure to expand the dataset and avoid the above problems.
However, this method can analyze a few types of faults, and its
generalizability remains to be verified. It is uncertain whether
a fault with unprecedented characteristics can be generated. In
addition;Wang (2020) ignores that such generationmethods require
a large amount of data for data feature extraction, which is contrary
to practical engineering situations. Hence; Zhang and Su (2022)
propose an algorithm that applies Knowledge Graph Variational
Auto-encoders (KG-VAE) to create samples from unknown data
tags. And (Goodfellow et al., 2014) propose Generative Adversarial
Networks (GAN) to extract data features from a small dataset. The
generative model is pitted against an adversary in the proposed
adversarial nets framework.

The above solutions try to expand the training dataset’s size and
improve the generated data’s quality. But these solutions consider less
in terms of generalization, and lots of their neural networks choose
initial parameters randomly instead of finding how to optimize the
initial parameters of the neural networks. Admittedly, randomizing
the initial parameters has advantages, for it ensures that the model
under various initial parameter settings is considered. However,
optimizing the initial parameters of the neural networks can improve
the speed and quality of sample generation.

Optimizing the initial parameters of GAN is similar to
determining a valuable search space before the gradient descent

search. It means that when the application scenario changes, the
model can quickly learn a new task based on the “knowledge” it
already has. These methods of optimizing the initial parameters
are often called meta-learning (ML). The meta-learning methods
that have been mentioned in the studies so far mainly involve
Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017), First-
order MAML (FOMAML) (Wang et al., 2021) and Reptile (Amir
and Gandomi, 2022). Many applications in this direction appear.
Like Li et al. (2020) use ML to determine voting weights for load
forecasting, Wang et al. (2022) combine misjudged samples with
ML to find initial parameters of detection models and Xu et al.
(2022) retrofit a model-free ML with Bayesian function. These
applications of ML bring us inspiration. When it comes to the
efficiency of ML, compared with MAML, FOMAML, and other
ML methods, the algorithm of Reptile is faster. This is because, as
a population-based and gradient-free method, Reptile can address
complicated or straightforward optimization problems subject to
specific constraints (Amir and Gandomi, 2022). Its weight update
of the meta-network does not directly use gradient or Hesse matrix
(Nichol et al., 2018). Itmakes the Reptile algorithmmore suitable for
an online power system with multi parameters.

In this paper, our research discusses the influence of a shortage
of HIF training samples and the grid structure changes on the neural
network fault detection model. Then, regarding unsatisfactory
fault data samples in terms of quantity and quality, we present
an algorithm structure called Generative Adversarial Networks
(Goodfellow et al., 2014) based on Reptile Algorithm (GANRA),
which generates samples with few-shot HIF samples. At the same
time, we propose an evolution strategy to make the optimized
initialization parameters better serve the practical application of
neural networks in power systems. The evolution strategy considers
information about various parameters in the distribution systems.
It is empowered by integrating GANRA, the neural network’s
parameter transfer learning, and the solution to distribution
system configurations’ alternation. This composite method can
make the fault detection model more robust in recognition
accuracy and generalization ability, and reduce the influence of grid
structure changes on the fault detection model. And we choose
CNN as the identification fault model to complete verification
experiments.

2 Related principle

2.1 Reptile algorithm

TheReptile algorithm is an efficientML algorithm. It is designed
to find an appropriate initialization parameter for a neural network
to quickly become a target network with a small number of samples
and perform well in future task training (Nichol et al., 2018). The
schematic diagram of parameter update direction in the Reptile
algorithm is shown in Figure 1B. In Figure 1B, the iteration of the
training task network is set to 4 in this section.

TheReptile algorithm is nested by ameta-network and a training
task network.The parameters ϕ of the meta-network are updated by
the parameters θ finding from several stochastic gradient descents
(SGD). SGD is also called the iteration of the training task network
in this paper.The definition of the meta-network updating formula’s
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FIGURE 1
(A). The typical zero-sequence voltage waveforms of high impedance fault and low impedance fault. (B) Schematic diagram of parameter update
direction.

parameter is shown in Eq. 1.

ϕi+1← ϕi + εi (θi(k) −ϕi) (1)

Where ϕi is obtained from the ith meta-network update, θ(k) is
obtained after several network training task iterations with iteration
numberK, and ɛ is themeta-network learning rate, i.e., iterative step.

The algorithm requires a consistent structure of the meta-
network, training task network, and target network to ensure that
the parameters obtained by the Reptile algorithm can be used as
initialization parameters of the target network.

2.2 Adversarial generative network

GAN and its derived models have many applications in
generating samples for data enhancement and data preprocessing in
deep learning (Wang and Zhang, 2021). The critical point is to train
the generator (G) to generate samples. The generator is supposed
to cheat the discriminator (D), which means the samples generated
by the generator will be incorrectly identified as the actual samples.
At the same time, the discriminator constantly recognizes these
generated samples to create more new samples that are infinitely
close to the actual situation. Then, the GAN model composed of G
andD conforms toNash equilibrium (Mo et al., 2020).The objective
function of GAN:

min
G
(max

D
V (G,D)) (2)

Where the function V(⋅) describing the cognitive differences
between G and D for the same kind of things can be expressed as:

V (G,D) = Ex∼Pdata [logD (x)] +Ex∼PG [log (1−D (x))] (3)

Where Ex∼Pdata is the mathematical expectation that the generated
sample is recognized as the actual sample and x is the set of
actual samples. Pdata is the characteristic distribution of the training
samples, PG is the characteristic distribution of generated samples,

and D(x) is the recognition degree of the discriminator to the actual
sample.

The objective function V can finally be solved through gradient
updating. The gradient update formula is shown in Eq. 4.

{{{
{{{
{

θG← θG − ηG
∂V (G,D)

∂θG

θD← θD + ηD
∂V (G,D)

∂θD

(4)

Where θ is defined as the set of parameters used by the specific
function expression in G and D in the design process, and θG(θD)
is the parameter of G (D), ηG(ηD) is the search step of G(D).

3 Generative adversarial network
based on Reptile algorithm

The structures of the meta-network, training task network
and target network are required to be consistent. These networks’
structures refer to the neural network’s layer of the classical GAN
(Geng et al., 2013). The training task network provides the layer
weights and bias in the neural networks G and D. We get these
parameters by several gradient descent iterations with fewer rounds.
The relationship between meta-network, training network, target
network and GAN is shown in Figure 2A.

3.1 Meta-network

According to the updated parameters in the training task
network, the search direction of initialization parameters with more
potential for employment in the future training task is determined.
Furthermore,meta-networks directly determine the specific value of
the initialization parameters.

The meta-network learning rate ɛ (iteration step) is an adaptive
value that changes with the iterations, as shown in Eq. 5.

ε = a i
Imeta
+ b(1− i

Imeta
) (5)
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FIGURE 2
(A). The relationship between meta-network, training network, target network and GAN. (B). The algorithm process of GANRA to optimize the initial
parameters of the target network. (C). The diagram of practical evolution strategy.

Where Imeta is themeta-network loop iteration, i is the currentmeta-
network iteration, a and b are adjustable learning rate parameters.
a and b decide the parameter update vector of the meta-network.
Nichol et al. (2018) shows the learning curves for various loop
gradient combinations. The improvement is more significant when
using a sum of all gradients in Reptile rather than using just
the final gradient in FOMAML. When a=b=1, the parameter
update vector of the meta-network is the sum of all iterations’
gradients from the training task network.These two reasons suggest
that a=b=1 can benefit from taking many meta-network loop
steps.

When multiple training tasks are running in parallel, the
weight updating formula of the meta-network layer is shown in
Eq. 6.

ϕ← ϕ+ ε 1
N

N

∑
j=1
(ϕ̃j −ϕ) (6)

Where ϕ are all layer weight parameters of the meta-network, ϕ̃j are
all layer weight parameters obtained by network training of the jth
training task in the current meta-network iteration round, N is the
number of parallel training tasks used in a meta-network iteration,
j is the task network’s number undergoing training in the current
meta-network iteration.
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Compared with MAML (Wang et al., 2021), First-order MAML
(FOMAML), and other meta-learning optimization algorithms,
without using gradient or Hesse matrix in the weight update of the
meta-network, the Reptile algorithm is faster.

3.2 Training task network

In essence, the training task network is a GAN. And the
parameters’ optimization reference direction of the meta-network
is obtained through two aspects. One is randomly setting sample
tasks with a specified number and categories, i.e., shot and ways,
and the other is using the parameters obtained during the training
task network after several iterations, i.e., k. Moreover, to ensure the
generalization of the meta-network, the training task network uses
multi-task parallel training. Finally, the parameters obtained by the
training task network are averaged. The above steps are shown in
Eq. 6 in section 3.1.

Since GAN is selected as the grid structure of the meta-network,
training task network, and target network, the loss function L in
the GANRA is defined as the approximate expression Ṽ of Eq. 3, as
shown in Eq. 7. It can obtain parameter updates and estimate loss
values more concretely.

L = −Ṽ = −( 1
m

m

∑
i=1

logD(xi) +
1
m

m

∑
i=1

log(1−−D(x̃i))) (7)

Where xi is the ith point sampled in function Pdata(x), x̃i is the ith
point sampled in function PG(x),m is the total number of sampling
points in the feature distribution of x.

3.3 Generalization and rapidity of initial
parameter search

The study takes two rounds of SGD training task network
iteration, i.e., K=2, in a meta-network training as an example of
the parameter updating process.The initialization parameters of the
training task network are shown in Eq. 8.

θ0 = ϕ = {θG,θD} (8)

Parameters obtained in the next two training rounds are shown
in Eqs 9, 10.

θ1 = θ0 − αL
′
0 (θ0) (9)

θ2 = θ0 − αL
′
0 (θ0) − αL

′
1 (θ1) (10)

Where α is the learning rate of the training task network, L′(θ) is
the derivative of the training task network’s loss function when the
parameter is θ.

The simplified expressions of each function are shown in
Eqs 11–14.

gk = L
′
k (θk) (11)

θk+1 = θi − αgk (12)

̄gk = L
′
k (θ0) (13)

H̄k = L
′′
k (θ0) (14)

According to Figure 1 in Section 2.1 and the Reptile principle,
the parameter descent gradient of themeta-network can be obtained
in Eq 15.

gmeta = g1 + g2 = ̄g1 + ̄g2 − αH̄2 ̄g1 + o(α
2) (15)

According to the derivation of gmeta in Eq. 15, when θ0 is the
initialization parameter of the training task network, the overall
average expectation (AvgGrad) of the loss function L’s gradient ̄g
from a training task network is defined in Eq 16.

AvgGrad = Eτ,i [ ̄g] (16)

The current training sequence of data leads to different training
results in the training tasks. Still, due to the random selection of data,
the average expectation of θ0 on the gradient in L is consistent in
Eq 17.

AvgGrad = Eτ,1 [ ̄g1] = Eτ,2 [ ̄g2] (17)

Similarly, the expected value of the other part of gmeta is shown
in Eq 18.

AvgGradInner = Eτ,1,2 [H̄2 ̄g1] = Eτ,1,2 [H̄1 ̄g2] (18)

Then we obtain

AvgGradInner = 1
2
Eτ,1,2 [H̄2 ̄g1 + H̄1 ̄g2]

= 1
2
Eτ,1,2[

∂
∂ϕ1
( ̄g1 ⋅ ̄g2)]

(19)

The expected value of gmeta can be obtained as shown in Eq 20.

E[gmeta] = 2×AvgGrad

−α×AvgGradInner+ o(α2)
(20)

It shows that the meta-network wants to obtain the same
gradient in each training task network’s iteration.This target requires
that the initial parameters have generalization. At the same time,
the smaller the gradient difference in each iteration of the training
task network, the more consistent the search direction of the meta-
network to seek the optimal initial parameters and the shortest
search path.

3.4 Algorithm implementation

The algorithm process of GANRA to optimize the initial
parameters of the target network is shown in Algorithm 1;
Figure 2B.

The hyper-parameters set in the algorithm include the meta-
network iterations Imeta, the number of parallel training tasks N, the
training task network iteration rounds K, single task size shot, and
task type (or fault type) ways.
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1) Initialize the weights of the meta-network ϕ0,

2) Set each hyper-parameter in GANRA,

3) for meta-network iteration rounds i=1,2,…,Imeta

do:

4) N tasks of T are sampled,

5) for j=1,2,…,N do:%Train N parallel tasks in

the training task network

6) Initialize the network weights of training

tasks θj=ϕi−1,

7) for train task network iteration rounds

k=1,2,…,K do:

8) Perform GAN training on task Tj,

9)Obtain the training task network weight θj

of task Tj,

10) end for

11) end for

12) Update the weights of the meta-network

ϕi← ϕi−1 +1/K*εΣ
N
j=1(θj −ϕi)

13) end for

Algorithm 1. GANRA

4 A practical evolution strategy for
neural networks applied to
distribution system

4.1 Existing problems

When investigating the fault detection application of neural
network in the distribution system, it is found that the transmission
lines of the distribution system usually have the following
characteristics not conducive to the fault detection application of
neural network.

1. The distribution system grid structure is complex and frequently
changes, so the training model without continual and timely
updating is not applicable.

2. The number of lines in the distribution system is huge, and it is
impossible to record fault samples for each branch by installing
recording devices. And the types of fault samples recorded are few,
mostly single-phase grounding faults. The above reasons result in
a small number of recorded waves. In addition, because of low
fault current and obscure waveform characteristics, the recorded
waves of HIF identified and recorded by subsequent protection
devices are rare.

3. The fault characteristics of the distribution system cannot be
learned entirely by using samples generated by the simulation
model. First, due to the randomness and time-varying nature
of the weather and the terrain, it is difficult to determine the
fault current and fault types on the line or completely restore the
complex factors through modeling. These lead to a truncation
error. Second, the neural network is a “black box”. It is unclear if
the neural networkmisses the characteristics of the faults, making
it challenging to generate new samples with corresponding tags.

Since the neural network directly learns fault features instead
of grid operation rules, the mature fault detection model in the
actual grid structure cannot be immediately used in the alternative
or changed grid structure. The judgment accuracy of the changed
grid structure would be significantly reduced.

4.2 Practical evolution strategy

For applying the neural network fault detection model to
practical engineering, the evolution strategy armed with GANRA is
designed as the following three stages.

1. Use the GANRA to generate optimal initialization parameters of
the misjudgment sample generator.

2. The misclassification sample generator constructs samples with
hidden features not learned by the neural network fault detection
model.The hidden features are from a few actual misclassification
fault samples.

3. The fault detection model trained with a large number of
simulation samples or the model in the long-term operation
of the distribution system is used as the pre-training model.
Deep transfer learning (Bousmalis et al., 2016) is used to transfer
the pre-training model to the training model. Then input the
generated samples from Step (2) for the parameter fine-tuning
training of the training model. A detailed description of the
migration strategy is shown in Section 5.5.

The flow of the practical evolution strategy is roughly shown in
Figure 2C.

5 Simulation experiment and result
analysis

This section analyzes the effect of GANRA on generating
HIF samples based on simulation data. Section 5.2 proves the
effectiveness of GANRA in the study of initial training parameters
with generalization. Moreover, this section observes the learning
speed of sample generation and the quality of generated samples.
The generated samples aremadewith the initial parameters obtained
by GANRA and tested in the target network. Section 5.3 compares
several sample generation algorithms to get their effect on the
fault discrimination model generated by CNN under different
sample mixing ratios. The algorithms include the conventional
GAN with random initial parameters, the conventional GAN with
GANRA initial parameters, and Variational Auto-encoders (VAE)
(Zhai et al., 2019). It is worth noting that the GANRA in this
section optimizes initial parameters from the CNN. Section 5.4
conducts experiments under the influence of different proportions
of generated samples on the training accuracy of neural networks.
Section 5.5 uses GANRA to find a group of initial parameters based
on grid structure 1, then generates samples of grid structure 2 with
these parameters and random initial parameters. Finally, Section 5.5
tests the effect of the fault detection model with these training
samples.The specific structure composition of the grids can be found
in Section 5.1, and the hyper-parameter values used by the GANRA
to generate the initial parameters are given in Section 5.3.
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FIGURE 3
Schematic diagram of distribution system grid structure 1.

FIGURE 4
Schematic diagram of ring network grid structure 2.

5.1 Simulation grid structure and sample
composition

A distribution system simulation model is constructed for
flexibility in data acquisition, processing and analysis. The
simulation sample is taken as the actual sample.

The grid structure of the 10 kV distribution system is
shown in Figure 3. The simulation diagram can refer to
Supplementary Figure S1. In Figure 3; Figure 4, the symbol “F
(⋅)” represents the location of the failure point, the solid line means
the overhead line, the dotted line represents the cable line, and every
“Load” can be adjusted.

The actual samples used for neural network training and
verification, including waveform samples of various faults and

TABLE 1 Proportion of each failure type in grid structure 1.

Fault Type HIF LL LLG LLLG Normal
State

SLG Single
Phase Open

Data Rate(%) 84.02 2.70 2.70 0.67 6.27 3.37 0.27

normal distribution system conditions, are collected from the
fault occurrence point F1. Fifteen thousand nine hundred ninety
three fault data are generated for training task extraction and
neural network training and testing. This paper mainly studies
the situations of HIF. Most of the fault data are HIF data, with a
total of 13,438 items. The account of each fault type is shown in
Table 1.
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TABLE 2 Proportion of each failure type in grid structure 2.

Fault Type HIF LL LLG LLLG Normal
Station

SLG Single
Phase Open

Data Rate(%) 34.29 17.14 17.14 5.71 6.43 17.14 2.14

Where LL represents line-to-line fault (or phase fault), LLG
represents line-to-line ground fault (or two-phase ground fault),
LLLG represents three lines ground fault (or three-phase ground
fault), and SLG represents single-line ground fault (or Normal
Single Phase). The common working conditions include load
switching, line reclosing, and capacitor switching at the load
terminal.

Grid structure 2 is used to verify the generality of the initial
parameters generated in Section 5.4. And it is shown in Figure 4,
where the classical IEEE 9 node structure model is adopted. The
simulation diagram can refer to Supplementary Figure S2. In the
experiment, grid structure 2 runs in a way of open loop. Similarly,
the collection point of waveform samples for various faults is F1. To
simulate the lack of fault detection experience in a new grid structure
or system operationmode, it is designed to generate and collect only
4,200 fault data for training task extraction, neural network training,
and neural network testing. And among these 4,200 fault data, only
1,440 are high impedance fault data. The account of each fault type
is shown in Table 2.

The use of such a large difference between the ring network and
the radial network as a control experiment is mainly to emphasize
that even in the case of huge changes in the grid structure, the initial

parameters generated by GANRA under the original grid structure
still have the ability to assist the new grid structure to generate
accurate samples.

The study collects the waveforms of three-phase voltage, three-
phase current, zero-sequence voltage, and zero-sequence current in
the above simulations and decomposes the signals, respectively. The
wavelet decomposition method with a 6 dB parent wavelet extracts
the relevant characteristic quantities of wavelet coefficients. Four
wavelet coefficients are obtained by three wavelet decomposition.
It consists of a three-layer complex wavelet coefficient and one-
layer neighboring wavelet coefficient, and thirty-two lines of
information can be obtained. Then, by summarizing the high-
resolution waveform data in detail and getting the sum of the
multiple sampling points, it receives waveform information with
thirty-two columns. The formula (Pan, 2019) for the energy
relationship between the time domain and frequency domain is
shown in Eq 21.

enm =
X

∑
x=1
|a2m (x) ⋅Δt| (21)

Where enm represents the nth pixel block containing time-frequency
information of the wavelet coefficient of the corresponding
waveform in the mth line of the actual input image sample, am(x)
represents the sampling amplitude of the xth sampling point of the
wavelet coefficient of the corresponding waveform in the mth row,
△t is the sampling step, X means that the pixel block contains X
sampling points, and each row of 32-pixel blocks contains 32*X
amount of sampling point (waveform) information. Figure 5 shows

FIGURE 5
Image sample composition schematic diagram.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1180555
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Bai et al. 10.3389/fenrg.2023.1180555

FIGURE 6
Loss chart for a single training mission.

the sample composition of the simulated waveform data obtained by
sample processing.

5.2 Sample generation experiment

A single training task is extracted to conduct GAN training with
1,000 iteration rounds gan_epoch, and the loss values of G and D are
obtained respectively, as shown in Figure 6.

Compare the lines of Figure 6 with the broken line graphs
of G and D loss values from the GAN training tasks (Task1,
Task2, Task3, and Task4). These tasks use initialization parameters
obtained from four different Imeta training of GANRA (as shown
in Figure 7). In Figure 7, the training task network’s iteration limit
K of the four tasks is 10, and the learning rate of G and D is
0.002. It is found that the G and D loss (g_Loss and d_Loss) of
each training task roughly corresponds to the loss trend within
the corresponding interval of GAN training rounds in a single

training task.Wherein themeta-network iterations Imeta= 1, 50, 400,
1,000.

The hyper-parameter settings of GANRA to the four training
tasks in Figure 7 are shown as follows: the number of parallel
training tasks N=4, iterations of training task network K=10,
adjustable parameters of learning rate of meta-network a =1, b=1,
single task size shot =5, and task type ways=7.

The actual samples, the samples generated by the conventional
GAN with random initial parameters and the samples generated
by the conventional GAN with the optimized initial parameters
are compared to study the influence of the initial parameters,
the GANRA’s meta-network iterations, and the GAN’s iterations
on specific GAN’s generated samples. GANRA generates all the
defined initial parameters. The comparison between the actual
sample image and the generated sample image is shown in Figure 8.
Figures 8A,B compare the sample pictures of HIF generated by
the GAN network with and without the optimized initialization
parameters. Both are trained for 400 rounds. It can be found
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FIGURE 7
Diagram of training task loss under different Imeta.

that the GAN with the optimized initialization parameters can
preliminarily generate images with actual image sample features.
This result is obtained with the GAN iterations epoch=400 and
50 rounds of meta-network training. And it reflects that GANRA
can accelerate GAN’s collection of image features. Figures 8C, D
compare the results of more rounds of GAN training based on
Figures 8A, B. In this case, the GAN assisted by GANRA can
generate a noiseless image sample, while some of the image samples
generated by general GAN still have high noise. This phenomenon
indicates that GANRA can reduce the noise of the generated

samples. Figures 8E, F provide a comparison diagram between
950 GAN epochs generation sample with 1000 GANRA meta-
network iterations and the original sample. The generated sample
is almost consistent with the actual one, and the research results
show this method is promising. However, contrasting the GANRA-
assisted sample generation in Figures 8C, D with Figures 8E, F,
the initialization parameters generated by multiple iterations of the
meta-network have a specific “saturation value”. In other words, the
GAN’s iterations for a particular taskwill not be further reduced.The
quality of the generated samples and theGAN’s iterations to generate
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FIGURE 8
The actual sample of high resistance ground fault and the generated sample diagram under different experimental conditions. (A) GAN, epoch=400 (B)
GANRA, Imeta=50, epoch=400. (C) GAN, epoch=960. (D) GANRA, Imeta=50, epoch=950. (E) Original samples. (F) GANRA, Imeta=1,000, epoch=950.
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TABLE 3 The similarity between the samples generated by different
methods and the actual samples of grid 1.

Proportion of training samples
(Actual sample: Generated sample)

Sample generation
algorithm

GANRA VAE GAN

HIF recognition accuracy (%) 99.85 68.66 98.66

quality-compliant samples will not change significantly in the case
of a sharp increase in Imeta. The above experimental results are
limited by the expectation of GANRA parameters’ generalizability.
The detail of Figure 8 can refer to the Supplementary
 Material S1

5.3 Experiments on the similarity between
samples generated by several generation
methods and the actual samples

The settings of GANRA’s hyper-parameters and the base model
used in fault detection in Sections 4.3, 4.4, and 4.5 are the same.The
hyper-parameters of GANRA are set as follows: the meta-network
iteration rounds Imeta=1,000, the number of parallel training tasks
N=4, the training task network iteration rounds K=10, the meta-
network learning rates a =1, b=1, the single task size shot=35, and
the task type ways=1. Only the binary classification of the HIF and
non-HIF faults is performed in this study. And the HIF recognition
accuracy in this study is used to reflect the similarity between the
generated HIF samples and the actual samples. The training set
comprises the generated samples from different generationmethods
of grid structure 1, and the testing set contains the simulated samples
(called actual samples) of grid structure 1.

A CNN consisted of three convolutional layers and two fully
connected layers is selected for the basic model settings used in
fault detection. The Relu function is used as the activation function.
The learning rate α=0.001, iteration epoch=20, and single training
scale batch_size=66. In this section, the iterations of GAN with
initial parameters generated by the GANRA andwith random initial
parameters are 500 rounds.TheVAE sample generationmodel in the
study refers to the classical model (Pan, 2019).

It can be seen from Table 3 that the samples generated by
GANRA and the samples generated by conventional GAN both
have a high degree of similarity with the actual sample. And several
experimental phenomena show that the recognition accuracy does
not fluctuate much with different GAN initial parameters. At the
same time, the recognition accuracy of VAE-generated samples
jumps between 55% and 100% during the experiment. The study
indicates that VAE learns some features of actual samples accurately
but lacks robustness in other areas. By contrast, GANRA knows
these features of samples in a stable and satisfactorily precise way.
However, compared with the network that only uses GAN to learn
and generate HIF samples, the generated HIF samples are slightly
less reductive than the actual samples because it emphasizes the
generalization of all fault initialization parameters instead of the
optimum of current parameters.

TABLE 4 Influence of different sample composition on fault detection
accuracy of grid 2.

Proportion of training samples
(Actual sample: Generated sample)

HIF recognition
accuracy (%)

1:0 97.73

7:3 99.36

1:1 88.03

3:7 92.39

0:1 66.56

5.4 Influence experiment of sample
proportion on training accuracy

The testing set includes 2,100 actual samples from grid structure
2, and the training set includes both the actual and the samples
generated by GANRA.The proportions of mixed samples are shown
in Table 4. In addition, the data from the training set and testing set
are not coincidental, and the proportions between the training set
and testing set are always kept at a 1:1 ratio. The effect of different
sample structures on the fault detection accuracy of grid structure 2
is shown in Table 4.

As seen from Table 4, the generated samples supported by
GANRA achieve optimal performance in the experiments. Its HIF
recognition accuracy is 99.36% when the proportion of training
samples (actual sample: generated sample) is 7:3.

5.5 Fault detection experiments under
changing conditions of the grid structure

According to the practical evolution strategy proposed in
Section 4.2, relevant simulation experiments are carried out on the
grid structure 2 with several samples. In the simulation experiment
setting, the initial GAN parameters generated by GANRA through
grid structure 1 are applied to the generation of small samples of
grid structure 2 to show whether the GANRA focuses on predicting
initialized parameters on future tasks.

The fault pre-training model adopted is the basic CNN model
mentioned in Section 5.2. The migration parameters used in the
new neural network are obtained after training the actual sample
from grid 1. On this basis, amixture of samples is used to prepare the
fine-tuned parameters of the new fault detection model. The mixed
samples include generated samples and a small number of actual
samples. The specific transfer learning strategies are as follows: first,
the top-level 1 of the actual model is turned into the top-level 2 of
the new model, and this new model is more suitable for the current
training data; second, freeze the parameter training of the bottom
and middle layers of the new model, and train only the top layer 2;
third, the parameter training of the bottom layer and middle layer 1
of the newmodel is frozen, and then the top layer 2 andmiddle layer
2 are trained simultaneously. The corresponding transfer learning
strategy is shown in Figure 9. The box is filled with grey layers for
the parameters to be trained in the specified step.
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FIGURE 9
Transfer learning strategy.

TABLE 5 HIF recognition accuracy in grid structure 2 under different training conditions.

Situation Whether to perform
model fine-tuning

Proportion of training samples
(Actual sample: Generated sample)

HIF recognition
accuracy (%)

(1)* No 1:0 97.73

(2) Yes 1:0 100

(3) Yes 7:3 100

(4) Yes 0:1 89.70

(5) Yes - 34.32

aThe situation (1) is consistent with the mixed sample experiment with a training samples ratio of 1:0 in Table 4, and the experiment will not be repeated.

The proportion of mixed training samples is 7:3 based on
Section 5.4, which can make the recognition of HIF relatively
more accurate. The specific experimental control group is set as
follows.

1. Train the new neural network with the actual sample of grid 2.
2. The actual sample of grid 2 is used to fine-tune the parameters

from the neural network of grid 1.
3. The generated sample are mixed with fine-tuning the parameters

from the neural network of grid 1 and the actual sample of grid 2.
4. The generated samples of grid 2 are used to fine-tune the

parameters from the neural network of grid 1.
5. The neural network of grid 1 detects test samples of grid 2.

The influence of the different proportions of models’ fine-tuning
and training samples on HIF recognition accuracy of grid structure
2 is shown in Table 5.

The comparison between situations (1) and (2) shows that neural
network transfer learning can effectively improve the identification
accuracy of HIF. By the comparison of (2), 3, and 4, it is easy
to find that using appropriate mixed samples to increase the
training sample size is feasible when there are few fault samples

in the new grid structure. This method will not decrease the fault
identification accuracy. However, a large proportion of generated
samples will decrease the identification accuracy. The comparison
between cases (2) and (5) shows that the parameter fine-tuning in
the new grid structure is feasible. It can significantly improve fault
identification accuracy. Therefore, the practical evolution strategy
of neural networks for distribution systems is effective. It can
optimize the utilization of neural networks in power system fault
detection.

6 Conclusion

This paper proposes a GAN evolution strategy based on the
Reptile algorithm to solve practical problems such as small HIF
samples and network structure changes in distribution systems.
The validity, generalization, and speed of GANRA are verified
by mathematics and simulation. The sample generated by the
neural network evolution strategy helps solve some problems
(like a shortage of reliable training data and faults with obscure
characteristics) existing in practical applications through the
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auxiliary neural network fault detection model. Furthermore,
GANRA generates the initial parameters of GAN through indirect
gradient calculation and completes a general optimization of initial
parameters. GANRA can generate samples with better quality faster
than GAN, but when the number of iterations tends to a certain
upper limit, the quality of samples generated by GAN is better than
that of GANRA because of GANRA parameters’ generalizability.
And the quality of samples generated by GANRA is usually better
than that of VAE. This algorithm effectively reduces the computing
time, sample size and the number of learning iterations required to
generate samples in different tasks and grid structures in the future.

For the electrical field, considering the requirements of
timeliness and stability of fault judgment in engineering practice,
such a study can be done by presenting the process of GANRA
optimization of initial parameters in a dynamic and online way.
In addition, the influence of other GAN algorithm variants on
parameter iteration can be explored. For example, a tagged grid
structure emphasizing classification ability can be considered. That
is for enhancing the training ability in the category of samples with
significant differences. Then, the research can extend this ability to
other categories of fault identification.
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