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In order to enhance self-monitoring and self-diagnosis capabilities in smart
distribution networks, this paper proposes a method for assessing the health
level of the network based on multivariate information. First, we construct an
evaluation indicator system for the health of the smart distribution network by
integrating the smart distribution network information system. Next, we utilize the
improved back propagation (BP) neural network and multivariate indicator
information to calculate the health indexes of both the grid layer and
equipment. We then solve the health index of the equipment layer based on
network topology and goal-oriented methodology. Furthermore, by utilizing the
health information of both the equipment and grid layer, we apply fuzzy evaluation
and Dempster-Shafer (D-S) evidence theory to obtain the health level of the
distribution network. We provide a comprehensive evaluation of the overall health
status of the smart distribution network. Finally, the proposed method is validated
using data from a regional distribution network. The results demonstrate its
effectiveness in improving the smart distribution networks’ overall health and
stability by enabling more effective self-monitoring and self-diagnosis.
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1 Introduction

The distribution network plays a crucial role in modern power systems, as it ensures that
customers receive a reliable and high-quality power supply. With the integration of
distributed energy, new requirements have emerged for the operation level of
equipment, grid economy, and environmental sustainability (Trentini et al., 2021). This
has also increased the demands on network planning, management, and maintenance
(Gumpu et al., 2019). However, the distribution network operates in a complex environment,
with many pieces of equipment and a complex grid, leading to a high frequency of failures.
According to historical data, more than 85% of failures occur on the distribution network (Li
et al., 2015). Therefore, a comprehensive and accurate evaluation of the distribution
network’s health is essential to optimize its operation and enhance maintenance efficiency.

Most existing operational risk assessment methods for distribution networks are based
on reliability theory, which uses equipment failure rate and outage time as indicators (Su
et al., 2014; Chen et al., 2020). While useful, these approaches have certain limitations and
more comprehensive and refined methods are required to evaluate the conditions of the
distribution network. One such approach that has gained prominence is the concept of a
power equipment health index. It was first proposed by British scholar D. Hughes in
2003 Hughes et al. (2008) and has been expanded to various fields, such as power supply
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reliability. It can characterize the equipment’s health status and
overall performance (Ashkezari et al., 2013; Zhao et al., 2016).

The determination of the equipment health index relies on an
indicator system. Researchers have considered real-time monitoring
data such as the current, voltage, winding temperature, gas content
of distribution transformers, and contact temperature of breakers
(Khoddam et al., 2016; Yong-Xiang, 2019; Zhang et al., 2022). The
equipment health index can be calculated with these data. However,
it is essential to consider not only the current state of equipment but
also its lifetime in general, as the health condition of transformers
degrades over time (Sibuea and Suwarno, 2022). Moreover, different
equipment may exhibit varying susceptibility to failure under similar
conditions. Therefore, integrating data from various information
systems, facilitated by advancements in smart grid and artificial
intelligence technology, can lead to a more comprehensive indicator
system. Establishing such a system makes it possible to develop a
rational assessment method that quantitatively calculates the
equipment health index.

In the field of smart distribution networks, assessing the health
level of equipment and the overall network is essential for ensuring a
reliable power supply to customers. A critical tool for this is the
equipment health index, which can reflect the performance of
individual components and the network. While much research
has been done to determine the relationship between equipment
health index and distribution network operation risk, some studies
have not considered the equipment’s location (Zhao et al., 2016). To
address this issue, researchers utilize Goal-Oriented (GO)
methodology to analyze the outages caused by equipment failures
at different locations in a distribution network containing
distributed generators (DGs) (Gong et al., 2012). This allows for
a more comprehensive understanding of the network’s performance
and the potential impact of equipment failures on customers. In
addition, fuzzy evaluation has been introduced to assess the health
status of the equipment layer and grid layer (Sun et al., 2016). This
approach recognizes health level assessment’s uncertain and
imprecise nature and can provide a more nuanced
understanding. By integrating these methods and approaches, it
is possible to develop a more comprehensive and accurate
assessment of smart distribution network health.

Furthermore, with the increasing emphasis on the economy and
environmental sustainability of distribution networks, traditional
methods that only consider reliability are no longer sufficient. To
address this, researchers have attempted to integrate smart grid
information technology into assessing distribution network health.
For instance (Sun et al., 2022), integrated the grid and equipment
health indexes to evaluate the health level of distribution networks.
However, this approach may lose some key information that is
critical to accurately reflecting changes in the health status of
equipment or grid.

Therefore, to achieve a more accurate assessment of the health
status of a smart distribution network, a comprehensive approach is
needed that integrates both short-term and long-term equipment
indicators, as well as the overall reliability, economy, and
environmental sustainability of the grid. However, directly
combining the equipment and grid health indexes may not be
appropriate. Meanwhile, the location of the equipment in the
network topology affects the outage range, and there are
significant differences in the indicators’ meaning and the optimal

values range. Thus, a novel method is required to effectively
integrate the above multiple sources of heterogeneous
information and accurately reflect changes in the health
conditions of equipment and the grid.

The main contributions of this paper are as follows:

1. The paper proposes a more comprehensive health assessment
indicator system for smart distribution networks, which
considers multiple aspects such as real-time equipment
monitoring data, equipment ledger data, and grid economics
level. By integrating these different sources of information, a
more accurate and comprehensive picture of the health of the
distribution network can be obtained.

2. To integrate multiple indicator information with different
meanings and optimal ranges, an improved BP neural
network is proposed to calculate the health index of the grid
layer and individual equipment. It provides a more nuanced
understanding of the health status of the distribution network.

3. The paper analyzes the impact of equipment failure on load
outage by combining network topology with the goal-oriented
methodology. The relationship between the health of individual
equipment and the power supply probability of the overall load
in a distribution network containing distributed generations is
also analyzed, providing essential insights into the network’s
overall performance.

4. Fuzzy evaluation is introduced to evaluate the health level of the
equipment and grid layers. The information from both layers is
fused by D-S evidence theory to assess the distribution network
health level based on multiple information. This approach
considers the uncertainty and imprecision of health level
assessment and provides a more accurate and comprehensive
assessment of the health status of the distribution network.

The rest of the paper is structured as follows: Section 2 presents
the proposed indicator system for the health assessment of smart
distribution networks. Section 3 constructs a comprehensive health
index calculation method for the equipment and grid layers. Section
4 assesses the distribution network health level by combining the
equipment layer health index and grid layer health index. Section 5
validates the proposed assessment method through case study,
demonstrating its effectiveness in accurately reflecting the
changes in equipment and grid health conditions. Finally, in
Section 6, we draw conclusions and suggest potential areas for
future research.

2 Indicator system for smart
distribution network health assessment

In order to ensure an accurate assessment of a smart distribution
network’s health, it is crucial to gather and combine information at
both the equipment and grid levels. In this paper, a hierarchical
indicator system for health assessment is constructed. The indicator
system divides the health indicators of a smart distribution network
in terms of power equipment and grid, respectively.

The determination of power equipment health indexes is
considered from two different points. It is necessary to consider
the condition of the equipment from both a short-term and long-

Frontiers in Energy Research frontiersin.org02

Zhu et al. 10.3389/fenrg.2023.1178631

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1178631


term perspective. In terms of equipment operation status, the real-
time monitoring data can reflect the short-term health condition of
the power equipment. In contrast, information such as equipment
ledger can reflect the health condition from a long-term perspective.
According to the above two perspectives, 11 indicators are selected
as the indicator system to calculate the health indexes for power
equipment, as shown in Table 1 below.

It is not easy to fully reflect the overall health level of the smart
distribution network by only assessing the health of the equipment.
There is also a demand to take the grid health status into the
assessment system to evaluate whether non-faulty grid need to be
upgraded and renovated. By considering the indicators closely
related to the health level of the smart distribution network, the
health assessment indicator system of the network is constructed
from 4 dimensions: grid operation level, grid economic efficiency
level, grid security level, and grid environmental sustainability
level, as shown in Table 2. It is worth mentioning that as a business,
economic efficiency is of great importance to power companies. If
the distribution network does not meet economic requirements, it
may lead to a decline in profits, then it is necessary to upgrade and
renovate the distribution network to ensure that it is in a better
state. Therefore, this article comprehensively selects economic

efficiency indicators to calculate the health index of the
distribution network.

3 The health indexes calculation of the
equipment layer and grid layer

Since the indicators are functionally related to the health index,
this paper proposes the BP neural network. BP neural network, well-
suited for approximating complex nonlinear relationships, has
strong robustness and fault tolerance. Additionally, it can provide
fast output results without requiring human involvement after
model training. Thus, it can be utilized to calculate the health
index of power equipment and the grid.

The above equipment and grid information is mainly stored
in the smart distribution network information system, such as the
ledger management system, equipment status online monitoring
system, voltage monitoring system, operation monitoring
system, and grid planning assistance system. Moreover, due to
differences in the meaning and optimal intervals of indicators, it
is not appropriate to preprocess the data directly using traditional
data normalization methods. Therefore, the BP neural network is

TABLE 1 Equipment health assessment indicators.

Equipment category Indicator Indicator implications

Circuit Breaker Temperature Switch temperature can reflect poor contact and mismatch of drop-out currents

Coil Current Coil Current exceeding the limit may result in equipment damage

Mechanical switching on time A long switch-on time is likely to cause arcing and contact ablation

Contact travel A short contact travel is not conducive to breaking, while a long one is not conducive to closing

Operating years To measure equipment aging

Unreliable action times To assess the status of the equipment by the number of historical equipment failures

Distribution Transformer Total hydrocarbon content To reflect faults such as transformer overheating or partial discharge

Tank temperature difference To reflect transformer insulation damage and other faults

Historical failures times To assess the status of the equipment by the number of historical equipment failures

Operating years To measure equipment aging

Maximum load rate A low load rate is uneconomical, while high load rates can easily lead to insulation damage to the equipment

TABLE 2 Grid health evaluation indicators.

Category Indicator Indicator implications

Grid operation level Maximum line loading rate Maximum load rate among all distribution network lines

Maximum transformer loading rate Maximum load rate among all distribution transformers

Grid economic efficiency level Capacity load ratio of network Ratio of total capacity of main transformer to maximum load in substation

Rate of high loss distribution transformer The proportion of high loss distribution transformers to all distribution transformers

Grid security level Line insulation rate The proportion of the insulation length to the total length of the line

Automation Coverage Coverage ratio of automation intelligent equipment

Grid environmental sustainability level Distributed power penetration The proportion of distributed energy output to total power output
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improved in this paper to extract multivariate heterogeneous
indicators effectively.

3.1 Health indexes calculation of grid layer
and single power equipment based on
improved BP neural network

Grid indicators have their respective optimal value ranges. In
addition, the indicator values of the equipment will gradually
deteriorate from the ideal value to the warning value of the fault
state when the health status decreases. Therefore, the problem of
heterogeneity of multivariate information can be solved by
uniformly evaluating indicators accordingly. For this purpose,
in this paper, the input layer neurons of the traditional BP neural
network are replaced by indicator-scoring neurons. The
improved BP neural network is constructed for the circuit
breaker, distribution transformer, and grid, respectively, as
shown in Figure 1 below.

Based on the relationship between indicator values and health
status, the following three types of indicator-scoring neurons
are proposed: 1) Higher indicator values indicate better health
status using inverse type indicator-scoring neuron, whose output
function is E1(x); 2) intermediate-range indicator values indicate
better health status uses an intermediate type indicator-scoring
neuron with the output function E2(x); 3) lower indicator
values indicate better health status using positive type indicator-
scoring neuron, whose output function is E3(x). The specific
output functions of each indicator-scoring neuron type are
shown below.

E1 x( ) �
1, x≤x1

x − x2

x1 − x2
, x1 < x< x2

0, x2 ≤x

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

E2 x( ) �

1, x≤x1

x − x2

x1 − x2
, x1 < x< x2

0, x2 ≤x≤x2
′

x − x2
′

x1
′ − x2

′, x2
′ <x< x1

′

1, x1
′ ≤ x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

E3 x( ) �

0, x≤ x2
′

x − x2
′

x1
′ − x2

′, x2
′ < x< x1

′

1, x1
′ ≤ x

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

where Ei(x)(i � 1, 2, 3) is the output of the indicator-scoring
neuron, x is the input indicator value, x1, x1′ are the preset alert
values for this indicator, and x2, x2′ are the preset ideal values of this
indicator.

The indicator-scoring neuron types, preset ideal, and alarm
values for each indicator can be determined using equipment
manuals, existing planning standards, and expert opinions.
Tables 3, 4 showcase the indicator-scoring neuron types and
corresponding thresholds employed in this paper for the power
equipment and grid indicators, respectively.

In addition, the output fnctions of the neurons in the hidden
layer and the output layer, respectively, are

hj � f ∑n
i�0
wijei − θj⎛⎝ ⎞⎠, j � 0, 1, . . . , m

yk � f ∑m
j�0
wjk

′ ej − θ′k⎛⎝ ⎞⎠, k � 0, 1

H � y1

y0 + y1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

FIGURE 1
Improved BP neural network and its input diagram.
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where hj is the output of the jth neuron of the hidden layer, yk is the
output of the kth neuron of the output layer neuron,H is the health
index; ei is the output of the ith indicator-scoring neuron,wij andwjk

′

are the weights from the indicator-scoring neurons to the hidden
layer neuron and the hidden layer neuron to the output layer
neuron, respectively; θj and θk′ are the threshold values; and
activation function f(x) is:

f x( ) � 1
1 + e−x

(5)

The loss function employed in this study is cross-entropy. It is
defined mathematically as follows:

loss � ∑1
i�0
yi*log yi( ) + 1 − yi*( )log 1 − yi( ) (6)

In order to effectively balance the step size and momentum to
optimize the weight vector of the neural network, here we adopt the
adaptive moment estimation (Adam) algorithm. It dynamically
adjusts the learning rate in the training process and accelerates
convergence toward the optimal solution in the early stage while
preventing oscillations caused by high learning rates later.

The training set input for the neural network model includes
historical data of circuit breakers, distribution transformers, etc.,
comprising normal and failure data samples. The sample labels
[y0,y1] with outage faults are set to [0,1], and the sample labels for
normal operation are set to [1,0]. The neural network model is trained
using this dataset. The model training is completed when the output
error meets the requirement, or the number of iterations is reached.

3.2 Equipment layer health index calculation
based on GO methodology

The range of equipment outages depends on the equipment’s
location in the network topology. Therefore, it is not appropriate to
add up the health of individual equipment to evaluate the overall
health index of the power equipment layer. It is necessary to
consider the network topology information comprehensively. At
present, GO methodology is able to find the relationship between
equipment failure and load outage based on the network topology.
Thus, this paper seeks the relationship between single power
equipment health index and equipment layer health index based
on GO methodology.

TABLE 3 Equipment health indicator-scoring neuron type, preset ideal value, and alarm value.

Equipment category Indicator Indicator-scoring neuron type x1 x2 x2′ x1′

Circuit breaker Temperature Positive type - - 35°C 80°C

Coil current Intermediate type 0.8 A 1.15 A 1.25 A 1.6 A

Mechanical switching on time Intermediate type 190 ms 195 ms 208 ms 213 ms

Contact travel Intermediate type 19 mm 21 mm 23 mm 25 mm

Operating years Positive type - - 0 30

Unreliable action times Positive type - - 0 10

Distribution transformer Total hydrocarbon content Positive type - - 0 150 μL/L

Tank temperature difference Positive type - - 85°C 105°C

Historical failures times Positive type - - 0 10

Operating years Positive type - - 0 30

Maximum load rate Intermediate type 0 20 80 100

TABLE 4 Grid health indicator-scoring neuron type, preset ideal value, and alarm value.

Category Indicator Indicator-scoring neuron type x1 x2 x2′ x1′

Grid operation level Maximum line loading rate Intermediate type 0 20 80 100

Maximum transformer loading rate Intermediate type 0 20 80 100

Grid economic efficiency level Capacity load ratio of network Positive type - - 1.8 2.2

Rate of high loss distribution transformer Positive type - - 0 5

Grid security level Line insulation rate Inverse type 0 100 - -

Automation Coverage Inverse type 0 100 - -

Grid environmental sustainability level Distributed power penetration Positive type - - 10 20
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The following distribution network in Figure 2 is used to
illustrate the methodological steps for obtaining the health index
of the equipment layer using the Goal-Oriented (GO) methodology.
This approach involves analyzing the impact of equipment failure
on load outage by combining network topology with goal-oriented
techniques. It provides a more nuanced understanding of the health
status of the distribution network, allowing for a more
comprehensive and accurate assessment.

(1) Referring to (Shi et al., 2018), the relationship between the level
of equipment health and the probability of successful operation
of the equipment is

Pi � 1 − e−
Hi−1
Hi

( )2

(7)

(2) When only a single-side power supply exists at L1, the normal
power supply of P3 is equivalent to the successful operation of
CB1, S1 and T3, which is shown in the following equation:

PP3 � PL1·P3 � PCB1 · PS1 · PT3 (8)
where PP3 is the probability that P3 load is supplied normally, PL1·P3
is the probability that P3 load is successfully supplied by L1, PCB1,
PS1, PT3 are the probability of successful operation of CB1, S1, and
T3, respectively.

(3) When feeder 1 and feeder 2 are available, the power supply of
P3 is equivalent to the successful operation of CB1, S1 and T3 or
CB2, S2 and T3, which is shown in the following equation:

PP3 � 1 − 1 − PL1·P3( ) 1 − PL2·P3( ) (9)
where PL2·P3 is the probability that P3 load is successfully supplied
by L2.

(4) To calculate the probability of successful operation of other loads,
we can obtain the probability of successful operation of all loads by
using the proportion of each load and its corresponding probability
of successful operation, as shown in the following equation:

P � ∑n
i�1

ai × Pi( )

∑n
i�1
ai � 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (10)

where P is the probability of successful operation of all loads, Pi is
the probability of successful operation of the ith load, ai is the ratio
of the corresponding load to the total load.

(5) Subsequently, based on the overall probability of successful load
operation, the inverse function of Eq. 7 is applied to determine
the health index of the power equipment layer, which can be
expressed as the following equation:

Hequip � 1

1 + ���������−ln 1 − P( )√ (11)

4 Distribution network health level
assessment

The assessment of health status levels is commonly
accomplished through the use of health index. However, the
transition process between different health levels is often unclear,
making the concept of fuzzy sets from fuzzy mathematics
particularly relevant. Consequently, applying fuzzy
mathematical theory and membership functions to assess
health levels is appropriate. The core concept of the fuzzy
theory is the fuzzy set, which allows for the inclusion of
elements with different degrees of belonging. The membership
function is the key tool used to describe the degree to which an
object belongs to a fuzzy set. It maps each object to a real number
between 0 and 1, representing the object’s degree of membership
in the set. When the value is closer to 1, the object belongs more
strongly to the set, while a value closer to 0 indicates a weaker
membership. Referring to the literature (Sun et al., 2016), health
status can be classified into four levels: “Excellent,” “good,”
“moderate,” and “bad.” Eqs 12–15; Figure 3 depict the
membership function of the health level.

M L1( ) �
1 − 3H, 0≤H≤

1
3

0,
1
3
<H

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

FIGURE 2
The network topology with dual power sources.

FIGURE 3
Membership function of health level.
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M L2( ) �

3H, H< 1
3

−3H + 2,
1
3
≤H≤

2
3

0,
2
3
<H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

M L3( ) �

0, H< 1
3

3H − 1,
1
3
≤H< 2

3

−3H + 3,
2
3
≤H≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

M L4( ) �
0, H< 2

3

3H − 2,
2
3
≤H≤ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

Where H is the health index, M(L1),M(L2),M(L3),M(L4) are
themembership degree of “Excellent”, “Good”, “Moderate” and “Bad”
of health level.

The vector representing health levels is defined as:

V � M L1( ),M L2( ),M L3( ),M L4( )[ ] (16)

When the health index changes gradually within the range of
[0,1], the corresponding health level vector also changes
gradually, reflecting a more nuanced and accurate evaluation
of the health status. The vector ranges from “excellent” to “bad”,
allowing for a more accurate assessment of the health level.

The health levels of equipment and the grid layers obtained
through the methods above can provide a valuable perspective on
distribution network health by integrating various indicator
information and network topology. However, relying on either of
these levels alone may not provide a complete and accurate
assessment of the overall distribution network’s health. Instead,
they provide fuzzy criteria and independent sources of uncertainty
evidence for distribution network health status. In order to obtain a
more comprehensive and accurate distribution network health level,
uncertainty inference and information fusion techniques can be
applied based on the information provided by both the equipment
and grid layer health levels.

D-S evidence theory can handle uncertain information, enabling
the fusion of information among multiple bodies of evidence, which
has also been used in information fusion in the electrical field
(Shafer, 1978; Li et al., 2015). In this paper, we introduce an
improved D-S evidence theory to establish an information fusion

FIGURE 4
Topology diagram of 10 kV distribution network.

TABLE 5 Neural network parameter setting.

Parameter Distribution transformer neural
network

Circuit breaker neural
network

Grid neural
network

Learning rate 0.05 0.05 0.05

Number of iterations 200,000 200,000 200,000

Minimum error threshold 0.0001 0.0001 0.0001

Number of neurons in the input layer 5 6 9

Number of neurons in the first hidden layer 10 12 20

Number of neurons in the second hidden layer 15 15 20

Number of neurons in the output layer 2 2 2
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model for the health level of the equipment layer and the grid layer
to assess the overall health level of the distribution network
comprehensively.

In this paper, an enhanced D-S evidence theory is proposed to
develop an information fusion model for the health level of both
equipment and grid layers, thereby achieving a comprehensive
evaluation of the overall health level of the distribution network.
The implementation process of the improved D-S evidence theory is
outlined below.

Assume thatΘ is a hypothetical space containing all health levels
of the distribution network, in whichM(L1),M(L2),M(L3),M(L4)
are the levels of “excellent,” “good,” “moderate,” and “bad” of the
distribution network health level according to the equipment layer
health index. According to the definition of D-S evidence theory,
Mequip satisfies the following two equations.

Mequip ϕ( ) � 0 (17)
∑
L⊆Θ

Mequip L( ) � 1 (18)

Then the function Mequip is a mass function on this hypothesis
space. Similarly, another mass functionMgrid can be obtained based
on the construction of the grid layer health index.

In Θ, the mass functions Mequip and Mgrid are independent of
each other. According to the definition of D-S evidence theory, they
can be informationally fused to obtain the new mass function
Mnet � Mequip ⊕ Mgrid. The improved synthesis rule is as follows.

Mnet Lk( ) � Mequip Lk( ) × Mgrid Lk( ) + K ×
Mequip Lk( ) +Mgrid Lk( )

2
where k � 1, 2, 3, 4;K � ∑

i≠j
Mequip Li( )Mgrid Lj( ) (19)

The functionMnet can effectively integrate the health assessment
information contained in both the equipment and the power grid
mass functions to obtain the assessment result of distribution
network health levels, presented as a vector Vnet:

Vnet � Mnet L1( ),Mnet L2( ),Mnet L3( ),Mnet L4( )[ ] (20)
This vector reflects the level of the distribution network in terms

of “Excellent,” “Good,” “Moderate,” and “Bad” by integrating
multiple information such as equipment indicators, grid
indicators, and network topology through D-S theory. It realizes
a comprehensive assessment of the smart distribution network’s
health level, which enables self-monitoring and self-diagnosis of the
smart distribution network.

5 Study cases

A 10 kV distribution network is selected for calculation example
analysis, with its network topology shown in Figure 4. The network
comprises 3 circuit breakers and 17 distribution transformers and is
connected to two distributed power sources.

The historical data of this distribution network is exported from
the network information system to train the improved BP neural
network model. 562 sets of transformer historical data, 378 sets of
circuit breaker data, and 124 sets of grid data are divided into
training sets, and testing sets at a ratio of 8:2, respectively. The
parameters of the model are set, as shown in Table 5.

Take the distribution transformer neural network model as an
example to illustrate the model training process. The change
between the loss function and the number of iterations in the
model training process is shown in Figure 5.

It can be seen that the model has good stability and convergence
in the training process, and the training loss tends to be stable when
the iteration reaches 200,000 times.

The higher the health level of the device, the more likely it is to
have equipment failure. When a health index threshold is set, any
equipment with a health index surpassing this threshold is
considered at risk for failure. On the contrary, those below the
threshold are deemed to be functioning normally. In this paper, the
threshold is trained as 0.75. Comparing this criterion with the actual
failure status of the equipment in the test set, we obtain a confusion
matrix, as shown in Table 6.

As seen from Table 6, the accuracy of this judgment method
reaches 91.96%, which means that the health index of the equipment
evaluated by the model can accurately and effectively reflect the
failure potential of the equipment.

Afterward, the real-time values of the grid indicators are
obtained from the operation and information system, as shown
in Table 7.

The grid health neural network model calculates the grid health
index as 0.235647.

Taking the T5 transformer as an example, the corresponding
indicator values of the indicators are extracted from the smart grid
information system, as shown in Table 8.

The health index of this distribution transformer is
0.506836 obtained by the distribution transformer health neural
network model. The equipments models and equipments health
indexes are shown in Table 9 and Figure 6.

FIGURE 5
Training loss curve.

TABLE 6 Confusion matrix.

Judgment as fault Judged as normal

Actually normal 46 4

Actual fault 5 57
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It can be observed from Figure 6 that T13, T5, and CB3 have a
higher health index, indicating that they do not have any
abnormalities, but in poor health. This enables the smart grid to
perform self-diagnosis based on equipment self-monitoring. The
health index of the device layer obtained by the method in this paper
is 0.363,152. According to the membership function, the mass
functions of the equipment and grid layers are obtained, as
shown in the following table.

Table 10 presents the classification of equipment layer health
level, which predominantly falls under the “Good” category.
Meanwhile, the grid layer health level ranges from “Good” to
“Moderate”, with a majority being classified as “Good”. This
highlights the efficacy of utilizing fuzzy evaluation in accurately
reflecting the differences in health level, in contrast to employing

health index interval segmentation. By integrating the fuzzy criteria
derived from both the equipment and grid layers’ health index, the
health level of the distribution network can be determined using an
improved D-S evidence theory model for uncertainty inference and
information fusion, as demonstrated in Table 11.

The distribution network health level vector Vnet is [0.052208,
0.931855, 0.015937, 0]. This vector is a self-diagnosis of the current
health status of the distribution network, reflecting that the overall
health level of the distribution network is mainly at the “Good” level.
Therefore, a maintenance plan could be proposed to enhance the
health level.

The distribution network’s health level can be enhanced by
implementing various improvement options, such as repairing or
replacing equipment and improving the grid condition. For
example, this paper considers three options: repairing CB3,
replacing CB3, and increasing the distributed power penetration
rate from 11.2% to 13.2%. After implementing the first two schemes,
the equipment layer’s health index decreases from 0.363152 to
0.303145 and 0.301278, respectively, while the grid health index
remains unchanged. After implementing the third scheme, the grid
health index decreases from 0.235647 to 0.187692, and the
equipment layer’s health index remains unchanged. Using the
method proposed in this paper, the distribution network’s health
level is calculated after the implementation of each scheme and
presented in Table 12.

TABLE 7 Real-time value of grid indicators.

Category Indicator Real-time value

Grid operation level Maximum line loading rate 63

Maximum transformer loading rate 98

Grid economic efficiency level Capacity load ratio of network 1.9

Rate of high loss distribution transformer 0.03

Grid security level Line insulation rate 25

Automation coverage 86

Grid environmental sustainability level Distributed power penetration 11.2

TABLE 8 Real-time value of distribution transformer indicators.

Indicator Real-time value

Total hydrocarbon content 98 μL/L

Tank temperature difference 92°C

Historical failures times 4

Operating years 13

Maximum load rate 95

TABLE 9 Equipments models.

Equipment no. Equipment model Equipment no. Equipment model

T1 S13-M.RL-315/10 T11 S11-M-50/10

T2 S11-M-250/10 T12 S11-M-30/10

T3 S13-M-200/10 T13 SBH10-100/10

T4 S11-M.RL-200/10 T14 S11-M-160/10

T5 S11-M-200/10 T15 S13-M-200/10

T6 S13-M.RL-315/10 T16 S13-M-100/10

T7 SH15-M-100/10 T17 S11-M.R-250/10

T8 S11-M-80/10 CB1 ZW32-12

T9 S11-M.R-500/10 CB2 ZW8-12

T10 S11-M-250/10 CB3 ZW8-12

Frontiers in Energy Research frontiersin.org09

Zhu et al. 10.3389/fenrg.2023.1178631

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1178631


As shown in Table 12, after the implementation of the three
options, the degree of the distribution network health belonging to
the “Excellent” level has increased, and the abnormal state of the
network can be eliminated when CB3 is repaired. Increasing the
penetration rate of distributed power can improve the health level of
the network through the grid layer but cannot eliminate the
abnormalities caused by the equipment layer. It can be seen that an
accurate evaluation of the health level of the distribution network has
been achieved through the proposed method.

From a long and short-term perspective, the indicator system
constructed in this paper can better reflect the impact of different
schemes on the health of the distribution network. If the indicators
related to long-term statistical information of equipment are not
considered, repairing or replacing CB3 can result in the monitoring
data returning to an optimal state. In this case, after implementing both
schemes, the neural network inputs are completely identical, leading to
the same health index, thus failing to reflect the differences between the
two schemes.

In contrast to the interval partitioning method, our proposed
approach in this paper offers a more precise and comprehensive
evaluation of the health status of the distribution network. For
instance, a previous study (Sun et al., 2022) uses four equally sized
intervals to represent four distinct health levels. In cases where the
health levels of the equipment and the grid layers do not match, the
lower of the two levels is deemed as the health level of the distribution

FIGURE 6
Health index of each equipment.

TABLE 10 Mass functions of equipment layer and grid layer.

Health level Excellent Good Moderate Bad

Mequip 0 0.910 544 0.089 456 0

Mgrid 0.293 059 0.706 941 0 0

TABLE 11 Assessment of distribution network health level.

Distribution network health level Excellent Good Moderate Bad

Mnet 0.052 208 0.931 855 0.015 937 0

TABLE 12 Comparison of the effects of different schemes.

Schemes Distribution network health level

Excellent Good Moderate Bad

Primary health level of the distribution network 0.052208 0.931855 0.015937 0

Repairing CB3 0.058231 0.941769 0 0

Replacing CB3 0.092961 0.907039 0 0

Increasing the distributed power penetration rate from 11.2% to 13.2% 0.106455 0.871749 0.021796 0
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network. However, this method fails to reflect the effectiveness of
different improvement schemes, particularly when the health
levels of the two layers are inconsistent. When applied to our
health index results, this approach fails to differentiate the benefits
of our three proposed schemes. Interestingly, we found that the
health levels of the equipment layer were all classified as “Good”
and the health levels of the grid layer were rated as “Excellent”
before and after implementing the three schemes. The health levels
of the distribution network after the original state, repairing CB3,
replacing CB3, and increasing the distributed power penetration
rate from 11.2% to 13.2% are 0.363152, 0.303145, 0.301,278, and
0.363152, respectively, and the health levels are all “Good”. It can
be seen that the ratings method used by SUN et al. (2022) fails to
accurately capture the differences in the effectiveness of the
schemes. To better illustrate the changes in the risk level of the
distribution network after implementing different schemes, we
provide a comparative analysis in Figure 7.

The method presented in this paper allows smart grids to
achieve more accurate self-diagnosis than other methods. This
method provides practical guidance for further self-healing of the
smart grid, helping staff propose and evaluate maintenance and
planning plans. In this way, the method effectively reduces the
fault risk of the smart distribution network and improves the
reliability of the power supply.

6 Conclusion

This paper proposes a novel approach to evaluate the health
level of smart distribution networks based on multivariate
information. Specifically, we construct a comprehensive
indicator system to assess the health of both equipment and
grid layers. We adopt an improved neural network model to
achieve a precise and comprehensive quantitative evaluation of
the individual health status of equipment and grid based on
multiple indicators. Furthermore, we utilize the GO
methodology to determine the likelihood of all loads operating
normally by integrating the single equipment health index with the

network topology, which allows us to obtain the health index of the
equipment layer. Based on the health index of both equipment and
grid layers, we employ fuzzy theory and D-S evidence theory to
present a method for self-diagnosing the health status of smart
distribution networks by evaluating the health level.

The findings of this study can provide valuable theoretical
guidance for the self-healing, operation, and planning of smart
distribution networks. Our proposed approach can be of great
practical significance for maintaining the reliability and stability
of power systems.
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