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The importance of using renewable energy systems (RESs) worldwide has been
consolidated. Moreover, connecting more RESs to the utility grid will lead to more
technical problems. Photovoltaic (PV) and wind turbine (WT) based power plants
are the most nonlinear sources of renewable energies contributing to the energy
mix Electronic ballast and switchingmode power supply in energy conservation of
the PV and WT have caused power quality problems and less reliable output
voltage. PV power plants are becoming increasingly integrated with the utility grid
by onboarding certain superior power quality features. This grid integration
drastically reduces the use of fossil fuels and prevents environmental hazards.
This article presents the design of a 26 MWp grid-connected PV power plant,
which is already tied to the Egyptian electrical network in Fares City, Kom Ombo
Center, Aswan Governorate, Egypt The 26 MWp PV power plant consists of (11)
blocks and the utility grid, which are simulated using Matlab/Simulink. Every block
contains 2,376 kWp PV arrays connected directly to DC-DC boost converters to
regulate the output DC power generated by each PV array. This output DC power
is fed into a particular type of inverter called a “central inverter”, which converts it
to AC power. In some cases, higher harmonic distortion at the grid and a greater
negative impact on the power system performance occur when using this type of
inverter. To optimize the gains of the proportional-integral (PI) controller for both
the voltage and current regulators of this central inverter, meta-heuristic
optimization techniques (MOTs) are used. During this article, Gray Wolf
Optimization (GWO), Harris Hawks Optimization (HHO), and Arithmetic
Optimization Algorithm (AOA) are applied as MOTs to enhance the quality of
the power and voltage in addition to limiting the total harmonic distortions (THD)
under the effect of different sunlight conditions and partial shading. As a result, the
AOA-based controllers are found to show outstanding results and superior
performance compared to GWO and HHO regarding solution quality and
computational efficiency. Finally, MOTs are the best solution to most electrical
problems regarding controlling nonlinear and high-penetration systems, such as
PV power plants connected to the utility grid.
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1 Introduction

Nowadays, conventional energy sources are being replaced with
alternative RESs, such as solar, wind, and hydro energy due to
problems related to climate conditions, environmental changes, and
high liberation in traditional power systems. Therefore, it is also
necessary to replace the conventional utility grid to accommodate
the increased integration of renewable energy systems and to suit its
conditions, especially nonlinear energy systems like photovoltaic,
concentrated solar thermal, and wind power systems (Rakhshani
et al., 2019). Although using RESs reduces harmful environmental
pollution compared to traditional fossil fuels, it causes complex
control problems with the utility grid, such as the occurrence of high
fault current, low generation reserve, and low power quality. There is
also a decrease in the inertia of these systems, which leads to a lack of
synchronization, as it is in conventional energy systems. The power
electronics built into the inverters are very important to integrate
renewable energy systems with the utility grid according to power
quality standards. Despite this, they can inject extra harmonics into
the power systems because of the high-frequency switching of
inverters, which leads to a reduction in power quality and an
increase in power losses (Khadem et al., 2010).

The irregularity, intermittency, and nonlinearity of solar power
generation can affect the utility grid voltage stability during peak
load demand. As a result, it is important to understand the
methodology of utility grid voltage stability during the high
penetration of solar energy sources (Rahman et al., 2021). Based
on the rapid increase in the adoption of renewable energy sources
instead of conventional energy sources, there will be an impact on
the stability and dynamic performance of power systems. One
example of nonlinear renewable energy sources is PV power
plants, whose high generation creates additional stability
challenges during normal operation and abnormal disturbances
in the electricity transmission network. These abnormal
disturbances can be summarized in the disconnection of
conventional generating stations from the grid, a sudden change
of heavy loads, a major electrical transmission line being out of
service, and the occurrence of various types of transmission line
faults (three phase to ground fault, single phase to ground fault,
phase to phase fault, etc.) (Sultan et al., 2019).

The large contribution of both PV and WT based power plants
aims to attain eco-environmental benefits, but at the same time,
many technical problems are raised due to their high variability and
intermittent nature. Therefore, it is necessary to use the energy
storage devices, fault current limiters and electrical gate devices to
assist in tackling most of these technical problems (Shafiul Alam
et al., 2020). Recently, it has been found that increasing the high
penetration of PV power plants on the utility grid affects the
performance of the protection system, the automatic voltage
regulator (AVR), and the on-load tap changer (OLTC) of the
power systems, so the proposed solution is to connect voltage
controllers to these plants to reduce the voltage rise (Kenneth
and Folly, 2014). Furthermore, the power systems have many

technical problems, such as harmonic distortion, voltage
transient, and spikes that lead to the process of overheating and
increase power losses and disturbances in the utility grid (Kumar
et al., 2021).

The wide distribution of PV generation units across the grid is
one of the factors that increase the amount of harmonic distortion.
So, the interference level of these units must not exceed the
maximum capacity of the grid otherwise, voltage collapse, grid
instability, and a partial or complete power grid outage will
occur. Where the injection current and voltage of the generated
PV energy will be with harmonics and poor quality as a result,
voltage collapse occurs because of instability in the utility grid, which
leads to a complete or partial power grid outage. Also, integrating the
distributed PV generation units in the power systems cause different
challenges, such as system reliability, power quality, voltage
fluctuation, and reverse power flow. Thus, the high penetration
level of PV distributed generation units in the utility grid can
decrease the reliability of the power system and lead to more
harmonic distortion in the power system network (Abdul Kadir
et al., 2014). On the other hand, the protection of power systems
with the high penetration level of PV is one of the critical challenges
because the current protection methods are used for unidirectional,
not bidirectional, power flow. Furthermore, power systems are
affected by equipment overheating/failure, operation failure,
system malfunction, voltage fluctuation, and equipment
protection (Nkado and Franklin, 2021).

The incompatibility between the generated real power and the
load profile characteristics of PV power plants causes major voltage
imbalances, dangerous power flow reversal, and high-power losses
during the load conditions. Furthermore, power quality is affected
by several aspects, including generation, consumer, and network. As
a result, the comparison between renewable energy technologies
proves that PV power plants still face important difficulties and
challenges that have harmful effects on power quality, such as
overloading of the cables, harmonics, low efficiency, and
dependability (Singh et al., 2018). Instability of the grid voltage
depends on connecting the PV power plants to the utility grid
suddenly, so it is necessary to control the stability of the voltage
when connecting PV plants to the network. Based on all the
challenges related to the connection of PV power plants to the
utility grid, especially the high level of penetration, it is necessary to
find possible technical solutions to overcome these challenges and
improve and enhance the performance of the plants (Sujatha and
Anitha, 2016).

There are several factors that affect PV Power System
Performance, such as PV technology type, solar irradiation, tilt
angle orientation, shading, dust, cell and ambient temperature.
Furthermore, the optimal cleaning methods for each PV system
can be determined through the PV size, design, location, dust type,
and water availability (Aslam et al., 2022). Gallium arsenide (GaAs)
has been employed on the surface of PV cells to eliminate the
undesirable reflection losses of the solar irradiation using the graded
refractive index properties in order to optimize PV cell design and
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diffraction Nano-gratings (Masouleh et al., 2016). Nowadays,
machine learning and artificial intelligence (AI) processes are
utilized for forecasting PV output power because of their
comparatively high accuracy and ability to understand updated
historical data, which has led to the existence of facilities for
predicting PV output power (Iheanetu, 2022). Lately, using
optimization techniques has achieved superior results in the
sizing, power production, and capacity demand of PV systems
such as increasing peak power integration, decreasing operational
expenses and improving performance of the grid-connected PV
systems (Soomar et al., 2022).

Electrical equipment can operate safely and effectively under the grid
standard conditions of supply, which are represented in the power
quality requirements (voltage and frequency regulation, power factor
correction, and harmonics). Most power quality problems relating to
grid-connected PV power plants can be summarized as harmonics, fast/
slow voltage variations, overvoltage, flicker performance, voltage
unbalance, sudden disconnection/reconnection, and inrush currents
(Smith et al., 2017). Large-scale grid-connected PV plants have
nonlinear factors, such as dead time and phase-locked loop (PLL),
represented in the impedance model of the inverter output, and the
diversity of PV capacitywhich affect the power quality and stability of the
power system. PLL creates the asymmetric system, causes the frequency
coupling effect, increases PV capacity in the utility grid, and also limits
the influence of dead time on the system phase margin but may causes
dangerous enlargement of certain dead-time harmonics (Zhang et al.,
2018). Integration of the high penetration level of PV power plants must
be according to the maximum carrying capacity of the utility grid
because the high harmonic distortion level is increased as the penetration
level of PV power plants is increased. So, it is recommended that the
maximum penetration level of PV power plants must be in between this
percentage rating (4.97%–14.98%) to allow only the agreeable limits of
the harmonic distortion, total voltage harmonic distortion, and current
demand distortion (Sharew et al., 2021). Harmonic reduction under
nonlinear and unbalanced load conditions can be achieved by
optimizing the hybrid shunt active power filter (HSHAPF) with the
GWO method and fractional order proportional integral controller
(FOPI), where the GWO method is used to tune the parameters of
FOPI to decrease the harmonics effectively (Srikanth Goud et al., 2022).
To achieve the overall power quality control and management
represented in improving the power quality, grid security, stability,
and efficiency, the cooperative power quality control strategy that
integrates active power filter, reactive power compensation, and
inverter functions is used. As a result, the power factor value is 0.99,
reducing the current distortion rate to 2.71%, and improving the
harmonics that grid-connected PV systems can obtain (Sun et al., 2022).

The efficiency of maximum power point tracking (MPPT) highly
depends on its parameters, i.e., perturbation amplitude changing ΔD in
what is called “duty cycle” and perturbation period Tp. To achieve the
desired tracking speed and efficiency of MPPT, ΔD and Tp should be
optimized accordingly (Dadkhah and Niroomand, 2021). There are
different techniques; the Perturb and Observe (P&O) method and the
Incremental conductance (IC) method are used to overcome nonlinear
behavior, achieve MPPT, and improve the performance of PV power
plants in cases of changing solar irradiation. Applying the P&O and IC
methods on the PV power plants duringMatlab simulation proved that
the time response and performance of the P&O controller are better
than those of the IC controller (Elbarbary and Alranini, 2021). The

relationship between open-circuit voltage and maximum power voltage
from partial open-circuit voltage is used to set a reduced and limited
valid search space in what is called “an enhanced P&O”. This enhanced
P&O method used for MPPT proved to significantly increase the
efficiency of the PV system if compared with other methods
(Harrison et al., 2022). Also, to overcome the nonlinearity of the PV
modules and to produce the maximum power output from the PV
arrays, a DC-DC Boost Converter with this enhanced P&O method is
used to achieve efficient MPPT for the PV power plant (Raj and
Praveen, 2022). There are various MPPT algorithms, but it requires in-
depth information to select the best MPPT methods because each
method has different advantages and disadvantages. The overview
results of MPPT methods show that each algorithm’s advantages
and limitations must be determined in order to choose the best
solution to improve output power efficiency. Therefore, different
intelligent algorithms must be added and combined with the MPPT
algorithms to create high speed and processing ability in the presence of
external factors (Le et al., 2022).

The optimal power flow (OPF) is one of the major arithmetical
methods presently used for the best operation of power systems. The
topical functions related to the power system that can be optimized are
transmission line losses, total generation costs, flexible alternating
current transmission system costs, voltage deviations, total power
transfer capability, voltage stability, emission of generation units, and
system security Furthermore, the performance of electrical power
networks and resource planning effectiveness are enhanced by using
OPF (Risi et al., 2022). The main aim of OPF optimization is to attain
the optimal solution for the utility grid design variables that face the
minimum value of the objective function, taking into consideration the
restrictions of the electric power system. Applying Sun Flower
Optimization (SFO), Harris Hawks Optimization (HHO), and Heap
Optimization Algorithm (HOA) to solve the OPF problem of
integrating PV and WT energy with the power system proves that
HOA has higher speed and smoother convergence and is efficient in
computations and implementation of the fitness function (Shaheen
et al., 2021). Modified turbulent water flow-based optimization
(MTFWO) is used effectively to solve the nonlinear and multi-
objective OPF problems in power systems that integrate energy
from WT and PV generators. MTFWO is a more flexible,
computationally efficient, adaptive, and higher-quality method used
to solve the OPF problem, especially multiple objective functions
(Alghamdi, 2022).

The unsteady generated power from RESs affects the power flow of
the whole utility grid, so it is important to optimize the power flow in
order to achieve stable and dependable operation. Therefore, newly
developed circle search algorithms (CSAs) are used and compared with
other famous algorithms, such as the Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) for improving OPF problems and
reducing generation costs (Shaheen et al., 2022). Furthermore, the
Gaussian bare-bones Levy-flight firefly algorithm (GBLFA) and its
modified version, MGBLFA, are used for optimizing the various
objective functions of the OPF problems (fuel costs, emission, power
loss, and voltage deviation), whether with traditional power generators
or interrupted RESs (Alghamdi, 2022). In addition, the hybrid
optimization technique based on a machine learning approach and
transient search optimization (ML-TSO) is also used to fix the ancient
OPF and probabilistic OPF problems through examining the impact of
sharing RESs (PV and WT) and time changing load profiles on

Frontiers in Energy Research frontiersin.org03

Ebrahim et al. 10.3389/fenrg.2023.1178521

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1178521


generation costs. The convergence performance of the hybrid ML-TSO
algorithm proves that applying it to solve OPF and POPF problems is
better than using other optimization algorithms (Shaheen et al., 2022).

Several techniques can be used to control the voltage stability of
photovoltaic generators, whether under normal or high load
conditions, such as power flow, continuation power flow, and
Q-V curve (Abdullah et al., 2021). Also, the synchronous power
controllers of inverters used for the PV power plant have a beneficial
impact on the power system because they work to limit frequency
deviations, improve oscillation damping, and reduce the negative
effect of the other generating units on the utility grid. Furthermore,
PV power plants can be used to inject reactive power into the utility
grid (Remon et al., 2017). The dynamic performance of PV power
plants linked to the grid can be enhanced using the adaptive or self-
tuning PI controllers of the central inverters. Many studies have
employed this sort of control to enhance PV systems’ dynamic
performance; however, its design is based on trial and error, which is
not a reliable controller-design approach. Furthermore, the
nonlinearity and fluctuation of PV plants in the power system
are two problems faced by the PI controller (Hasanien, 2017).
However, various optimization techniques, such as Particle
Swarm Optimization (PSO), Gray Wolf Optimization (GWO),
Harris Hawks Optimization (HHO), and the Arithmetic
Optimization Algorithm (AOA) can be used to enhance the
generated voltage and power quality and reduce electrical power
losses under different operating conditions through optimizing the
gains of this PI controller (Eltamaly et al., 2020). Voltage and current
harmonics are also reduced according to the specified limits using
these optimization techniques with RLC filters (Al-Shetwi et al.,
2020).

The British Petroleum (BP) 71st edition report presents a
statistical review of world energy, which contains the energy
consumption and known reserves of 2022. As a positive
development, RESs’ share of the power-generating market has
increased to 13%, thanks mostly to the expansion of wind and
solar power. Over the course of the previous 2 years, worldwide
electricity output climbed by over 50%, but renewable generation
increased by approximately 17% in 2021 (BP Statistical Review of
World Energy Report, 2022). With its location in the so-called “solar
belt,” an ideal area for solar power installations, Egypt is a veritable
treasure trove of renewable energy potential. Based on 20-year
averages, Atlas Egypt’s findings reveal that the country has
excellent potential for investment in various solar energy
industries (Moharram et al., 2022). The annual solar radiation
average is 2000–3,200 kWh/m2, and daily sunlight hours vary
between 9 and 11 h/day (Ministry of Electricity and Renewable
Energy, 2022). By 2035, the Egyptian government plans to have
generated energy from renewable sources accounting for 42% of
Egypt’s total generated energy (Ministry of Electricity and
Renewable Energy, 2022).

In line with this, a 26 MWp large-scale grid-connected PV
power plant with modified inverters is designed and simulated by
Matlab/Simulink. This PV power plant is already tied to the
Egyptian electrical network in Fares City, Kom Ombo Center,
Aswan Governorate, Egypt. It consists of (11) blocks and the
utility grid, where every block contains 2,376 kWp PV arrays
connected directly to DC-DC boost converters to regulate the
output DC power generated by each PV array. The inverter used

in this PV power plant is a central inverter, which can operate under
normal conditions efficiently until any faults or abnormal conditions
occur. It can change the mode of operation by using the PI controller
to inject a reactive current based on the amount of these faults.
Dynamic voltage and current regulators are built into this PI
controller to control the inverter output and limit the voltage
flicker, fluctuation, and unbalance injected from this large-scale
PV power plant on the utility grid. Furthermore, the electrical filters
can be used to enhance power quality, improve voltage stability, and
compensate harmonic distortion by optimizing the amount of
power extracted from the PV arrays to the central inverter under
different sunlight conditions and in partial shade (Attia, 2018;
Sameh et al., 2021).

This article aims to enhance the voltage and power quality of the
high penetration level of PV power plants connected to the utility grid to
reduce voltage flicker and total harmonic distortions using modern
optimization methods and techniques. In this study, GWO, HHO, and
AOA methods and filters are applied to the PI controller of the
simulated inverter of the 26MWp large-scale PV power plant.
These optimization methods can improve the dynamic performance
of this PV power plant interface system by optimizing the proportional
gain (Kp) and the integral gain (Ki) of the proportional integral (PI)
controller. Themajor contributions of this article can be summarized as
follows. 1) Design of a realistic 26MWp largescale grid-connected PV
power plant, already tied to the Egyptian electrical network in Fares
City, Kom Ombo Center, Aswan Governorate, Egypt is developed. 2)
Several modern optimization techniques such as GWO, HHO, and
AOA, are applied to enhance the power quality and voltage stability that
is produced from this PV power plant under different sunlight
conditions and in partially shaded conditions. 3) Intensive study is
conducted and a solution is proposed for the high penetration level of
PV power plants connected to the Egyptian electricity grid to control
power quality, voltage stability, and total harmonic distortion issues.

2 Optimization methods

In this article, Gray Wolf, Harris Hawks, and Arithmetic
algorithm optimization techniques are utilized. These
optimization techniques are used to optimize the PI controller
for every central inverter station by adjusting the proportional
gain (Kp) and the integral gain (Ki) of the voltage regulator and
the current regulator. Consequently, the dynamic performance of
the interface system within the utility grid for PV power plants can
be improved.

2.1 Gray Wolf Optimization (GWO)

Inspired by the intelligence and adaptability of gray wolves, or
Canis lupus, a novel meta-heuristic dubbed GrayWolf Optimization
(GWO) has been developed (available online 21 January 2014). In
Figure 1, we see a representation of the GWO algorithm as gray
wolves’ natural hierarchy and hunting mechanism. The gray wolf
social structure is modeled after that of an organization, using a
pyramid of four wolf packs labeled alpha, beta, delta, and omega.
Matlab/Simulink also incorporates the three primary phases of
hunting: looking for prey, surrounding it, and attacking it. GWO
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mathematical equations can be represented by Eqs 1–7: (Mirjalili
et al., 2014).

�D � �C. �Xp t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (1)

�X t + 1( ) � �Xp t( ) − �A. �D (2)
�A � 2 �a . �r1 − �a (3)

�C � 2 . �r2 (4)
�X1 � �Xα − �A1 . �Dα( ), �X2 � �Xβ − �A2 . �Dβ( ), �X3 � �Xδ − �A3 . �Dδ( )

(5)
�Dα � �C1 . �Xα − �X

∣∣∣∣∣ ∣∣∣∣∣, �Dβ � �C2 . �Xβ − �X
∣∣∣∣∣ ∣∣∣∣∣, �Dδ � �C3 . �Xδ − �X

∣∣∣∣∣ ∣∣∣∣∣ (6)

�X t + 1( ) � �X1 + �X2 + �X3

3
(7)

Where, �X(t + 1): indicates the position vector of a gray wolf. t:
indicates the current iteration. �D: encircling behavior. �Xp: the
position vector of the prey. �A & �C: coefficient vectors. �r1 & �r2:
random vectors in [0, 1]. �a: linearly decreased from 2 to 0 over the
course of iterations.

The new metaheuristic technique GWO is inspired by the gray
wolf pack mentality during hunting. Gray wolves hunt as a pack and
rely on their pack members to be in the right place at the right time.
The pack of wolves receives the best-fitting answer in a mathematical
model of the hunting process; the best solution is given to group α,
followed by groups β, γ, and δ. When the wolves are ready to begin
hunting, they circle the victim once (Mishra et al., 2020).

The benefit of GWO is that the method has few parameters and
does not necessitate knowledge of the search space’s derivation.
GWO is also simple to implement, adapt to new circumstances, and
use. The algorithm achieves great convergence because it strikes a
good balance between exploration and exploitation during the
search process (Ghalambaz et al., 2021). However, GWO can
quickly become stuck in a local optimum and has a poor
convergence speed (Liu et al., 2021).

2.2 Harris Hawks Optimization (HHO)

HHO is based mainly on a natural hunting strategy used by
Harris’s hawks, termed “surprise pounce,”which involves teamwork
and cooperation (available online 28 February 2019). Several hawks
will work together to surprise their target by swooping in from all
sides (as depicted in Figure 2). Harris’s hawks have been observed to
display a wide range of pursuit behaviors, which are in turn
influenced by the circumstance and the prey’s tendency to either
flee or be caught. Here, we model the HHO’s foraging and
exploitative stages after the foraging, surprise pounce, and
various attacking techniques of the Harris’s hawk. HHO
mathematical equations can be represented by Eqs 8–18: (Heidari
et al., 2019).

X t + 1( ) � Xrand t( ) − r1 Xrand t( ) − 2r2X t( )| | q≥ 0.5
Xrabbit t( ) −Xm t( )( ) − r3 LB + r4 UB − LB( )( ) q < 0.5

{
(8)

Xm t( ) � 1
N

∑N

i�1Xi t( ) (9)

E � 2E0 1 − t

T
( ) (10)

X t + 1( ) � ΔX t( ) − E JXrabbit t( ) −X t( )| | (11)
ΔX t( ) � Xrabbit t( ) −X t( ) (12)

X t + 1( ) � Xrabbit t( ) − E ΔX t( )| | (13)
Y � Xrabbit t( ) − E JXrabbit t( ) −X t( )| | (14)

Z � Y + S × LF D( ) Soft besiege when E| |≥ 0.5 but r < 0.5( ) (15)

LF x( ) � 0.01 ×
u × σ

υ| | 1β
, σ � Γ 1 + β( ) × sin πβ

2( )
Γ 1+β

2( ) × β × 2
β−1
2( )⎛⎜⎜⎝ ⎞⎟⎟⎠

1
β

(16)

X t + 1( ) � Y ifF Y( ) <F X t( )( )
ZifF Z( )<F X t( )( ){ (17)

Z � Y + S × LF D( ) Hard besiege when E| |< 0.5 and r < 0.5( )
(18)

FIGURE 1
Flow chart of the GWO algorithm (Makhadmeh et al., 2018).
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Where Xrabbit(t): the rabbit’s position. X(t + 1): the next iteration’s (t)
hawks position vector.X(t): the hawk’s current position vector. A set
of random numbers inside (0,1) are denoted by r1, r2, r3, r4, and q,
which are updated in each iteration. Xm: the hawk’s current
population’s average position. Xrand(t): the current population of a

randomly selected hawk Xi(t): the hawk’s location in iteration t. LB
and UB: the upper and lower bounds of variables.N: the total hawks
number. T: the maximum number of iterations. E: the prey’s escaping
energy. E0: the initial state of its energy. r5: random number inside
(0,1). ΔX(t): the difference between the position vector of the rabbit

FIGURE 2
Flow chart of the HHO algorithm (Izci et al., 2020).
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and the current location in iteration t. J = 2 (1 − r5): the random jump
strength of the rabbit throughout the escaping procedure. S: random
vector by size 1xD. D: the dimension of problem. LF: the levy
flight function. β: default constant set to 1.5. u, υ: random values
inside (0,1). Y and Z: obtained using Eqs 14, 15.

Compared to recognized metaheuristic methods, HHO’s results are
often as good as or better than those obtained using the techniques.When
compared to other highly recognized optimizers, HHO can produce
superior solutions. The HHO has also outperformed competing
optimizers in the context of six constrained engineering design
challenges. However, HHO is a random optimization technique.
Therefore, it has problems with high-dimensional datasets like
population diversity and local optima (Mohamed Elgamal et al., 2020).
In addition, HHO’s inaccuracy, slow convergence, and propensity to jump
into a local optimum are also drawbacks (Song et al., 2022).

2.3 Arithmetic Optimization Algorithm (AOA)

The Arithmetic Optimization Algorithm (AOA) is a novel meta-
heuristic approach that makes use of the statistical properties of the
four basic arithmetic operations: multiplication (M), division (D),
subtraction (S), and addition (A). To optimize across many different
areas, mathematic models and code implementations of AOA are
used (Available online on 11 January 2021). AOA mathematical
equations can be represented by Eqs 19–26:

X �

x1,1 . . . . . . x1,jx1,n−1 x1,n

x2,1 . . . . . . x2,j . . .x2,n

. . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .

xN−1,1 . . . . . . xN−1,j . . .xN−1,n
xN,1 . . . . . . xN,jxN,n−1 xN,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

MOA CIter( ) � Min + CIter( ) × Max −Min

MIter
( ) (20)

xi,j CIter + 1( ) � best xj( ) ÷ MOP + ϵ( ) × UBj − LBj( ) × μ + LBj( ), r2 < 0.5

best xj( ) × MOP × UBj − LBj( ) × μ + LBj( ) otherwise
⎧⎨⎩

(21)

MOP CIter( ) � 1 − CIter
1
α

MIter
1
α

(22)

xi,j CIter + 1( ) � best xj( ) −MOP × UBj − LBj( ) × μ + LBj( ), r3 < 0.5

best xj( ) +MOP × UBj − LBj( ) × μ + LBj( ), otherwise
⎧⎨⎩

(23)
LBj ≤xij ≤UBj, j � 1, 2, . . . , n (24)

minf x( )
X � x11, x1j, . . . , x1n{ }

s.t.gi X( )≤ 0, j � 1, 2, . . . , m
hk X( ) � 0, k � 1, 2, . . . , l

(25)

LBj ≤ xij ≤UBj, j � 1, 2, . . . , n

f X( ) � f X( )∑m
j�1
Pej max gi X( ), 0{ } +∑m

k�1
Pek max hk X( ) − ϵ| |, 0{ }

(26)
The proposed AOA strategy demonstrates its mettle as a

solution optimizer by consistently outperforming competing

optimization algorithms across various test functions. Figure 3
shows that the proposed AOA converges steadily and accelerates
its convergence on these test functions more slowly than the
benchmark techniques (GA, FPA, BBO, BAT, PSO, and GWO).
In addition, the AOA achieved faster convergence and better global
search results for these test functions than any competing methods.
Therefore, the AOA has a more rapid convergence rate and
improved global search efficacy (Abualigah et al., 2021).
Compared to competing algorithms, the proposed AOA may
have a significantly lower required running time in seconds.
Consequently, we concluded that the suggested AOA method
has superior computing performance over the competing
techniques.

As a result of comparing the proposed AOA to a set of
12 benchmark optimization algorithms, we found that it holds its
own against the industry’s best. There are still limitations to the
original AOA. For instance, getting stuck in a local optimum is easily
done because location updates based on the ideal value, premature
convergence, and low solution accuracy must be addressed (Chen
et al., 2022). When dealing with multi-dimensional optimization
problems, the AOA suffers from insufficient investigation and
premature convergence to sub-optimal solutions (Kaveh et al.,
2021).

3 Designing of the simulated PV power
plant

3.1 PV mathematical model

A photovoltaic (PV) solar cell’s P-N junction can be constructed
from semiconductor material or other industrial alloys. This PV
solar cell is capable of transforming solar energy into useable power.
An integral part of a PV module is the series and parallel connection
of PV solar cell sets, which together produce both the voltage and
current that is needed. The PV solar cell is modeled as a current
source coupled with other electrical elements. Following is a set of
mathematical equations for a PV module (Eqs 27–30): (Natarajan
et al., 2012).

Iph � Ish +Ki T − 298( )xG[ ]
1000

(27)

Irs � Ish

exp qVoc

Ns KAT( ) − 1[ ] (28)

IO � Irs
T

Tr
[ ]3

exp
qEg

AK
( ) 1

Tr
− 1
T

( )[ ] (29)

Ipv � NpIph −NpIo exp
q Vpv + IpvRs( )( )

NsAKT

⎧⎨⎩ ⎫⎬⎭ − 1⎡⎣ ⎤⎦ (30)

Where, Iph: The PV module’s photo-current (A). Ki: The
temperature coefficient of short current with PV solar cell (A/°C).
Ish: The short-circuit current (A) of a PV solar cell under standard
test conditions (STC). Irs: The current of PV module’s reverse
saturation. G: The sun’s solar irradiance level (W/m2). Voc: The
PV solar cell open circuit voltage (V).K: The constant of Boltzmann
(1.38 × 10−23 J/K).Ns: The module’s number of series PV solar cells.
T: Temperature in (K).A: Ideal factor. Io: The PVmodule saturation
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current (A). q: Electron charge (1.6 × 10−19 C). Tr: The reference
temperature (25°C). Ipv: The PVmodule output current (A). Eg: The
silicon material band gap (1.1ev). Np: The module’s number of

parallel PV solar cells. Vpv: The PV module output voltage (V). Rs:
The PV solar cell series resistance (Ω). Rsh: The PV solar cell shunt
resistance (Ω).

FIGURE 4
Block diagrams of the 26 MWp grid-connected PV power plant, (A) Main Parts of the plant, (B) Contents of every inverter station.

FIGURE 3
Flow chart of the AOA algorithm (Abualigah et al., 2021).
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3.2 Simulation of the proposed grid-
connected PV power plant

This article presents the design of a 26MWp grid-connected PV
power plant, which is already tied to the Egyptian electrical network in

Fares City, Kom Ombo Center, Aswan Governorate, in Egypt. This PV
power plant consists of Eq. 11 inverter station blocks, which are simulated
using Matlab Simulink, as shown in Figure 4A. Every block contains
2,376 kWpPV arrays connected directly to DC-DC boost converters that
are used to regulate the output DC power generated by each PV array.

TABLE 1 Simulation results of the applied GWO for the PI controller of the PV power plant through the errors (IAE, ISE, ITAE, and ITSE).

PI_GWO_(IAE, ISE, ITAE, ITSE)

Error type Rise
time

Setting
time

Overshoot Ki_VDCreg Kp_VDCreg Ki_Ireg Kp_Ireg Objective
function

Time
taken

IAE 0.74 1.04 54.81 307.51 1.68 23.29 0.36 1562.92 131.71

ISE 0.73 1.04 58.91 268.24 3.82 21.15 0.11 356.06 128.22

ITAE 0.74 1.04 56.21 215.99 2.74 21.60 0.33 201.53 129.72

ITSE 0.74 1.04 56.09 297.01 2.82 21.73 0.35 83.84 126.18

FIGURE 5
Performance of the PV power plant, (A) the output AC power curves (Pac), and (B) the output AC voltage curves for phase a (Va) with the time are
produced using gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) generated by GWO with the errors (IAE, ISE, ITAE, ITSE) for the PI controller of the
PV power plant.
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This regulated DC power is fed into a particular type of
inverter called an “on-grid solar inverter” to convert it from DC
power to AC power. The output AC voltage is stepped up to
66 kV through the power transformer to feed the utility grid, as
shown in Figure 4B.

3.3 Maximum power point tracking
algorithm

Since the Perturb & Observe algorithm (P&O) requires fewer
measured parameters and is straightforward to execute, it finds

TABLE 2 Simulation results of the applied HHO for the PI controller of the PV power plant with the errors (IAE, ISE, ITAE, and ITSE).

PI_HHO_(IAE, ISE, ITAE, ITSE)

Error type Rise
time

Setting
time

Overshoot Ki_VDCreg Kp_VDCreg Ki_Ireg Kp_Ireg Objective
function

Time
taken

IAE 0.75 1.04 52.14 235.49 3.73 21.26 0.21 507.28 28.86

ISE 0.73 1.04 58.31 135.76 2.21 22.11 0.38 270.02 38.23

ITAE 0.74 1.04 56.58 332.29 2.29 23.21 0.39 15.24 24.87

ITSE 0.76 1.04 45.73 340.96 3.96 21.89 0.22 3.38 19.34

FIGURE 6
Performance of the PV power plant, (A) the output AC power curves (Pac), and (B) the output AC voltage curves for phase a (Va) with the time are
produced using gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) generated byHHOwith the errors (IAE, ISE, ITAE, ITSE) for the PI controller of the PV
power plant.
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widespread use in MPPT. Adjusting the output voltage up or
down and monitoring the effect on the output power is essential
for monitoring the MPP as the weather changes. If the output PPV
increases, the output VPV regulates directly, as in the former
cycle. If the output PPV decreases, the output VPV is perturbed in

the inversion direction. When the MPP is found, the output VPV

will turn around the maximum operation voltage. In this study,
the maximum power point tracking (MPPT) of PV arrays is
controlled using the P&O algorithm. In addition, several
optimization techniques are applied to enhance the quality of

TABLE 3 Simulation results of the applied AOA for the PI controller of the PV power plant with the errors (IAE, ISE, ITAE, and ITSE).

PI_AOA_(IAE, ISE, ITAE, ITSE)

Error type Rise
time

Setting
time

Overshoot Ki_VDCreg Kp_VDCreg Ki_Ireg Kp_Ireg Objective
function

Time
taken

IAE 0.74 1.04 56.39 216.67 2.22 23.49 0.38 2054.35 120.75

ISE 0.74 1.04 55.35 256.91 1.28 21.43 0.37 3205.68 118.71

ITAE 0.74 1.04 54.17 195.34 2.79 21.91 0.33 393.64 126.12

ITSE 0.74 1.04 56.38 247.13 2.55 21.69 0.39 21.94 146.21

FIGURE 7
Performance of the PV power plant, (A) the output AC power curves (Pac), and (B) the output AC voltage curves for phase a (Va) with the time are
produced using gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) generated by AOAwith the errors (IAE, ISE, ITAE, ITSE) for the PI controller of the PV
power plant.
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the power and voltage produced from the proposed PV power
plant in different sunlight conditions and partial shading
(GUIZA et al., 2019).

3.4 Voltage-current controller (PI)

The PI control is the main part of the central solar inverter,
which is used to control the voltage and current values by

adjusting the proportional gain (Kp) and the integral gain (Ki)
of the voltage regulator and the current regulator. The measure
and reference DC voltage will be the input to the voltage
controller to find the reference current (Id_ref). Furthermore,
the measure and reference current will be the input to the current
controller to find the controlled voltage (VdVq_conv), which will
feed the pulse width modulation (PWM). Finally, the output
pulses of PWM are used to control the three-level IGBTs Bridge
(Inverter).

TABLE 4 The best simulation results of the generated gains (Kp & Ki) using GWOwith IAE error and HHO and AOAwith ISE error for the PI controller of the PV power
plant.

Optimization
technique

Error
type

Rise
time

Setting
time

Overshoot Ki_VDCreg Kp_VDCreg Ki_Ireg Kp_Ireg Objective
function

Time
taken

GWO IAE 0.74 1.04 54.81 307.51 1.68 23.29 0.36 1562.92 131.71

HHO ISE 0.73 1.04 58.31 135.76 2.21 22.11 0.38 270.02 38.23

AOA ISE 0.74 1.04 55.35 256.91 1.28 21.43 0.37 3205.68 118.71

FIGURE 8
Performance of the PV power plant, (A) the output AC power curves (Pac), and (B) the output AC voltage curves for phase a (Va) with the time are
produced using the best gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) generated by GWOwith IAE error and HHO and AOAwith ISE error for the
PI controller of the PV power plant.
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4 Experimental simulation and analysis

4.1 Simulation environment and parameter
settings

The performance of the proposed PV power plant during
different sunlight conditions is validated and evaluated in this

study by applying certain famous and recent optimization
algorithms, such as GWO, HHO, and AOA. These techniques
are used to optimize the PI parameters by adjusting the
proportional gain (Kp) and the integral gain (Ki) of the
voltage regulator and the current regulator to control the
three-level IGBTs Bridge (Inverter). The PI control parameters
(ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) are obtained by
GWO, HHO, and AOA to realize minimized voltage and
power fluctuations. The experimental environment is Intel(R)
Core (TM) i5-2430M CPU, 2.40GHz, 4GB, Windows 7 64-bit
operating system, and all codes are programmed through Matlab
(version: R2017b).

To achieve its goal, every optimization method requires some
objective function. Each algorithm’s population size (N) is set to 20,
and the maximum number of iterations (T) is set to 10. To prevent any
unfair advantages from being gained, all experiments are conducted
separately 20 times, and themean of the 20 times is used as themetric of
algorithm performance. Reducing the discrepancy between the actual
and target values is the goal of this objective function. Integral of
absolute error (IAE), integral of square error (ISE), integral of time and
absolute error (ITAE), and integral of time square error (ITSE) are the
four error benchmark objective functions.

Firstly, to select the best of the objective functions and gain
values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg), GWO is
applied to the proposed PV power plant under different
sunlight conditions, with the four error benchmark objective
functions (IAE, ISE, ITAE, and ITSE). Table 1 shows the best
objective functions and gain values (ki_VDCreg, kp_VDCreg, ki_
Ireg, kp_Ireg) generated using GWO for PI control of the
proposed PV power plant, with each of the errors, through
number of population = 20 and number of iteration = 10 By
applying all of the gain values (ki_VDCreg, kp_VDCreg, ki_Ireg,
kp_Ireg) in Table 1 to the proposed PV power plant under
different sunlight conditions, the best value among them can
be determined through comparisons between the power curves
and voltage curves, as shown in Figure 5.

TABLE 5 Statistical evaluation of the optimization algorithms results.

GWO HHO AOA

Number of values 10 10 10

Minimum 11.56 6.59 6.25

Median 12.56 7.59 7.25

75th Percentile 12.81 7.84 7.25

25th Percentile 12.31 7.34 7.25

Maximum 13.56 8.59 8.25

Range 2 2 2

Std. Error of Mean 0.2108 0.2108 0.1491

Mean 12.56 7.59 7.25

Std. Deviation 0.6667 0.6667 0.4714

Sum 125.6 75.9 72.5

TABLE 6 Analysis of variance test results.

SS DF MS F (DFn, DFd) p-Value

Treatment 176.7 2 88.35 F (2, 27) = 238.6 p < 0.0001

Residual 10 27 0.3704

Total 186.7 29

TABLE 7 Wilcoxon test results.

GWO HHO AOA

Theoretical mean 0 0 0

Actual mean 12.56 7.59 7.25

Number of values 10 10 10

One sample t-test

t, df t = 59.58, df = 9 t = 36.00, df = 9 t = 48.63, df = 9

p-value (two-tailed) <0.0001 <0.0001 <0.0001

p-value summary **** **** ****

Significant (alpha = 0.05)? Yes Yes Yes

Discrepancy 12.56 7.59 7.25

SD of discrepancy 0.6667 0.6667 0.4714

SEM of discrepancy 0.2108 0.2108 0.1491

95% confidence interval 12.08 to 13.04 7.113 to 8.067 6.913 to 7.587

R squared (partial eta squared) 0.9975 0.9931 0.9962
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Secondly, to select the best of the objective functions and gain values
(ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg), consequently, the AOA
with ISE error is the best optimization technique and is recommended
to be applied to the large-scale and high penetration level of grid-
connected PV power plants to optimize and adjust the PI controller
gains of the central inverter (IAE, ISE, ITAE, and ITSE). Table 2 shows
the best objective functions and gain values (ki_VDCreg, kp_VDCreg,
ki_Ireg, kp_Ireg) generated using HHO for PI control of the proposed
PV power plant, with each of the errors, through number of
population = 20 and number of iteration = 10. By applying all of
the gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) in Table 2 to
the proposed PV power plant under different sunlight conditions, the
best value among them can be determined through comparisons
between the power curves and voltage curves, as shown in Figure 6.

Thirdly, to select the best of the objective functions and gain
values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg), the AOA is
applied to the proposed PV power plant under different sunlight
conditions with the four error benchmark objective functions
(IAE, ISE, ITAE, and ITSE). Table 3 shows the best objective
functions and gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_
Ireg) generated using AOA for PI control of the proposed PV
power plant, with each of the errors, through number of
population = 20 and number of iteration = 10. By applying all
of the gain values (ki_VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) in
Table 3 to the proposed PV power plant during different sunlight
conditions, the best value among them can be determined
through comparisons between the power curves and voltage
curves, as shown in Figure 7.

FIGURE 9
Optimization algorithms, (A) Histogram of the results, (B) Visualizing of the results.
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4.2 Analysis of results

By applying all the gain values (ki_VDCreg, kp_VDCreg, ki_
Ireg, kp_Ireg) from the last three tables to the proposed PV power
plant under different sunlight conditions, the best values among
them can be determined. Table 4 shows the best gain values (ki_
VDCreg, kp_VDCreg, ki_Ireg, kp_Ireg) produced using GWO,
HHO, and AOA optimization techniques.

By applying IAE error withGWOand ISE errorwith theHHOand
AOA optimization techniques, the best values (ki_VDCreg, kp_
VDCreg, ki_Ireg, kp_Ireg) can be obtained, as shown in Table 4. To
determine the best accurate gain value (ki_VDCreg, kp_VDCreg, ki_
Ireg, kp_Ireg), which is generated from every one of these optimization
techniques, comparisons can be made between the power curves and
voltage curves produced by the proposed PV power plant under
different sunlight conditions, as shown in Figure 8.

Applying all the best gain values (ki_VDCreg, kp_VDCreg, ki_
Ireg, kp_Ireg) in Table 4 to the PI control of the proposed PV power
plant under different sunlight conditions, the total harmonic
distortion values (THD) for voltage can be obtained for every
error with GWO, HHO, and AOA. Finally, the AOA with ISE
error produces the most accurate gain values (ki_VDCreg = 256.91,
kp_VDCreg = 1.28, ki_Ireg = 21.43, kp_Ireg = 0.37) and a lower
THD (7.25%). As a result, the AOA with ISE error is the best
optimization technique and must be applied to the PI control of the
proposed PV power plant so that the highest power quality and the
lowest THD can be produced.

On the other hand, Table 5 presents the statistical evaluation of
the results achieved in terms of the proposed optimization algorithm
compared to the other algorithms. In this table, the results achieved
by the proposed approach are superior and show promising
performance. In addition, Tables 6, 7 show in-depth analysis of
the results using the analysis of variance (ANOVA) (Abdelhamid
et al., 2022a; El-Kenawy et al., 2022a; Khafaga et al., 2022; El-Kenawy
et al., 2022b; El-Kenawy et al., 2022c; Eid et al., 2022) and the
Wilcoxon signed rank tests (Abdel Samee et al., 2022; Alhussan et al.,
2022; Abdelhamid et al., 2022b; Khafaga et al., 2022b; Khafaga et al.,
2022; El-kenawy et al., 2022d; Khafaga et al., 2022d; El-Kenawy et al.,
2022e). These tests proved the statistical difference between the
proposed methodology and the other competing methods.

To visually highlight the performance of the proposedmethodology,
Figure 9 shows a histogram of the achieved results and a set of plots
describing the residual error. In this figure, the results illustrated confirm
the effectiveness of the proposed methodology.

5 Conclusion

Connectingmore RESs to the utility grid will lead tomore technical
problems. PV and WT based power plants are the most nonlinear
sources of renewable energy contributing to the energy mix. Nowadays,
the high penetration level of PV power plants connected to the Egyptian
electricity grid is effective. The irregularity and intermittency of PV
power generation can affect the voltage stability and power quality of
the utility grid during peak load demand. This article presents a Matlab
simulation of a 26 MWp large-scale grid-connected PV power plant,
which is already tied to the Egyptian electrical grid in Fares City, Kom
Ombo Center, Aswan Governorate, Egypt. This PV power plant

consists of Eq. 11 blocks and the utility grid. Every block contains
2,376 kWp PV arrays connected directly to DC-DC boost converters.
The output DC power is fed into a particular type of inverter called a
“central inverter”, which is used to convert it to AC power. In this study,
several optimization techniques, namely, GWO, HHO, and AOA, are
applied to enhance the voltage stability and power quality produced by
the proposed PV power plant under different sunlight conditions and in
partial shade. These optimization techniques adjust Kp and Ki gains for
the voltage regulator and the current regulator of the PI controller built
into the central inverter of the proposed PV power plant. As a result,
this PI controller increases the power quality, regulates the output
voltage, and limits the THD for each block of this PV power plant.
Simulation results confirm that using these optimization techniques led
to enhanced power quality and decreased THD and made the output
voltage of this PV power plant to the utility grid more stable. The AOA
technique showed outstanding results and superior performance under
shaded conditions when applied to this PV power plant compared to
GWO and HHO in terms of solution quality and computational
efficiency. Finally, the AOA with ISE error was found to produce
the most accurate gain values (Ki_VDCreg = 256.91, Kp_VDCreg =
1.28, Ki_Ireg = 21.43, Kp_Ireg = 0.37) and the lower THD percentage
(7.25%). Consequently, the AOAwith ISE error is the best optimization
technique and is recommended to be applied to the large-scale and high
penetration level of grid-connected PV power plants to optimize and
adjust the PI controller gains of the central inverter. This way, the
highest power quality and voltage stability and the lowest THD can be
produced from the high penetration level of PV power plants connected
to the utility grid.
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