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Accurate estimation of the State of Health (SOH) of lithium-ion batteries is crucial
for ensuring their safe and reliable operation. Data-driven methods have shown
excellent performance in estimating SOH, but obtaining high-quality and strongly
correlated features remains a major challenge for these methods. Moreover,
different features have varying importance in both spatial and temporal scales,
and single data-driven models are unable to capture this information, leading to
issues with attention dispersion. In this paper, we propose a data-driven method
for SOH estimation leveraging the Bi-directional Long Short-Term Memory (Bi-
LSTM) that uses the Differential Thermal Voltammetry (DTV) analysis to extract
features, and incorporates attention mechanisms (AM) at both temporal and
spatial scales to enable the model focusing on important information in the
features. The proposed method is validated using the Oxford Battery
degradation Dataset, and the results show that it achieves high accuracy and
robustness in SOH estimation. The Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) are around 0.4% and 0.3%, respectively, indicating the
potential for online application of the proposed method in the cyber hierarchy
and interactional network (CHAIN) framework.
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1 Introduction

The growing demand for energy and environmental pollution pose urgent requirements
for the development of new energy sources. LIBs, due to their high energy density, wide
operating range, strong temperature adaptability and long cycle life, are widely used in
automobiles, electronic devices and spacecraft (Pang et al., 2021; Liu et al., 2022). During the
usage of LIBs, degradation occurs due to internal side reactions, and failed LIBs need to be
replaced in a timely manner to ensure safe usage (Gao et al., 2021; Zhang et al., 2022a).
Therefore, accurate estimation of the health status of batteries is crucial for ensuring the
safety of LIBs, as well as for improving efficiency and reducing costs (Zhou et al., 2021; Deng
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et al., 2023). However, as batteries are highly complex, time-varying
and nonlinear electrochemical systems, it remains a significant
challenge to establish a reliable Battery Management System
(BMS) to accurately estimate the health status of LIBs (Zhang
et al., 2022b; You et al., 2022; Ruan et al., 2023).

Currently, the estimation of the SOH of LIBs can be roughly
divided into direct measurement methods, model-based methods,
and data-driven methods (Ma et al., 2022; Jin et al., 2023).

The direct measurement method usually estimates the SOH
of the battery by measuring the electrochemical impedance
spectrum of the battery, open circuit voltage (OCV), or by
using the ampere-hour integral method. As the internal
resistance of the battery increases with degradation, the SOH
of the battery can be estimated by measuring its electrochemical
impedance spectrum. OCV can be directly measured and used to
estimate SOH through its fitting relationship with the capacity.
The ampere-hour integral method estimates SOH by measuring
the current and integrating it over time. The direct measurement
method has high accuracy, but it requires high measurement
conditions and instruments, making it suitable for laboratory
environments and difficult to apply in real-world vehicle
applications.

Model-based methods, including equivalent circuit model
(ECM), electrochemical mechanism model, and empirical model,
are used to estimate the SOH of LIBs. The ECM method simulates
the operation process of the battery using circuit components such
as resistors, power sources and capacitors, and estimates SOH
through model parameter identification methods such as Kalman
filtering algorithm. The electrochemical model method builds an
electrochemical model from the internal degradation mechanism of
the battery to estimate SOH. The empirical model method estimates
SOH by constructing an empirical relationship between the SOH
and other measurable macroscopic physical quantities. Yan et al.
(2017) estimated the SOH of a battery by establishing a second-order
ECM and estimating the Ohmic resistance through adaptive
unscented kalman filter (AUKF), and then mapping the
resistance and SOH relationship. Lyu et al. (2017) proposed a
framework combining the electrochemical model and particle
filter (PF) algorithm to estimate battery degradation. Singh et al.
(2019) developed a semi-empirical model that achieved fast and
accurate SOH estimation by using charge-discharge cycle number

and current as inputs; Zeng et al. (2019) established an improved
second-order ECM model and used Bayesian for online parameter
identification, using the fuzzy unscented Kalman filtering algorithm
for SOH estimation. Yan et al. (2019) improved the extended
Kalman filter based on Lebesgue sampling and efficiently
estimated SOH using second-order ECM. Li et al. (2018)
proposed an single particle (SP) model that considers the
physical mechanism of battery aging for capacity estimation.
ECM and electrochemical model-based methods usually have
high accuracy and strong interference resistance as closed-loop
systems, but building an accurate battery model might be
complex, and the established battery model may only perform
well under specific conditions. Model parameters also need to be
adjusted in a timely manner with changes in the working
environment and conditions to ensure accuracy. Empirical
model-based methods have high real-time applicability due to
their simplicity and fast computation speed. However, the
accuracy of empirical models is often limited and cannot fully
reflect the degradation process (Chen et al., 2022).

In recent years, with the development of various devices and
hardware, the computing power and data acquisition technology of
computers have made significant leaps, and various databases have
emerged. Data-driven methods have gradually become very popular
in various industries (Wu et al., 2015; Wang et al., 2022). These
methods do not require knowledge of complex electrochemical
mechanisms or the construction of complex mathematical
models, but are based on data to extract features highly
correlated with battery degradation contained in macroscopic
signals completely, and establish nonlinear relationships between
these features and battery degradation. This makes it easier to
achieve high-accuracy estimations. For example, Wang et al.
(2022) implemented high-accuracy SOH estimation based on the
modified Gaussian process regression (GPR) method. Lin et al.
(2022a) used the random forest algorithm to fuse three machine
learning algorithms (Support vector machine (SVM), multiple linear
regression (MLR) and GPR) to further improve the estimation
accuracy. In addition to traditional machine learning algorithms,
deep learning algorithms, which have developed rapidly in recent
years, are gradually becoming popular and widely used. Eddahech
et al. (2012) used recurrent neural network (RNN) to estimate the
SOH of lithium batteries. RNN is good at solving time series

TABLE 1 Specific degradation experiment conditions of the batteries.

Technical specifications Cycling tests

Anode material Graphite Charge test CC charge at 2C

Cathode material LCO/NCO

Nominal capacity [mAh] 740

Nominal voltage [V] 3.7

Discharge cutoff voltage [V] 2.7 Discharge test Artemis drive cycle discharge

Charge cutoff voltage [V] 4.2

Weight [g] 19.5 ± 0.5

Tester 8-channel Big MPG 205 battery tester

Environment MK53 hot chamber at 40 °C
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problems and is suitable for estimating battery SOH. For long-term
dependency problems, the effect of RNN is greatly reduced, while its
variant LSTM can make up for this deficiency. Zhang et al. (2018)
used LSTM to achieve high-accuracy estimation of the SOH and
RUL of lithium-ion batteries. Deng et al. (2022) identified
degradation patterns based on the early degradation data of
batteries and applied transfer learning to further improve the
accuracy of SOH estimation, and realized high-accuracy SOH
estimation based on LSTM network. Deng et al. (2023)
determined the label capacity based on statistical values of
capacity and extracted features from charging data, using a
sequence to sequence model combined with a GPR based
residual model to estimate SOH. Deep learning methods do not
require knowledge of the complex internal mechanisms of batteries
and can model non-linear dynamics well. However, the estimation
accuracy of data-driven methods is highly dependent on the amount
and quality of data. To address the problem of insufficient available
data, Shen et al. (2020) implemented high-accuracy battery SOH
estimation by using DCNN combined with transfer learning and
ensemble learning methods, which can be further expanded based
on small data sets. Traditional data-driven methods are often
difficult to use with data that do not have SOH labels. Xiong
et al. (2023) proposed a data-driven method based on semi-
supervised learning to fully utilize these unlabeled data, which
are usually easy to obtain and have a large amount of data.
Apart from the limited availability of data from lithium-ion
batteries, extracting high-quality features strongly correlated with

battery degradation from large amounts of data is also a challenging
task. Many signal analysis techniques are commonly used as
auxiliary tools to extract features. Signal analysis methods
combine the measurable macroscopic signals of batteries with the
internal chemical reaction process of battery degradation to obtain
features strongly related to battery degradation. Commonly used
methods include independent component analysis (ICA) and DTV
methods. ICAmethod analyzes the relationship between voltage and
capacity changes in charge-discharge cycles, and reflects battery
degradation through the evolution of peaks and valleys in the curve.
Li et al. (2020) proposed a multi-timescale framework based on ICA
method to estimate the SOH of batteries by extracting highly
correlated features related to battery degradation from the ICA
curve, and using the GPR algorithm to estimate the SOH of batteries.
Sun et al. (2022) used the empirical mode decomposition (EMD)-
ICA-gate recurrent unit (GRU) method to decompose capacity data
through the EMDmethod, extract features through the ICAmethod,
and estimate the SOH of batteries using the GRU algorithm.
Microscopic phase changes that occur inside batteries during
degradation lead to entropy changes. The DTV analysis method
extracts information related to entropy changes in the charging and
discharging process by analyzing the relationship between
temperature and voltage and can reflect the internal changes in
the battery degradation process through measurable macroscopic
signals (Wu et al., 2015; Merla et al., 2016a; Merla et al., 2016b). The
DTV curve gradually changes with battery degradation, and features
with a high correlation with the SOH of the battery can be extracted

FIGURE 1
Battery degradation cycle schemes and data preprocessing. (A) Degradation test of voltage, current and temperature. (B) Capacity degradation
profiles of the eight batteries. (C) Temperature processed by SG filter (battery #1). (D) DTV processed by data preprocessing, curve1 is the origin DTV
curve, curve2 is the DTV curve processed by fixing sampling interval and curve3 is the DTV curve processed by SG filter (battery #1).

Frontiers in Energy Research frontiersin.org03

Zou et al. 10.3389/fenrg.2023.1178151

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1178151


from the DTV curve. The implementation of the DTV method does
not require complex and expensive measurement instruments, only
the battery voltage and surface temperature are needed, thus it has
potential for practical applications.

The technology route of extracting highly correlated features
with battery degradation through signal analysis techniques and
training and estimation through data-driven methods can achieve
high-accuracy SOH estimation (Ma et al., 2022; Zhang et al., 2023).
Lin et al. (2023) extracted multiple features based on ICA and
voltage curves, and used an improved GPR model for SOH
estimation. Xu et al. (2023) extracted features based on ICA and
voltage and temperature curves, and estimated SOH using an
ensemble learning framework. Lin et al. (2022b) used differential
temperature capacity method for feature extraction and combined
simulated annealing algorithm with support vector regression to

estimate SOH. However, facing numerous features that can be
extracted through signal analysis techniques, selecting the most
relevant features is another challenge. Although correlation
analysis methods can be used to select highly correlated features,
the correlation analysis can only reflect the correlation between
features and battery degradation throughout the entire lifecycle of
the battery. The importance of the information contained in
different features at different spatial and temporal scales for local
changes varies widely, making it difficult to conduct refined research
on them in practical applications. This can result in the problem of
scattered attention of deep learning models, making it difficult to
fully extract more information related to battery degradation from
the data.

In order to address the aforementioned issues and achieve high-
accuracy SOH estimation and improve the more comprehensive
exploration and utilization of limited data, this paper proposes an
SOH estimation method that combines DTV method and deep
learning algorithm with the addition of an AM. Firstly, based on the
degradation dataset of LIBs in the Oxford University database, data
preprocessing and DTV analysis are performed. Peaks and valleys
are extracted from the DTV curves as features and high-correlation
features related to battery degradation are selected using the Pearson
correlation analysis method. Then, a deep learning model is built
based on Bi-LSTM and trained based on the selected features. Two
layers of AM are added to the model to further explore the
information contained in the data from both spatial and
temporal scales, and focus on the important features. Finally, the

TABLE 2 Pearson correlation coefficient.

Battery label FV1 FV2 FV3 FV4 FV5 FV6

#1 0.958 0.874 0.960 0.932 0.953 0.981

#3 0.923 0.913 0.965 0.943 0.907 0.964

#4 0.951 0.958 0.961 0.981 0.948 0.972

#7 0.940 0.953 0.908 0.890 0.919 0.983

#8 0.954 0.892 0.958 0.912 0.943 0.981

FIGURE 2
Features extraction and correlation analysis. (A) Degradation evolution of DTV curves. (B) Schematic diagram of feature extraction. (C) Evolution of
characteristics with battery degradation. (D) The result of Pearson correlation analysis (battery #1).
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trained model is applied to SOH estimation, and the proposed
method is validated based on error analysis. The results show that
the DTV analysis method can effectively extract features highly
correlated with battery degradation from the data and can be
combined with deep learning models to optimize the SOH
estimation process, achieving high accuracy. Different features
have varying degrees of correlation with battery degradation on
the spatial and temporal scales, and the AM can effectively explore
the information contained in the data during the local degradation
process, focus on the most important information and effectively
solve the problem of attention dispersion. In the CHAIN framework,
the proposed model can achieve high-accuracy offline SOH
estimation and has the potential for real-time online application,
contributing to the development of the next-generation cloud BMS
(Yang et al., 2020; Yang et al., 2021).

The remaining sections of this paper are arranged as follows:
Section 2 describes the battery degradation dataset, data processing
and feature extraction process. Section 3 describes the principles of
the model and algorithms used in this paper and provides a detailed
description of the entire model framework. Section 4 validates the

proposed method and analyzes the error. Section 5 summarizes the
main conclusion of this paper.

2 Degradation data and preprocessing

2.1 Dataset description

The lithium-ion battery degradation data set from the Oxford
University database is utilized in this paper (Birkl, 2017a; Birkl,
2017b). The whole data set contains data from 8 batteries. Which are
labelled from #1 to #8. The technical specifications and experimental
conditions of the batteries are listed in Table 1 in detail. Figures 1A,
B describe the voltage, current and temperature data and battery
capacity degradation curves. The battery #1, #3, #4, #7 and #8 are
used for this paper, because other batteries did not fall below EOL,
and could not be fully evaluated or the capacity curve drop sharply.

The definition of SOH can be divided into the definition of
capacity and the definition of internal resistance. The definition of
SOH can usually be described as:

FIGURE 4
The structural diagram of (A) Attention mechanism and (B) The whole deep learning model.

FIGURE 3
The structural diagram of LSTM and Bi-LSTM. (A) The structural diagram of LSTM. (B) The structural diagram of Bi-LSTM.
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SOH � Qaged

Qnew
(1)

SOH � REOL − R
REOL − Rnew

(2)

Where Qaged represents the current maximum available battery
capacity, Qnew the Initial maximum available battery capacity, REOL

the internal resistance of the battery at the end of its lifespan, R the
internal resistance of the battery of current state and Rnew the initial
internal resistance.

In this paper, the definition of SOH is selected from the perspective
of capacity. Based on the data in the data set, the reference capacity is
determined by Ampere-hour integration method.

2.2 Data preprocessing

Battery degradation is accompanied by microstructural changes,
which in turn lead to entropy changes. DTV analysis can reflect
information related to entropy changes during the degradation
process of lithium-ion batteries. This method can establish a
connection between macroscopic signals and microstructural
changes by analyzing changes in temperature and voltage, and
can be used to reflect battery degradation. The DTV methods
could be calculated as follows:

DTV �
dT
dt
dV
dt

� dT

dV
(3)

Where T represents the battery surface temperature, and V the
battery terminal voltage.

During data collection, noise and outliers can be introduced due
to fluctuations in the signal and sensor errors. As shown in
Figure 1A, there is a large amount of noise in the temperature
data. To address this issue, data preprocessing is performed. Firstly,
the sampling interval is adjusted to avoid amplifying the impact of
noise. A sampling interval of 20 s is chosen based on a balance
between noise reduction and information loss. Secondly, an SG filter
is applied to the temperature data for smoothing. The SG filter is
well-suited for our application as it has an excellent ability to capture

peaks and valleys in waveform. In our study, the peaks and valleys
extracted from the DTV curve are used as features for subsequent
analysis (Chen et al., 2004). The SG filter could be described as
follows:

y i( ) � ∑j�p
j�−p

1
Nc

Cjx i + j( ) (4)

Where y represents the smoothed signal, Cj the coefficient of the
SG filter, Nc is equal to the smoothing window size (2p+1) and x the
original signals.

Based on the data processing steps described, the results are
shown in Figures 1C, D. After the data preprocessing, the
temperature data is significantly smoother, and the DTV curve
has reduced noise. However, some noise still exists in the DTV
curve, and the SG filter is used to further smooth the curve, as shown
in Figure 1D, resulting in a smoother DTV curve.

2.3 Features extraction and correlation
analysis

In this section, the feature extraction on the DTV curve obtained
after data preprocessing is conducted. Figure 2A shows the changes in
the DTV curve with battery degradation. It can be observed that with
battery degradation, the peaks and valleys in the DTV curve experience
significant shifts. The peak values of the two peaks decrease, and their
positions shift higher, while the valley values decrease and their
positions shift higher as well. These changes in peaks and valleys are
strongly related to battery degradation, further demonstrating that the
DTV method can reflect the micro changes in battery degradation
through macroscopic signals and thus can be used as a tool to assist
SOH estimation. Therefore, we extracted the peak and valley
information from the DTV curve as features to input into the deep
learningmodel for SOH estimation. A total of six features, including the
peak values and positions of the two peaks and the valley values and
positions of one valley, are extracted from the DTV curve. Figure 2B
shows the schematic diagram of the feature extraction process. The
mathematical expression of the feature can be described as follows:

FIGURE 5
Timeseries construction.
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Vpeak � Vi dDTV
dVi

∣∣∣∣∣ �0,andf Vi( )≥f V( ),V∈ Vi−1 ,Vi+1( )
(5)

DTVpeak � f Vpeak( ) (6)
Vvally � Vi dDTV

dVi

∣∣∣∣∣ �0,andf Vi( )≤f V( ),V∈ Vi−1 ,Vi+1( )
(7)

DTVvally � f Vvally( ) (8)

Where f(·) is the mapping relationship of DTV and voltage.
The changes in the extracted features are shown in Figure 2C,

and further Pearson correlation analysis is performed on the
extracted features to select highly correlated features to improve
the estimation accuracy and training efficiency. The Pearson
correlation analysis can be described as follows:

rxy � ∑n
i�1 xi − �x( ) yi − �y( )											∑n

i�1 xi − �x( )2
√ 											∑n

i�1 yi − �y( )2√ (9)

where x and y are the variable and n the number of sample points.
The results are shown in Figure 2D and Table 2, where it can be

observed that FV1, FV3, and FV6 exhibit high correlation on all batteries,
with correlation coefficients above 90%. Particularly, for FV6, the
correlation coefficient is above 95%. Therefore, we select FV1, FV3,
and FV6 as features to be input into the model for SOH estimation, in
order to improve estimation accuracy and training efficiency.

3 Methodology

3.1 Bi-LSTM network

Battery degradation is a typical time series problem. RNN is a
good choice for dealing with time series problems. However, in long-
term time series problems, RNN has the problems of gradient
disappearance and gradient explosion. LSTM is a variant of

RNN, and the main structure of LSTM is similar to RNN(Greff
et al., 2017). The forgetting gate, input gate and output gate are
added in the hidden layer, which can be better applied to long-term
time series problems. The structure of LSTM unit is shown in
Figure 3A. The calculation of each LSTM unit can be described
as follows:

Firstly, the LSTM units receive the xj andj−1 and the forgetting
gate is used to control which information to be forgotten in the cell
state:

fj � σ Wf · hj−1, xj[ ] + bf( ) (10)

Where σ is a nonlinear activation function named sigmoid. The
sigmoid function will limit the value to the range of 0–1, which
represents the forgotten ratio and update the unit status cj.

Then, the input sequence data at current position is processed by
the input gate and the input gate will determine which information
to be updated and added to the cell state through the sigmoid
function. The tanh function is used to generate new candidate
vectors, and the information which to be reserved will be added
to the cell state. The input gate is calculated as follows:

ij � σ Wi · hj−1, xj[ ] + bi( ) (11)
gj � tanh Wg hj−1, xj[ ] + bj( ) (12)

Next, the unit state update from cj−1 to cj:

cj � cj−1*fj + ij*gj (13)

Where cj−1*f j is the information to be reserved and ij*gj is the
new information to be added. The sum of the two information is the
cell state of the current sequence.

Finally, the sigmoid function determines which part of the
information to be output, and the cell state is processed by the

FIGURE 6
The framework of the proposed method.
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tanh function. The result of multiplying the two parts is the final
output:

oj � σ Wo · hj−1, xj[ ] + bo( ) (14)
hj � oj*tanh cj( ) (15)

Where j is the new hidden state, and the cj is the unit state.
The structure of Bi-LSTM is shown in Figure 3B, which consists

of two independent LSTM networks. The input time series are fed
into two LSTM neural networks in forward and backward order
respectively. The output vectors from the two networks are
concatenated to form the final feature representation for the
current sequence position. The core idea of Bi-LSTM is to add
information from both the future and the past to the features of
current sequence position, thus combining the bidirectional
correlations of the data to more effectively explore the time series
features hidden in the data and achieve higher efficiency and
superior performance compared to a single LSTM. In this paper,
a deep learning model based on Bi-LSTM is constructed to achieve
high-accuracy SOH estimation.

3.2 Attention mechanism

Using features highly correlated with SOH is crucial for
achieving high-accuracy SOH estimation in deep learning
models. Although correlation analysis methods can screen out
features strongly correlated with SOH, they can only select these

features throughout the entire life cycle of the battery, while these
features have different impacts on the estimation results at local
positions in spatial and temporal scales. However, deep learning
models tend to disperse attention among various features,
resulting in a lack of capturing important features. To address
this issue, this paper introduces AM into the deep learning model
to improve its performance. The AM assigns weights to the
features to enable the model to focus more on important
information by calculating the correlation between each
element in the input sequence and assigning weights to each
element (Vaswani et al., 2017). The input features pass through a
fully connected layer to obtain a feature vector, which is then
compared for similarity with itself to obtain the weight of each
element. The weights of important features will be higher, while
the weights of unimportant features will be lower. Finally, these
weights are multiplied by the input features to obtain the newly
weighted features. The structure of the AM is shown in Figure 4A,
and the overall framework of the deep learning model with AM is
shown in Figure 4B. The AM can be described as follows:

et � u tanh wht + b( ) (16)

at � exp et( )/∑t

j�1exp ej( ) (17)

st � ∑i

t�1atht (18)

Where u and w are the weight, b the bias, at the attention
weight, ht the input vector of the attention layer, et the value of

FIGURE 7
SOH estimation results under different data split proportion. (A) Estimation result with split proportion of 4: 6 (battery #1). (B) Estimation result with
split proportion of 5: 5 (battery #1). (C) Estimation result with split proportion of 6: 4 (battery #1). (D) MAE and RMSE analysis.
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the hidden layer of attention layer and st is the output of the
attention layer.

The input features are firstly weighted by the spatial AM. The
structure of the spatial AM is essentially a multi layer perceptron
(MLP) network, and the parameters in the network are also
trained during the model training process. The ht of the
spatial AM is an vector of spatial scale between different
features. Therefore, after passing through the spatial AM, the
weights of the features can be adaptively adjusted at the spatial
scale. The new features are then input into the Bi-LSTM network,
which consists of two Bi-LSTM layers. A dropout layer is added
to the model to prevent overfitting. The output state vectors from
the Bi-LSTM network are then passed through the temporal AM.
The temporal AM can adjust the attention level of the sequence
adaptively through training. The ht of the temporal AM is an
vector of temporal scale along the timeseries. Finally, the output
of the temporal AM layer is fed into a Dense layer with a sigmoid
activation function added. The output of the Dense layer
represents the final estimated SOH.

3.3 Input and output structure

Figure 5 illustrates the structure of the input and output data.
The data is constructed as a time series and input into the network.

Firstly, the three features are taken and formed into a two-
dimensional matrix based on a fixed window length, which is
called the time series length represented as N in the figure. This
two-dimensional matrix represents the time series, and the
window is moved downward based on a fixed step length. The
data is eventually divided into multiple time series. For the kth time
series, the estimated target value is the SOH of the (k + N)-th cycle.
Then, several time series are selected to form a three-dimensional
tensor, and the number of selected time series is called the batch
size. The constructed three-dimensional tensor is called a batch,
which is input into the network for training based on the
batch unit.

3.4 Framework of the proposed SOH
estimation model

The overall framework of the proposed method is illustrated in
Figure 6. The entire process is divided into four parts. Firstly, data
preprocessing is performed, which is described in detail in
Subsection 2.2. The preprocessed data is then used to calculate
the DTV curve, which is further processed to extract the peaks and
valleys of the DTV curve as features. The feature data is then
constructed in a time-series format. Subsequently, the
constructed time-series data is fed into a deep learning model for

FIGURE 8
SOH estimation results with attention mechanism. (A) Estimation result with spatial attention (battery #1). (B) Estimation result with temporal
attention (battery #1). (C) Estimation result with spatiotemporal attention (battery #1). (D) MAE and RMSE analysis.
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FIGURE 9
SOH estimation results of different batteries. (A) Estimation result of battery #3. (B) Estimation result of battery #4. (C) Estimation result of battery #7.
(D) Estimation result of battery #8. (E) MAE and RMSE analysis of the model without AM. (F) MAE and RMSE analysis of the model with AM.

FIGURE 10
Validation of the robustness. (A) Estimation result of battery #1. (B) Estimation result of battery #3. (C) Estimation result of battery #4. (D) Estimation
result of battery #7. (E) Estimation result of battery #8. (F) MAE and RMSE analysis.
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training. The deep learning model is based on Bi-LSTM and includes
dropout techniques to prevent overfitting. Two layers of AM are also
incorporated to focus on the important information in the data for
optimizing estimation accuracy. The RMSprop technique is utilized
for optimization during the training process. Finally, the trained
model is used for estimating the SOH and for error analysis. The
estimated results are compared with the ground truth values and are
quantitatively analyzed and compared using RMSE and MAE as
evaluation metrics. The RMSE and MAE can be calculated as
follows:

MAE � 1
N

∑N
k�1

yk − y*
k

∣∣∣∣ ∣∣∣∣ (19)

RMSE �

													
1
N

∑N
k�1

yk − y*
k( )2√√

(20)

where yk represents the real value and y*
k the estimated value.

4 Result and discussion

In this section, the proposed method is validated and error
analysis is performed. First, the influence of the proportion of the
training and testing set on estimation accuracy is studied to select the
optimal data set split portions that balances accuracy and early
estimation ability. Then, the optimization effect of applying the AM
on the temporal and spatial scales for estimation accuracy is
compared. Finally, the robustness of the proposed method is
verified.

4.1 Estimation results of Bi-LSTM under
different data split proportion

In this subsection, the influence of the dataset split portions on the
SOH estimation accuracy is studied to determine the optimal ratio that
balances the accuracy and early estimation ability. The estimation results
are shown in Figure 7. When the dataset is split into portions of 4:6, 5:
5 and 6:4, the RMSE of the estimation results are below 0.8%, and the
MAE are below 0.7%, demonstrating that the DTVmethod can establish
a strong correlation with battery degradation and achieve high-accuracy
SOH estimation when combined with deep learningmethods. It can also
be seen that with an increase in the amount of training data, the accuracy
of SOH estimation gradually improves, as more training data allows the
model to fully learn the distribution pattern of the data. Although more
training data can improve the accuracy, it can greatly compromise the
early estimation ability of themodel. Therefore, the choice of dataset split
portions should balance both accuracy and early estimation ability. The
split portions of 5:5 showed an significant improvement in the
performance compared to 4:6, with an error improvement of 30.3%.
However, the split portions of 6:4 showed only a small error
improvement of 6.9% compared to 5:5, with a compromise in early
estimation ability. Therefore, the dataset split portions of 5:5 is chosen for
the following experiments in this paper.

4.2 Estimation result with attention
mechanism

In this section, the information contained in the features is
further explored by incorporating the AM into the Bi-LSTM model.

FIGURE 11
Leave-one-out cross-validation results. (A) Estimation result of battery #1. (B) Estimation result of battery #3. (C) Estimation result of battery #4. (D)
Estimation result of battery #7. (E) Estimation result of battery #8. (F) MAE and RMSE analysis.
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Firstly, the effect of adding AM at different scales, including
temporal, spatial, and spatiotemporal scales, are compared on a
the battery #1 to capture the importance of information at different
scales. Then, the proposed method is validated on other batteries. In
this evaluation, the battery #1, #3, #4, #7 and #8 are used, because
other batteries did not fall below EOL, and could not be fully
evaluated, or the capacity curve drop sharply.

Figure 8 shows the estimation results using Battery 1 with the
AM added at different scales. The curve descriptions are the same as
described in the previous subsection. It can be seen that the RMSE
andMAE of the estimation results with AM added at spatial scale are
0.503% and 0.442%, respectively. The RMSE and MAE of the
estimation results with AM added at temporal scale are 0.405%
and 0.328%, respectively. The estimation accuracy is higher than
that without AM. This indicates that AM can further explore more
information from the features and focus more on important features
locally, thus improving estimation accuracy. Moreover, it is noted
that the improvement in estimation accuracy by adding AM at
temporal scale is greater than that at spatial scale. This indicates that
the features selected by the correlation analysis method have small
differences at spatial scale and have a good correlation with battery
degradation. The RMSE and MAE of the estimation results with the
addition of the AM on the spatiotemporal scale are 0.281% and
0.233% respectively, and the estimation accuracy is higher than that
of the estimation results with the application of the AM on the
spatial or temporal scale alone. Compared with the model without
the addition of the AM, the RMSE andMAE of the estimation results
are reduced by 0.265% and 0.224% respectively, and the error
improvement of the RMSE and MAE are 48.6% and 49%
respectively, which indicates that the addition of the AM at
spatiotemporal scale can fully combine the advantages of both
spatial and temporal scales to achieve better optimization effects.

Then, the proposed method is verified on different batteries, and
the estimation results are shown in Figure 9. The results show that
the proposed method achieved satisfactory estimation accuracy for
all batteries, with RMSE below 0.6% and MAE below 0.5%. In
particular, for battery #8, the RMSE and MAE are only 0.318% and
0.251% respectively, and the error improvements are all about 10%.
In conclusion, the AM can reasonably allocate weights to features
with different importance at spatial and temporal scales, allowing
the model to capture more important underlying information and
achieve high-accuracy SOH estimation.

4.3 Validation of robustness

In this subsection, the robustness of the proposed method is
validated, and the estimation results are shown in Figure 10. The
blue dot line represents the real value of SOH, and the red line
represents the estimated value of SOH. In the robustness validation,
different starting cycles of the batteries are applied by discarding the
first 20% of the data, and the validation was conducted on all
batteries. The RMSE and MAE analysis are presented in Figure 10F.
The results show that the RMSE and MAE of the estimation results
are distributed around 0.25% and 0.2%, respectively, under different
starting cycles of the batteries. The RMSE and MAE of the
estimation results only differ by 0.1% compared to the normal
condition, indicating that the proposed method exhibits stable

performance and strong robustness under different starting cycles
of the batteries.

In this subsection, a cross validation method is also used to
validate the proposed model. The specific approach is to use data
from one battery as the test set, while data from other batteries as the
training set. When dividing data on the same battery data, due to the
similar data distribution, the high-precision estimation results may
be caused by overfitting. By leaving a cross validation, the
performance of the model can be more accurately verified and
the limited amount of data can be fully utilized. Figure 11 shows
the results of leaving a cross validation. The results show that the
method proposed in this article still achieves high accuracy despite
leaving a cross validation, with estimated RMSE below 0.5% and
MAE below 0.4%. It is also noted that the accuracy of the estimation
results on each battery has a small difference, indicating that the
inconsistency between batteries has a small impact on the estimation
results. It indicates that the method proposed in this article has
strong generalization in situations with abundant data volume.

5 Conclusion

This paper proposes a data-driven method for estimating the SOH
of LIBs. In practice, battery data is preprocessed through data cleaning,
fixed sampling intervals and filtering. The DTV method is used to
extract features from the data, and then feature selection is performed
through Pearson correlation analysis. The deep learningmodel includes
two Bi-LSTM layers and dropout technology to prevent overfitting. The
temporal AM and spatial AM are added to the deep learning model to
assign weights at different scales. Finally, the trained model is used for
estimation, and RMSE and MAE are used as error indicators for error
analysis. The results show that the proposed method can achieve high-
accuracy SOH estimation, with an RMSE of about 0.4% and anMAE of
about 0.3%. Adding AM can bring error improvement about 10%, and
the proposed method has strong robustness under different battery
start-up cycles, with an RMSE and MAE difference of only 0.1%
compared to the estimation results from 0 starting points.

The main contributions of this paper are as follows:
(1) The DTV analysis method can establish the connection

between micro-phase transitions during battery degradation and
macro signals, and obtain high-quality features strongly correlated
with battery degradation through DTV analysis. (2) The AM is
added to the deep learning model at both the temporal and spatial
scales to assign weights, making the model more focused on the
important parts of the features. (3) This model has high accuracy
and strong robustness, with estimation errors within 0.3% in
different start-up cycles. The proposed method has the potential
for online applications under the CHAIN framework and can be
combined with cloud BMS and end-cloud collaboration framework
for further realization of high-accuracy and real-time battery SOH
estimation in practical applications.
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