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The intermittency and uncertainty of wind energy make transmission congestion
management increasingly complex. In this paper, we investigate the impact of
wind energy on available transmission capacity (ATC) and then explore ways to
mitigate transmission congestion from the grid and load side, respectively. The
impact of a stochastic variable is considered by applying Latin Hypercube
Sampling (LHS) and backward curtailment techniques to generate typical
scenarios. ATC is improved by the optimal allocation of Thyristor Controlled
Series Compensation (TCSC) on the grid side and the use of Demand
Response (DR) on the load side. The source-grid-load cooperative
optimisation model for ATC is solved by an improved particle swarm
optimisation (PSO) algorithm. Based on the IEEE-30 bus system, an
experimental scheme is designed and analytical calculations are performed.
The results show that the joint application of TCSC and DR can help to
improve ATC in a comprehensive way. The work done in this paper can
achieve the purpose of promoting renewable energy consumption by
improving the utilisation efficiency of the transmission network without
changing the network structure.
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1 Introduction

1.1 Research motivation

The intermittency and uncertainty of wind power make system operation complex and
variable. This tends to cause problems such as the overloading of the transmission line.
Available transmission capacity (ATC) is an important parameter that measures the ability
of power systems to transmit power between regions (Jiang et al., 2022; Shinde et al., 2023).
With the increasing penetration of new energy sources, the application of various new load
types, and the high proportion of power electronics in power equipment, it is essential to
quantitatively study the impact of wind power uncertainty on ATC and to explore solutions
to transmission congestion from the load side and the network side.
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1.2 Literature review

Most of the existing studies on ATC, whether using deterministic or
probabilistic analysis, are based on the optimal allocation of the source-
side resource increase when the load demand increases, or on the
optimal dispatch of the grid-connected capacity and the output of
conventional units when new energy sources are connected to the grid.
For example, Chauhan et al. (2023) presents a novel approach called the
modified repeated alternating current power flow with step-size control
mechanism to analyze the ATC of the power system during bilateral
wheeling transactions. Thismethod saves computation time and ismore
suitable for ATC calculations of large power systems compared with the
conventional methods. Majumdar et al. (2021) constructs an ATC
calculation model using the sum of the load node active power
increments as the objective function and the static safety and
stability of the system as the constraints. The model was solved
based on various intelligent optimization algorithms. Sun et al.
(2020) proposed an ATC calculation method based on linearized
optimal power flow, and experimentally verified that this method is
superior to the ATC calculation methods based on DC power flow and
AC power flow. Zhang et al. (2020) provided an overview of issues
related to the calculation of probabilistic available transmission capacity.
Reyad et al. (2023) proposed an approach for ATC assessment in an
intraday market. The presented methodology allows the transmission
system operator to assess the ATC close to reality, taking into account
the voltage stability concerns as well as the uncertainties of the forecasted
load and wind power. Wang et al. (2021) solves the probabilistic ATC
problem for power systems containing wind farms with the help of
opportunity constrained planning.

Whether a system has sufficient ATC is not only related to the
optimal dispatch of the active power of the source-side generators,
but is also closely related to the load distribution. In the case of a
peak load, transmission is often blocked. However, if the load
distribution can be adjusted to ensure that the total amount of
transmission during a given period is constant with a reduction in
the spike, then it would be possible to reduce the occurrence of
transmission blockages during that period. Demand response (DR)
is a way for customers to adjust their electricity consumption plans
in response to market changes based on market price signals or
incentives. Some previous studies have been conducted on DR and
its application to solve transmission blockage problems. For
example, the impact of DR on the ATC of power systems with
wind power has been quantified by constructing virtual power plants
(Chen et al., 2019a). Wu et al. (2019) solved the transmission
blockage problem based on a stochastic chance constraint
approach that considers wind power and DR uncertainties. Chen
et al. (2019b) proposed a two-stage ATC evaluation framework that
combines flexible DR and verifies that flexible DR can effectively
improve real-time ATC through load transfer and peak shaving.

With the same generator output configuration and load
distribution, the ATC will be different if the network structure is
changed. An appropriate network structure can help to improve the
ATC, but often a huge investment is required to improve the network
structure by adjusting the lines. The flexible AC transmission system
(FACTS) combines power electronics technology with traditional
power system components (Ahmad et al., 2000). The impact of
FACTS on ATC has been explored in some reports. For example, a
FACTS optimal allocation method based on the brain storm

optimization algorithm has been proposed to improve the ATC
(Adewolu and Saha, 2022). Singh et al. (2022) introduced a Lion
Updated Moth Flame Optimization algorithm to optimally configure
thyristor-controlled series compensation (TCSC) to increase ATC.
Moreover, Shen et al. (2000) introduced a unit capacity control
scaling factor for the unified power flow controller to quantify its
control effect, and, based on this, a method for locating and sizing a
unified power flow controller to improve the ATC was proposed.

1.3 Contribution and organization of this
paper

To date, few studies have been conducted to improve ATC by
combining load-side and network-side measures based on new
energy output uncertainty. This paper aims to introduce load-
side price-based DR and grid-side TCSC measures to improve
ATC based on the study of wind power volatility and
uncertainty, compare these measures using a test system, and
provide recommendations.

The main contributions are: 1) A method for obtaining typical
wind power scenarios is derived; a method for handling load DR is
derived; a model for TCSC in steady-state power system calculations
is derived. 2) A model for ATC calculation considering wind power
uncertainty, load DR, and TCSC is developed. 3) The particle swarm
optimization (PSO) algorithm is improved and the solution process
is designed. 4) An experimental scheme is set up based on the
arithmetic example to validate the theory in the paper.

The remaining chapters are organized as follows: Section 2
introduces the treatment of wind power stochasticity, the
principle of load-demand response, and the model of TCSC in
steady-state calculation. Section 3 introduces the model of source-
network-load cooperative optimization of inter-area ATC. Section 4
focuses on the improvement of the PSO algorithm and the design of
the solution process for the model developed in the paper. Section 5
focuses on the design of an experimental scheme based on the
arithmetic example to validate the related theory and model. Section
6 presents the conclusion.

2 Wind power uncertainty treatment
method, load DR principle, and TCSC
equivalent model

2.1 Wind power uncertainty treatment
method

Wind turbine output is stochastic and there may be deviations
between actual and predicted output. The predicted deviation of the
average wind turbine output follows a normal distribution (Yang et al.,
2022). Importantly, if the deviation set is generated with specific tools
based on the probability distribution of the predicted deviation, then a
small number of typical representative scenarios can be obtained by
reducing the original scenarios to reflect the distribution of the original
scenarios. Thus, the wind turbine output is transformed from a random
problem to a deterministic problem. In this paper, the initial set of
deviation scenarios was generated using Latin hypercube sampling
(Avila and Chu, 2019), and the typical representative error scenarios
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and their corresponding probabilities were obtained using the backward
reduction technique (Wei et al., 2000). The set of actual typical wind
turbine output scenarios was obtained by adding the typical deviation
scenarios to the predicted wind turbine output curve, as given by Eq. 1.

Ps
w,t � Py

w,t + ΔPw,t (1)
where Ps

w,t and Py
w,t are the actual and predicted outputs of the

turbine at time t, respectively, and ΔPw,t is the predicted error of the
turbine output at time t.

The specific implementation steps of the Latin hypercube
sampling were as follows: first, the sampling size was set to M;
then the value space (0, 1) of the probability distribution function Y
was equally divided intoM parts {i.e., (0, 1/M), [(M-1)/M, 1]}; next,
one point from each interval, Ya, was randomly selected; and finally,
the inverse function Eq. 2 was used to obtain the sampling point xa
to form the initial scenario set.

xa � F−1 Ya( ) a � 1,/,M (2)
The specific implementation steps of the backward reduction

technique were as follows:

1) The initial probability of each scenario in the original scenario set
was set to 1/M.

2) The probability distance between scenario xa and the other
scenarios was calculated. The minimum probability distance
Da and the scenario xb, corresponding to this minimum value,
were recorded. Da was calculated using Eq. 3.

Da � min λad xa, xb( )( ) a, b � 1,/,M and a ≠ b (3)
where λa is the probability of scenario xa and d(xa, xb) is the
Euclidean distance between scenarios xa and xb.

3) The minimum value of Da and its corresponding scenario xa,
which is the scenario to be deleted, was determined. The minimum
value of Da was named Dmin, as shown in Eq. 4.

D min � min Da( ) a � 1,/,M (4)

4) The scenario xa selected in step 3 was eliminated and its
probability was superimposed on the probability of the
sample xb determined in step 2 to ensure that the sum of the
probabilities of the sample remained constant at 1.

5) The total number of samples M was decreased by 1, and it was
judged whether the reduction requirement was met; if not, steps
2–4 were repeated until the remaining number of scenarios met
the requirement.

2.2 Load DR principle

Load-side management uses price-based DR (Zhao et al., 2021).
Based on the original load curve and the time-of-use tariff to guide
customer’s electricity consumption behavior, the load distribution is
changed while ensuring that the total load remains unchanged. From
the customer’s perspective, DRminimizes electricity consumptionwhen

the price is high and shifts some elastic demand to when the price is low.
From the power company’s perspective, DR increases the price to
reduce pressure on the power supply when customers are using a lot of
electricity and reduces the price to encourage electricity consumption
when the load is low.When the DR quantity is obtained for each period,
this quantity can be superimposed on the initial load to obtain the load
after implementing the DR, as given by Eq. 5.

LDR
t � Lt + ΔLt (5)

where Lt and LDRt are the loads before and after DR in period t,
respectively, and ΔLt is the amount of load DR in period t.

The quantity of DR for each period was obtained using the
electricity tariff elasticity matrix (Liu et al., 2021), as given by Eq. 6.

ΔL1

..

.

ΔLt

..

.

ΔLT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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. ..
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. ..

. ..
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0 / 0 / LT
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·Me ·

ΔC1/C
..
.

ΔCt/C
..
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ΔCT/C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where T is the total number of periods; ΔLt and Lt denote the load
DR quantity and the original load at time t, respectively; Me is the
price elasticity matrix; C is the original fixed electricity price; and
ΔCt is the difference between the time-of-use price and the original
fixed price at time t.

The price elasticity matrix Me represents the relationship
between the rate of load change and the rate of price change in
each period, as given by Eq. 7.

Me �

M11 / M1m / M1T

..

. ..
. ..

.

Mt1 / Mtm / MtT

..

. ..
. ..

.

MT1 / MTm / MTT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Mij � ΔLt/Lt

ΔCm/C (7)

where Mtm is the elasticity coefficient (if t is equal to m, it is the
coefficient of self-elasticity; if t andm are not equal, it is the coefficient of
mutual elasticity). In the calculation, the self-elasticity and mutual
elasticity coefficients were approximated by −0.3 and 0, respectively.

2.3 TCSC equivalent model

The TCSC consists of a capacitor and a thyristor-controlled
reactor. By adjusting the conduction angle of the thyristor, the
reactance of the TCSC can be varied (Siddiqui and Prasgant, 2022).
This makes the line equivalent impedance becomes a controllable
parameter. Its connection to the system is shown in Figure 1.

The variation process of the line parameters is shown by Eq. 8.

Xij
′ � Xij +XTCSC

XTCSC � −βTCSCXij
{ (8)

where i and j are the node serial numbers, Xij and Xij′ are the
reactance of the line before and after compensation, respectively,
and βTCSC is the compensation degree.
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3 Source-grid-load synergy model for
optimizing the interregional ATC

Themodel of the source-grid-load synergistic optimization ATC
was constructed by Eq. 9.

F x( ) � maxf x( )
s.t.

gβ x( )≤ 0, β � 1, 2,/
hγ x( ) � 0, γ � 1, 2,/{

⎧⎪⎨⎪⎩ (9)

where F(x) is the objective function; x is an α-dimensional control
variable (x1, x2, . . . , xα); and gβ(x) and hγ(x) are the βth inequality
constraint function and the γth equality constraint function,
respectively. The corresponding terms are described as follows.

3.1 Objective function

The objective function f(x) is the interregional ATC. As defined by
the North American Electric Reliability Council, the ATC is the
remaining transmission capacity available for commercial use after
the maximum transmission capacity of the transmission section minus
contracted power and certain transmission margins, the Transmission
Reliability Margin (TRM) and the Capacity Benefit Margin (CBM).
Ignoring the TRM and CBM, the ATC was set approximately as the
maximum transmission capacity of the transmission section minus the
contracted power. That is, while ensuring that generation and load in
other regions remained unchanged, the output of generators in the
sending area and the load of the receiving area were simultaneously
increased until the transmission capacity of line reached the limit. The
sum of the increased output of the sending region is the ATC from the
sending region to the receiving region (Karuppasamypandiyan et al.,
2021), as shown in Eq. 10.

ATC � ∑
i∈NGS

ΔPGi (10)

whereΔPGi is the increase in the active power of the generator connected
to node i in the transmission area relative to its base-state value, andNGS

is the set of nodes with generators in the transmission area.

3.2 Constraint conditions

3.2.1 Equality constraints
The equation constraint hγ(x) mainly includes the power

balance constraint of each node in the system, as given by Eq. 11.

PGi + ΔPGi( ) + Ps,t
Wi − 1 + ηi( )PDR,t

Di �
Ui∑q

j�1
Uj Gij cos θij + Bij sin θij( )

QGi + Qs,t
Wi − 1 + ηi( )QDR,t

Di �
Ui∑q

j�1
Uj Gij sin θij − Bij cos θij( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where PGi andQGi are the active and reactive powers of the generator
connected to node i, respectively; ΔPGi is the active power increase
of the unit connected to node i; Ps,t

Wi and Qs,t
Wi are the active and

reactive powers of the wind farm connected to node i at time t under
scenario s, respectively; PDR,t

Di and QDR,t
Di are the active and reactive

power of the load connected to node i at time t, respectively, after
taking DR into account; ηi is the load growth rate; Ui and Uj are the
voltage magnitudes of node i and j, respectively; θij is the difference
in the phase angle of the voltage between the two nodes; Gij and Bij
are the corresponding elements in the node admittance matrix;
and q is the number of nodes connected to node i. If it is not a
transmitting zone, ΔPGi is set to 0. If it is not a receiving zone, ηi is set
to 0. If the branch is configured with the TCSC, the branch reactance
is changed according to Formula 8, and only Gij and Bij of the
corresponding branch are changed in the power balance relationship
equation.

3.2.2 Inequality constraint
The inequality constraint gβ(x) includes the control variable

constraint and the state variable constraint.
The control variable constraints mainly include the proportional

constraint of the load involved in the DR, the location constraint of
the TCSC configuration, the range constraint of the value of the
compensation degree, and the active power range constraint of the
generator in the supply area, as shown in Eq. 12.

λ ∈ 0, 0.6{ }
B ∈ Nb

βTCSC
min ≤ βTCSC ≤ βTCSC

max

PGi
min ≤PGi + ΔPGi ≤PGi

max, i ∈ NGS

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

where λ is the proportion of the node load involved in the DR (the
value is set to 0 or 0.6); B and Nb denote the serial number of the
branch configured with the TCSC and the set of all the branch serial
numbers in the system, respectively; βmax

TCSC and βmin
TCSC are the upper

and lower limits of the TCSC compensation degree, respectively; PGi
and ΔPGi denote the active power of the generator connected to node
i in the sending area at the base-state power flow and the increment
relative to this value, respectively; and NGS denotes the set of nodes
with generators in the sending area.

The state variable constraints mainly include the voltage
magnitude constraint of the load node, the reactive power
constraint of the generator, and the branch transmission upper
limit constraint, as given by Eq. 13.

Ui
min ≤Ui ≤Ui

max, i ∈ ND

Qj
min ≤Qj ≤Qj

max, j ∈ NG

Sbr| |≤ Sbr max, br ∈ Nb

⎧⎪⎨⎪⎩ (13)

where Umax
i and Umin

i are the upper and lower limits of the voltage
amplitude of load node, respectively; ND is the set of load nodes;
Qmax

j and Qmin
j are the upper and lower limits of the reactive

power of generator, respectively; NG is the set of generator

FIGURE 1
The connection between the TCSC and the power system.
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nodes; and Sbr and Smax
br are the capacity and its upper limit of

the branch br, respectively. Nb has the same meaning as the
corresponding parameter in Eq. 12 and represents the set of all
branch serial numbers in the system.

3.3 Constraint handling strategy

The control variables can be artificially set and can satisfy
the constraints by themselves. Meanwhile, the state variables
change with the control variables and cannot satisfy the
constraints by themselves. When a state variable crosses the
boundaries, the crossed amount is added to the original
objective function in the form of a penalty term to construct
an objective function that considers the inequality constraint,
thus forcing the variables to gradually search for non-inferior
solutions in the direction of satisfying the constraints (Li et al.,
2000), as shown by Eq. 14.

f x( ) � f x( ) −H x, u( ) (14)
where x has the samemeaning as the corresponding variable in Eq. 5
and represents the control variable; u is the state variable; and H(x,
u) is the penalty term and is calculated as in Eq. 15.

H x,u( ) � ∑
i∈ND

ΔUi

Ui
max − Ui

min
+ ∑

br∈Nb

ΔSbr
Sbrmax

(15)

whereUmax
i, Umin

i, and Smax
br are the same as the corresponding variables

in Formula 13. The intermediate variables can be calculated using
Eq. 16.

ΔUi �
Ui

min − Ui, Ui <Ui
min

0, Ui
min ≤Ui ≤Ui

max

Ui − Ui
max, Ui

max <Ui

⎧⎪⎨⎪⎩
ΔSbr � Sbr| | − Sbrmax, Sbr| |> Sbrmax

0, Sbr| |≤ Sbrmax{

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(16)

4 Improved PSO algorithm and model
solving process

The model in this paper is a constrained non-linear
optimization problem. The improved PSO algorithm, which
was formed by improving the initial particle formation
method and the particle update rules in the optimization
search process based on the PSO algorithm (Sun et al., 2021),
was applied to solve this model.

4.1 Coding and good point set initialization

The control variable x is coded with real numbers [λ, B, βTCSC,
ΔPG1, ΔPGNGS], where ΔPG1, ΔPGNGS are the increments of the
active power of the generators in the transmission range. The
more uniformly the initial particle population is distributed in
the search space, the better it is for improving the optimization
efficiency and solution accuracy of the algorithm. The initial
particles of the standard PSO optimization algorithm were

generated randomly. This method of initial particle generation
does not guarantee that the initial particles are uniformly
distributed in the search space. The good point set is useful to
improve the uniformity and diversity of the initial population.
Therefore, the good point set was used to initialize the
population.

The principle of good point set initialization (Yan et al., 2000)
and the steps to obtain a good point set were as follows:

1) Gα denotes the unit cube of the α-dimensional Euclidean space.
There is a point set P(k) containing n points in Gα. P(k) = {[y1(k),
. . . , yd(k), . . . , yα(k)]|k = 1, 2, . . ., n}, where yd(k) denotes the dth
dimension of the kth point.

2) Let each point r in Gα be (r1, . . . , rd, . . . , rα). N(r) denotes the
number of points satisfying 0≤yd(k)<rd in P(k). Let φ(n) = sup|
N(r)/n-|r|| and call it the deviation of P(k). If φ(n) = o(1) for any
n, then P(k) is said to be a good point set on Gα.

3) In this paper we have adopted the method of dividing the circular
domain to construct the good point set. That is, we let the point
r=[2cos(2π/p), 2cos(4π/p), . . ., 2cos(2dπ/p)], where p is the
smallest prime number among the numbers not less than
2α+3, and then let the good point set P(k) = {[(r1k), . . . ,
(rdk), . . . , (rαk)]|k = 1, 2, . . . , n}, where (rdk) denotes taking
the fractional part.

4) Map each point in P(k) to the search space, as shown in Eq. 17.

xk,d � ubd − lbd( ) · rdk{ } + lbd (17)
where xk,d denotes the dth dimension of the kth initial particle, and
ubd and lbd denote the upper and lower bounds of the dth dimension
control variables, respectively.

4.2 Variable inertia weighting factor setting

In order to improve the global search speed in the early stage and
the local search ability in the later stage, as well as to remove the
limitation of having to set the velocity variation range precisely
(Zhang et al., 2000), the weighting coefficient was set to decrease
linearly with the number of iterations in a given value interval. The
rules for updating the particle velocity and position are shown in
Eq. 18.

vit+1k,d � wvitk,d + c1r1 pk,d − xit
k,d( ) + c2r2 git

d − xit
k,d( )

xit+1
k,d � xit

k,d + vit+1k,d

w � w max − w max − w min( ) it

it max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(18)

where xitk,d and vitk,d denote the position and velocity of the dth
dimensional variable of the kth particle, respectively, in the itth
iteration; itmax is the maximum number of iterations; c1 and c2 are
the individual learning and social learning parameters,
respectively, taking the value 2; r1, r2 are random numbers in
the interval (0, 1); pk,d denotes the optimal position of the kth
particle’s dth dimension in the historical search; g it

d denotes the
population’s optimal position of the dth dimensional variable in
the itth iteration; w is the inertia weighting coefficient; and wmax

and wmin are the maximum and minimum limits of the inertia
weighting coefficient, respectively.
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4.3 Solution process for the model

The computational flowchart for solving the model of this paper
using the improved PSO algorithm is shown in Figure 2.

5 Case study and analysis

5.1 Case and parameter setting

As shown in Figure 3, a wind farm was connected to the
system at node 15, based on the IEEE 30-node system. The wind
farm contained 20 wind turbines, each with a rated power of
1.5 MW and a stator-side power factor of 1 (Xiao et al., 2000).
The ATC from region 3 to region 2 was optimally calculated and
the effects of wind power, load DR, and TCSC on the ATC were
investigated. The initial number of particles was 20, the storage
capacity was 100, the maximum number of iterations was 100,
and the inertia weight varied linearly with the number of
iterations in the range 0.9–0.4. The base power was 100 MVA,

and the power flow was calculated using the Newton–Raphson
method.

5.2 Wind power related processing and load
related processing

The daily load curve, the daily predicted wind turbine output
curve, and the time-of-use price curve for a region are shown in
Figure 4 (Gao et al., 2000).

5.2.1 Wind power-related processing
The mean of the normal distribution of the wind power

prediction error was taken as 0, and the standard deviation as
0.33% of the rated power. Following the Latin hypercube

FIGURE 2
Flowchart of model solving based on the improved PSO
algorithm.

FIGURE 3
Modified IEEE-30 system.

FIGURE 4
Wind turbine forecast output curve, load curve, and power price
curve.
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sampling principle described in Section 2.1, 100 initial scenarios of
wind power prediction error were generated to form the initial set of
error scenarios, as shown in Figure 5.

Following the principle of the backward reduction technique
described in Section 2.1, the initial scenarios in Figure 5 were
backward reduced and the number of typical deviation scenarios
was set to 10. Furthermore, the typical predicted deviation scenarios
of the wind turbine output and their corresponding occurrence
probabilities were obtained, as shown in Figure 6.

According to Eq. 1, the predicted wind turbine generator power
curve shown in Figure 4 was superimposed on Figure 6 to obtain a
typical set of actual wind turbine generator output.

5.2.2 Load-related processing
According to the price-based DR principle described in Section

2.2, for the typical daily load curve shown in Figure 4, 60% of the

load was taken to participate in DR. The comparison of the curves
before and after DR is shown in Figure 7.

As shown in Figure 7, the introduction of DR led to a reduction
in peak load, with some load being shifted to lower tariff periods,
such as late at night. The peak-to-valley difference in the load curve
became smaller (0.73 to 0.62 p.u.).

5.3 Simulation and analysis

5.3.1 Hourly ATC optimization calculation
Four schemes were set up for the experimental analysis, as

shown in Table 1, where √ indicates that the factor was considered
and × indicates that the factor was not considered.

In Scheme 1, the effect of wind power uncertainty on the ATC
was investigated. The ATC was calculated for each typical wind
power scenario and the ATC curve was plotted. Next, the maximum
ATC (ATCmax) and minimum ATC (ATCmin) were determined for
each hour to provide the upper and lower bounds for all ATC results.
The results are shown in Figure 8.

As can be seen in Figure 8, the uncertainty in the wind power results
in different curves of hourly ATC value for different wind power
scenarios. The interval range (i.e., the difference in ATC values) reached
a maximum of 4.07MW (at 24:00) and a minimum of 1.62MW (at 20:
00). The range of ATCmax values was 45.33–56.50 MWand the range of
ATCmin values was 43.35–53.50MW. The ATC curve of each scenario
was generally below 56.50 MW, and many ATC values were below
44.50MW in the 17:00–20:00 time interval.

In addition, the probability of the ATC (ATCP) for each hour
after accounting for wind power uncertainty was tabulated (Table 2).

In Scheme 1, the range of values for the hourly ATCP was
43.81–54.12MW, with a mean of 49.25MW, the maximum
occurring at 1:00 and the minimum at 18:00 (Table 2). These results
correspond to the characteristics of the load curve and the wind turbine
output curve shown in Figure 4 for the following reasons: At 1:00, the
load demand in zone 2was lower and the wind farm output was greater;
therefore, a large power transfer from zone 3 to zone 2 was avoided, and

FIGURE 5
Initial deviation scenarios.

FIGURE 6
Typical deviation scenarios and their respective probabilities.

FIGURE 7
Comparison of the load curves before and after the DR.
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a higher ATC value was observed at that time. Meanwhile, at 18:00, the
load was higher and the wind turbine output was lower. The higher load
demand and lower wind energy input in zone 2 meant that a large
amount of power had to be transmitted across the zone tomeet the load

demand. As there was already a large amount of power transfer on the
line between zone 3 and zone 2, the ATC value was smaller.

In Scheme 2, the effect of the first improvement measure, the
implementation of DR on the load side, was examined. The load curve
after DR shown in Figure 7 was used as the load of each node to
calculate the ATC for different wind power scenarios. The ATCmax and
ATCmin for each hour were determined to form the upper and lower
limits of the ATC results for all scenarios, as shown in Figure 9.

In Scheme 2, the ATCmax ranged from 47.36 to 55.28 MW and
the ATCmin ranged from 44.92 to 52.72 MW (Figure 9). Compared
to Figure 8 (without improvement measures), the ATC curve shown
in Figure 9 was generally above 44.50 MW throughout the interval.
The apparent improvement of the ATCmin interval indicates that
60% proportional participation of all node loads in DR can improve
the ATC, especially the ATCmin.

In addition, the ATCP values were determined for each hour
after the load DR was applied and the results are summarized in
Table 3.

In Scheme 2, the ATCP ranged from 46.10 to 53.86 MW, with a
maximum at 2:00 and a minimum at 18:00 (Table 3). The lower limit
was higher than the corresponding value without improvement
measures (43.81–54.12 MW in Table 2), which confirms the
effectiveness of the load DR in improving the ATCmin. The average
value of 49.56MW for the ATCP was higher than the corresponding
value without improvement measures (ATCP is 49.25 MW in Table 2),
thus verifying the improvement of the ATC performance by the DR.

TABLE 1 Setting of each scheme.

Scheme serial number Wind power uncertainty Load demand response Facts

1 √ × ×

2 √ √ ×

3 √ × √

4 √ √ √

FIGURE 8
ATC under different wind power scenarios (Scheme 1).

TABLE 2 Hourly ATCP values considering wind power uncertainty (Scheme 1).

Time ATCP (MW) Time ATCP (MW)

1:00 54.12 13:00 48.42

2:00 53.57 14:00 48.27

3:00 54.04 15:00 47.45

4:00 53.94 16:00 47.68

5:00 53.48 17:00 45.98

6:00 52.66 18:00 43.81

7:00 50.62 19:00 44.38

8:00 48.84 20:00 45.29

9:00 48.36 21:00 46.47

10:00 46.85 22:00 49.48

11:00 45.71 23:00 52.49

12:00 46.11 24:00 53.88

FIGURE 9
ATC considering the load DR (Scheme 2).
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In Scheme 3, the effect of the second improvement measure
(i.e., the network-side optimization allocation of the TCSC) was
examined. The ATCmax and ATCmin for each hour were determined
to form the upper and lower limits of the ATC results for all
scenarios, as shown in Figure 10.

After configuring the TCSC separately for each scenario, the
ATCmax reached 56.5 MW (i.e., not limited by the upper limit of the
grid transmission, but only by the upper limit of the generator power
in the sending area) and the ATCmin ranged from 44.05 to
54.68 MW (Figure 10). Compared to Scheme 1 in Figure 8 (when
no improvement measures were taken), many ATC values reached
56.50 MW in several scenarios throughout the time interval shown
in Figure 10. This result indicates that a reasonable configuration of
the TCSC is effective in improving the ATC, especially the ATCmax.

In addition, the ATCP was determined for each hour after the
optimal allocation of the TCSC, as shown in Table 4.

In Scheme 3 (Table 4) the value of the ATCP ranged from 50.14 to
56.32MW (in Table 2, the ATCP was 43.81–54.12MW). The maximum
value of ATCP occurred at 4:00 and theminimumvalue occurred at 19:00.
The average value of ATCP was 54.06MW (ATCP was 49.25MW in
Table 2). The results shown in Table 4 are much larger than the
corresponding values shown in Table 2, which confirms the
effectiveness of the optimal configuration of theTCSC for improvingATC.

In Scheme 4, the effect of the combined use of two improvement
measures (i.e., optimizing the FACTS configuration and implementing
load DR) was examined. The ATC values were calculated for different
wind power scenarios, taking into account both the load DR and the
optimal configuration of the TCSC. The ATCmax and ATCmin were
determined for each hourly ATC to form the upper and lower limits of
all of ATC results, as shown in Figure 11.

TABLE 3 Hourly ATCP values considering the load DR (Scheme 2).

Time ATCP (MW) Time ATCP (MW)

1:00 53.68 13:00 47.89

2:00 53.86 14:00 47.23

3:00 53.40 15:00 47.10

4:00 53.67 16:00 47.30

5:00 53.42 17:00 47.59

6:00 52.73 18:00 46.10

7:00 50.61 19:00 46.28

8:00 47.98 20:00 47.08

9:00 48.42 21:00 47.97

10:00 48.38 22:00 49.09

11:00 47.18 23:00 52.38

12:00 47.68 24:00 52.50

FIGURE 10
ATC considering the TCSC configuration (Scheme 3).

TABLE 4 Hourly ATCP values considering the TCSC configuration (Scheme 3).

Time ATCP (MW) Time ATCP (MW)

1:00 55.82 13:00 54.52

2:00 56.04 14:00 54.31

3:00 55.85 15:00 55.75

4:00 56.32 16:00 51.64

5:00 55.78 17:00 51.89

6:00 55.12 18:00 52.03

7:00 55.36 19:00 50.14

8:00 54.95 20:00 53.49

9:00 54.39 21:00 51.17

10:00 51.83 22:00 53.83

11:00 51.62 23:00 55.87

12:00 53.56 24:00 56.11

FIGURE 11
ATC considering the load DR and the TCSC configuration
(Scheme 4).
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When the two improvement measures were combined (Scheme
4), ATCmax reached 56.5 MW and the range of ATCmin was
44.97–55.35 MW (Figure 11). Compared to Scheme 1 (without
improvement measures; Figure 8), many ATC values reached
56.50 MW throughout the time interval in Scheme 4 (Figure 11),
and the ATC curve was generally greater than 44.5 MW throughout
the time interval. This finding indicates that the combined
application of the two measures can improve both ATCmax and
ATCmin. In terms of improving the ATCmax, the combined
application of the two improvement measures (Scheme 4)
outperformed the case without any measures (Scheme 1) and the
case with only the load DR measure (Scheme 2). Regarding the
improvement of ATCmin, the combined application of the two
measures (Scheme 4) outperformed the case with no

improvement measures (Scheme 1) and the case with the
optimally configuring of the TCSC alone (Scheme 3).

In addition, the ATCP values for each hour after the
combination of the two improvement measures were also
determined, as shown in Table 5.

In Scheme 4, the range of ATCP values was 50.61–56.39 MW
(this value in Table 2 is 43.81–54.12 MW), with the maximum and
minimum values occurring at 24:00 and 18:00 respectively
(Table 5). The average value of ATCP was 53.86 MW (this value
in Table 2 is 49.25 MW). The results presented in Table 5 (Scheme
4) are much higher than the corresponding values presented in
Table 2 (Scheme 1), thus confirming the effectiveness of the
combined application of the two optimization measures in
improving the ATC.

5.3.2 Optimizing the ATC with a 24-h cycle
While it was easy to implement DR measures for the load in the

case of hourly optimization, the configuration of the TCSC involves
the overall adjustment of the TCSC position and the compensation
degree during the hourly time interval, which may lead to
operational difficulties. To solve this problem, based on the above
experiments verifying the effectiveness of the network-side
improvement measures, optimization was performed with a
whole day as the time period to facilitate the actual operation.
The results are shown in Table 6.

According to Table 6, the optimized ATC results with load DR
measures (column 3) were better than those with no improvement
measures (column 2), indicating that DR contributes to improving
ATC in all scenarios. The ATC results with the optimal
configuration of the TCSC (column 4) were better than those
with no improvement measures (column 2), indicating that the
configuration of the TCSC helps to improve the ATC for all
scenarios. Meanwhile, when implementing DR at the load and
optimally configuring the TCSC at the network side (column 7),
the ATC results were better than those of the no-improvement-
measures scenario (column 2), indicating that measures such as DR

TABLE 5 Hourly ATCP value considering the load DR and the TCSC
configuration (Scheme 4).

Time ATCP (MW) Time ATCP (MW)

1:00 56.04 13:00 53.95

2:00 56.31 14:00 51.09

3:00 56.30 15:00 53.22

4:00 55.75 16:00 53.13

5:00 56.05 17:00 53.28

6:00 55.69 18:00 50.61

7:00 54.34 19:00 52.76

8:00 50.78 20:00 51.43

9:00 54.76 21:00 53.04

10:00 53.22 22:00 53.55

11:00 52.37 23:00 53.81

12:00 54.68 24:00 56.39

TABLE 6 ATC results and related statistics for a daily optimization cycle.

Scenario Without improvement measures DR Configuring TCSC DR and Configuring TCSC

ATC ATC ATC B βTCSC ATC B βTCSC

1 41.71 41.91 48.45 28 0.80 42.26 38 0.21

2 41.76 42.35 46.09 28 0.80 42.07 19 0.01

3 41.63 42.35 46.17 28 0.37 42.50 24 0.09

4 41.10 42.35 49.20 28 0.75 48.54 28 0.40

5 41.50 42.84 43.00 28 0.80 51.72 28 0.80

6 41.50 41.66 49.78 28 0.68 42.56 40 0.30

7 41.91 42.91 42.25 17 0.29 42.67 29 −0.05

8 41.62 42.98 49.37 28 0.75 42.26 38 0.21

9 41.58 42.40 48.28 28 0.80 42.08 19 0.01

10 41.41 42.28 42.45 27 −0.09 42.66 19 0.80

ATCP 41.58 42.47 46.21 — — 44.16 — —
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and configuring the TCSC contribute to improving the ATC for all
scenarios. From the perspective of the ATCP, the measures with the
highest to lowest improvement effects are: optimal allocation of the
TCSC (46.21 MW), implementation of load DR and optimal
allocation of the TCSC (44.16 MW), and implementation of load
DR (42.47 MW). Therefore, after selecting improvement measures
according to demand, the relevant equipment locations and
compensation parameters can be configured according to
columns 5 and 6 or columns 8 and 9.

6 Conclusion

This paper focuses on the calculation and optimization of inter-
regional ATC taking into account wind power uncertainties and
load-side and grid improvement measures. Modern power systems
with increasing penetration of new energy sources place high
demands on the transmission capacity of power grids. The
traditional method of improving transmission capacity by
modifying the network structure has some limitations. In this
paper, we explored the methods to improve the transmission
capacity of power networks without changing the network
structure based on two measures: the optimal configuration of
TCSC on the grid side and the implementation of DR on the
load side. The proposed random variable processing method, the
source-network-load cooperative optimization ATC model, and the
improved PSO algorithm for solving the model are of great reference
value for solving the problem of transmission congestion in modern
power systems. The conclusions drawn from the experiments based
on the test system can provide a reference for engineering practice to
achieve the purpose of improving the utilization efficiency of the
power system and promoting the consumption of new energy. The
main findings were as follows.

1) Latin hypercubic sampling and backward curtailment techniques
can effectively deal with new energy with stochastic
characteristics, thus prompting the transformation of
uncertainty problems into deterministic ones. The price-based
DR helps to manage loads to change consumption patterns,
reduce peak load, narrow peak-to-valley differences, and
proactively comply with transmission blockage management.
The TCSC can flexibly change the grid structure by adjusting
the control parameters, thereby increasing the maximum
transmission capacity of the lines.

2) The source-grid-load synergistic optimization model for
interregional ATC can quantify the interval of ATC variation
due to wind power uncertainty and assess the impact of load-side
and network-side improvement measures on ATC.

3) The good point set initialization and the variable inertia weight
setting can improve the performance of the PSO algorithm. The
improved PSO algorithm can be used to solve constrained non-
linear optimization problems.

4) In power systems with new energy sources, load DR effectively
improves the lower limit of the ATC interval. The correct
configuration of the TCSC is particularly beneficial for
improving the upper limit of the ATC interval. The
combined application of load DR and optimal allocation of

the TCSC contributes to the comprehensive improvement of
ATC. From the perspective of the ATCP of the combined
scenarios, the measures with the highest to lowest
improvement effects are, in order, the optimal configuration
of the TCSC, the load DR, and the optimal configuration of
both the TCSC and the load DR.

For the time being, the article does not consider the economic
performance of each of the network-side and load-side
improvement measures. In the next study, we will add the
consideration of economics and re-examine the effect of these
two measures on ATC improvement in an integrated manner.
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