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Introduction: Power generated by the wind is a viable renewable energy option.
Forecasting wind power generation is particularly important for easing supply
and demand imbalances in the smart grid. However, the biggest challenge with
wind power is that it is unpredictable due to its intermittent and sporadic nature.
The purpose of this research is to propose a reliable ensemble model that can
predict future wind power generation.

Methods: The proposed ensemble model comprises three reliable regression
models: long short-term memory (LSTM), gated recurrent unit (GRU), and
bidirectional LSTMmodels. To boost the performance of the proposed ensemble
model, the outputs of each model are optimally weighted to form the final
prediction output. The ensemble models’ weights are optimized in terms of
a newly developed optimization algorithm based on the whale optimization
algorithm and the dipper-throated optimization algorithm. On the other hand,
the proposed optimization algorithm is converted to binary to be used in
feature selection to boost the prediction results further. The proposed optimized
ensemble model is tested in terms of a dataset publicly available on Kaggle.

Results and discussion: The results of the proposed model are compared to
the other six optimization algorithms to prove the superiority of the proposed
optimization algorithm. In addition, statistical tests are performed to highlight
the proposed approach’s performance and effectiveness in predicting future
wind power values. The results are evaluated using a set of criteria such as root
mean square error (RMSE), mean absolute error (MAE), and R2. The proposed
approach could achieve the following results: RMSE = 0.0022, MAE = 0.0003,
and R2 = 0.9999, which outperform those results achieved by other methods.
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1 Introduction

Economic and social progress is aided by energy extraction
and use (Zhang et al., 2020). Rapid industrialization and population
increase have made the world more concerned about the energy
dilemma in recent years (Li et al., 2020). Sustainable economic
growth and social stability are hampered (Kong et al., 2020) by the
world’s energy crisis and environmental degradation. As a result,
future development should center on boosting the transition from
clean energy and constructing a low-carbon and environmentally
friendly renewable energy system and traditional fossil fuels to
green. Nations worldwide are issuing laws encouraging sustainable
energy research, development, and deployment. Wind power is the
second most popular renewable energy source (Kusiak et al., 2013)
because it is clean and produces no pollution. As a prototype of
renewable energy generation technology,windpower generation has
receivedmuch attention and development. It is now commonly seen
as a viable alternative to the more conventional thermal method
of producing electricity. The following are the primary benefits
compared to other electricity production methods. Wind power is a
sustainable and renewable resource. Second, because of its compact
size and ease of use, generating wind power is a more practical
option. There are other financial benefits to using this renewable
energy source, as well (El-Kenawy et al., 2022a; Ariyaratne and
Fernando, 2023). In conclusion, wind power has several positive
attributes that make it ideal for commercial use, future expansion,
and widespread application. A viable strategy for addressing both
the worldwide energy issue and the greenhouse impact may be
found in the advancement of wind power production technologies
(Kisvari et al., 2021; Neshat et al., 2021; El-Kenawy et al., 2022b).

Wind power has numerous positive applications but is
vulnerable to weather, geographical, and seasonal changes that
might disrupt production. Due to the unpredictability of wind
resources, wind turbine output is also highly intermittent and
volatile (Majidi Nezhad et al., 2020), which can cause problems
in a power grid’s scheduling, building, and operation. Although
the steadily expanding wind power installed capacity contributes
to an increase in the wind power scale connected to the grid
(Abdelbaky et al., 2020), the aforementioned uncertainties will
cause challenges in power quality, grid stability, dispatching, and
operation of the power system in addition to the significant impact
on the grid-connected wind power (Xu et al., 2021; Kong et al.,
2022). Regulation of the time series energy distribution is crucial
to ensuring a reliable power grid function. However, the non-linear
nature of wind power makes this difficult to achieve. To address this
issue, researchers need to figure out how to make the unpredictable
character of thewind power supply predictable andhow to anticipate
wind power efficiently and reliably. These can decrease the impact
on the power system while adding wind power to the grid. They
may provide a solid theoretical basis and technological support for
optimizing operation in the future and grid dispatching and security
(Tian, 2020; Peng et al., 2021). Therefore, research into effective

prediction approaches for wind power within the evolution of power
systems is necessary due to wind power’s unpredictability. This
study’s significance lies in the fact that it facilitates the development
of renewable energy technologies; it opens the door to carbon-free,
green, and environmentally friendly power generationmethods; and
ensures the smooth dispatch and operation of cutting-edge power
grids (Tian and Wang, 2022; Yang et al., 2022).

This paper has made significant progress in wind power
prediction due to the optimized ensemble model consisting of
LSTM, BiLSTM, and GRU and the dynamic whale dipper-throated
optimization (DWDTO) method. Wind power, for example, is
becoming significant as a renewable energy source for meeting
global energy demands and lowering carbon emissions. The optimal
integration of wind energy into the grid, stable grid operation,
and effective energy management depends on accurate wind power
forecasts. The ensemble model draws on the advantages of three
popular and effective deep-learning architectures for sequence
modeling and prediction: LSTM, BiLSTM, and GRU. Modeling
temporal trends in wind power data is made possible by LSTM
(Long Short-Term Memory) networks’ ability to capture long-
range relationships accurately. In contrast, BiLSTM (Bidirectional
LSTM) networks process data in both directions, enabling them to
record historical and prospective time-related contexts. GRU (Gated
Recurrent Unit) networks effectively simplify LSTM, achieving
similar performance with less computing overhead. The suggested
DWDTO method is used to enhance the efficiency of the
ensemble model. The DWDTO algorithm integrates ideas from
both the WOA and the DTO, incorporating dynamic tactics
to improve exploration and exploitation further. The DWDTO
technique enhances convergence speed and guarantees resilient
optimization of the ensemble model by adaptively modifying the
algorithm’s parameters based on the current optimization progress.
Experimental evidence shows that the suggested model performs
better than standard optimization methods and standalone LSTM,
BiLSTM, and GRU models. The DWDTO technique allows for
efficient parameter optimization and the collaborative learning
of several designs, which contribute to the performance boost.
Accurate and trustworthywind power predictions aremade possible
by the ensemble model’s successful capture of complex patterns and
relationships in wind power data. This improved ensemble model
has far-reaching consequences. It can improve energy management,
grid stability, and cost-effectiveness by aiding in the operation and
planning of wind power-producing systems. Reducing dependency
on fossil fuels and fostering sustainable development, precise wind
power forecasting also helps integrate renewable energy sources into
existing power networks.

The paper is organized into six sections, beginning with an
introduction. The literature review is then presented in Section 2. In
Section 3, we analyze the proposedmodel’s performancemetrics and
examine the model’s thorough design approach. Section 4 begins
with an overview of the dataset used in this paper, followed by an
examination of the statistical tests run on the data to determine its
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FIGURE 1
The various methods used in wind power forecasting.

internal features, then a discussion of how those features informed
the selection of the model’s input variables and the initialization
of its basic parameters, and finally a comparison of performance
indicators of variousmethods and theirmeasured results to illustrate
the DWDTO model’s efficacy. Section 5 goes into further depth on
the conclusion and what comes next.

2 Literature review

The methodologies and models used to predict the output of
wind turbines have been the subject of study by researchers in recent
years. These approaches may be generally divided into the four
groups indicated in Figure 1, according to the criteria used to classify
them (Wang et al., 2021). Depending on the underlying modeling
theory, wind power prediction models may be broken down
into the figure’s physical, statistical, and combination prediction
models. Time series approaches, including kernel extreme learning
machine (KELM), least squares support vector machine (LSSVM),
autoregressive integrated moving average (ARIMA), Kalman filter,
and Fractional-ARIMA (F-ARIMA), are among the most used
statistical models for process prediction. Recently, deep neural
networks (DNNs) such as long short-term memory (LSTM), auto-
encoder (AE), and gated recurrent unit (GRU) have been widely
employed in wind power prediction due to their superiority in
dealing with non-linear issues and the ongoing development of deep
learning techniques. Compared to the performance of conventional
statistical and physical models, their ability to make accurate
predictions has been vastly enhanced.

With their increased proficiency in non-linear processing and
the capacity to overcome the gradient disappearance problemduring
learning, LSTM networks have become increasingly popular for
application in real-time predictive control of complex dynamic
situations. The raw data on wind power generation was applied to
LSTM, with the prediction error tuned using a Beta distribution,
as in (Shahid et al., 2021). Using operational data from real-world
wind farms, we created a unique LSTM-based model for forecasting
wind power. Then we tuned the model’s hyperparameters to reduce

the prediction error (Kong et al., 2020; Alhussan et al., 2022). Using
LSTM and variational mode decomposition (VMD) to dissect
and reassemble the raw power data, a more accurate short-term
wind power prediction method was presented (Duan et al., 2021a).
The LSTM is paired with a self-attentional temporal convolutional
network to add an attentional mechanism. The proposed approach
demonstrates the greatly enhanced forecast accuracy (Xiang et al.,
2022) by comparing the data of several wind farms. Using a
combination of convolutional neural networks (CNNs) and long
short-termmemory (LSTMs)with fine-tuned parameters, the power
output of offshore wind turbines may be accurately forecasted.
Reduced computation time and enhanced prediction accuracy
resulted from optimizing the LSTM with adaptive differential
evolution and the sines and cosines selection approach (Khan et al.,
2021; Khafaga et al., 2022).

Despite LSTM’s impressive performance in time series
prediction, it is relatively uncommon for the optimal global solution
to be obscured by the seemingly trivial task of establishing network
parameters during model training. Consequently, methods for
optimizing parameters have been a topic of study (Memarzadeh and
Keynia, 2020). The sparrow search algorithm (hence referred to as
SSA or sparrow algorithm) is a revolutionary population intelligence
optimization technique jointly proposed in 2020 (Xue and Shen,
2020). It is one of several new metaheuristic algorithms that have
emerged as machine learning parameter optimization leaders. To
find the best solution to the objective function (Kumar Ganti et al.,
2022), wemaymodel the actions of a flock of sparrows as they search
for food and avoid predators. Using SSA optimization to set up
network parameters boosts accuracy in comparison to other models
[(Zhang andDing, 2021), (Tian and Chen, 2021)]. For instance, SSA
is employed in estimating ultra-short-term wind power to improve
the input weight and other parameters of DELM (An et al., 2021).
Short-term wind speed prediction was developed using LSTM and
BPNN, and SSA was used to optimize the prediction model for
varying degrees of complexity in the input sequence (Chen et al.,
2022).

The model still has problems, such as delayed convergence
with low accuracy (Liu G. et al., 2021). However, the enhancements
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FIGURE 2
The structure of the proposed methodology.

above that let SSA leap out of a local optimum as often as possible
during training to increase its search capabilities correspondingly.
By studying how individual sparrows in the SSA do their iterative
search, we can see how the quality of the population as a whole and
the position update parameters significantly impact the algorithm’s
capacity to identify an optimal (Venkata Rao and Venkata Rao,
2019; Zhang et al., 2021). When stuck in a local optimum, it
might be difficult to escape the current region rapidly due to the
iterative process’s absence of a variation mechanism (Li et al., 2022).
After identifying these problems with the original SSA method,
we build the DWDTO algorithm by introducing a Tent chaotic
sequence and a Gaussian mutation technique to fix its flaws. A tent-
chaotic sequence of births achieves a more diverse and high-quality

beginning population (Tian and Wang, 2022). The algorithm’s
stability and capacity for a global search are enhanced by using
a Gaussian mutation technique (Alhussan et al., 2022; Yang et al.,
2022).

Therefore, the research gap of the work presented in the
literature is the lack of a robust and stable model that can
perform wind power prediction efficiently. In this research, we
proposed a novel approach for filling this gap regarding a new
optimization algorithm and a new ensemble model. The proposed
optimization algorithm is used in feature selection and optimizing
the ensemble model’s parameters. This methodology can be used
in applications based on predicting time series data. The following
points summarize the novelty of this work.
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FIGURE 3
The prediction models included in the proposed ensemble model. (A) Gated recurrent unit (GRU), (B) Long short-time memory (LSTM), and (C)
Bidirectional LSTM (BiLSTM).

• Anewweighted ensemblemodel is proposed as an autonomous
learning prediction model to address the multivariate non-
linearity of wind farms.
• A new optimization algorithm is proposed based on a hybrid of

whale optimization algorithmanddipper-throated algorithm to
optimize the weights of the ensemble model.
• The binary version of the proposed optimization algorithm is

utilized to select the significant features of the employed dataset.
• A set of statistical tests is performed to assess the superiority ans

statistical difference of the proposed methodology.

3 The proposed methodology

The proposed methodology is based on a new optimization
algorithm developed to optimize the weights of an ensemble
composed of three prediction models namely, LSTM, BiLSTM and
GRU. The block diagram of the proposed methodology is shown
in Figure 2 and the structure of the prediction models is shown in
Figure 3. This part begins with a comprehensive breakdown of the
proposed model's specialized technique, followed by an explanation
of the thinking behind the strategy used to merge the models.

3.1 Long short-term memory

As a subset of recurrent neural networks, long short-term
memory (LSTM) networks can store large amounts of data in a
relatively short amount of time (Kisvari et al., 2021; Ewees et al.,
2022). As a result, the operation structure is changed, and the
layer count of the original neural network is expanded from 1 to
4. Primarily, it is distinguished by its capacity for long-term data
storage through encoding information in a conventional memory
module. The network design implements the gate mechanism using
the input, output, and forgetting gates of the algorithm nodes
(Zhang et al., 2019). By randomly shuffling the weight coefficients
of the connections in the appropriate ring, we can prevent gradient
disappearance (Demolli et al., 2019; El-Kenawy et al., 2022a). It has
seen widespread application in recent years for predicting renewable
energy sources.

In contrast to traditional RNNs, LSTMs do not suffer from the
long-term perception loss that happens when gradients diminish
during training, making them ideally suited for constructing
prediction models for wind turbine power generation. The
forgetting gate, denoted by Ft , is formulated using the following
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FIGURE 4
Histograms charts of the features included in the wind power dataset.

equation (Liu M.-D. et al., 2021).

Ft = σ(WFXt +UFht−1 + bF) (1)

Layer input is denoted by Xt in this context. The activation
function, the bias term of the input layer bF , the output layer weight
WF , and the hidden layer weightUF all contribute to the final output,
Ht− 1, which reflects the output of the preceding hidden layer.
The activation function in this investigation is the ReLU function
(Akhter et al., 2022), which is found using the formula:

σ (x) =max (0,x) (2)

There is a correlation between the forgetting gate’s value and the
amount of history preserved at a certain site.The input gate, denoted
by It , is the second gate shown (Ewees et al., 2022). It is obtained
from the following equation.

It = σ(WIXt +UIht−1 + bI) (3)

The following equation provides a method for obtaining the Ct
gives (Liu et al., 2020). By multiplying the input gate’s data by the
data at the other nodes, the LSTM can keep its information up to
date. The value of the node is removed if the result is zero, but it is
retained if the result is one.

Ĉt = tanh(WCXt +UCht−1 + bC) (4)

Figure 3 indicates, using the following equation, that a change
must be made to the cell’s state (Zhang et al., 2021).

Ct = FtCt−1 + ItĈt (5)

Ot denotes the output gate, and the output value of the LSTM
cell is calculated bymultiplying its output value by its dynamic range
value, where the following equations represent Ot and ht (Qing and
Niu, 2018).

Ot = σ(WOXt +UOht−1 + bO) (6)

ht = Ot tanh(Ct) (7)

With only two gates and a few more fixed parameters, GRU
is a reduced variant of LSTM. In time series applications like
machine translation and voice signal modeling, LSTM and GRU
perform similarly. But since LSTM networks can handle bigger
datasets (Xue and Shen, 2020), they are favored in this research over
GRU.

For more precise predictions, researchers have developed
bidirectional LSTMs, an enhanced variant of standard LSTMs that
considers both past and future states. While traditional LSTMs only
look at the past, Bidirectional LSTMs consider both the present and
the future. Therefore, unlike regular LSTMs, which only process
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FIGURE 5
Visualizing the proposed feature selection method results.

information in one way, BiDLSTMs process data in both the forward
and backward directions. Figure 5 depicts the structure of a two-
hidden-layer, bidirectional LSTMnetwork. In BiDLSTM, two LSTM
networks are trained: one processes the input sequence forwards,
while the other does it backward using amirror image of the original.
At each iteration, the results from a pair of networks’ forward
and backward layers are combined. So, BiDLSTM networks have
superior learning performance.

3.2 Whale optimization algorithm

The whale optimization algorithm (WOA) is the bubble-net
feeding algorithm. The activities of humpback whales inspire it
during hunting and foraging and is one of the most recent heuristic
optimization approaches described by authors in (Mirjalili and
Lewis, 2016). This strategy has two primary phases: upward spirals
and double loops. The whale dives at a depth of 12 m or less before
beginning the upward spiral phase, during which it spirals around
the prey, creating bubbles and swimming upstream. Second, the
coral circulation is part of the double circulation phase, which
involves the tail leaf fluttering the water surface and capturing
the cycle. The foraging strategy involves producing unique bubbles
in a cyclical or “9-shaped” motion. Only humpback whales are
vulnerable to the unique bubble net predation.

There are not many moving parts or settings to tweak with the
foraging approach. In the iterative process, humpback whales can

escape the local optimum. The current best candidate result is also
thought to be somewhat near to the intended quarry. If the best
search agent is provided, the other agentswill use that information to
update their positions. The procedure for recalculating coordinates
is explained as follows:

This is the global ideal outcome of the optimization problem
and the location of the i-th whale in d-dimensional space relative
to the d-th whale’s prey. Although humpback whales are adept at
pinpointing the general area where their prey is hiding and then
closing in on it, the exact location of the prey they are after is
sometimes difficult to ascertain. After t iterations, WOA saves the
target prey’s position as X*

t (X
1
t ,X

2
t ,…,X

d
t )*, where X is the number

of other people within a given distance from the humpback whale.
To calculate its current location, use the formula:

X (t+ 1) = X* (t) −A|CX* (t) −X (t) | (8)

In this expression, t represents the current iteration count, X*(t)
represents the optimal search agent for the current iteration, andX(t)
represents the current whale location. The surrounding step size,
A|CX*(t) −X(t)|, is what the whale employs to get closer to the most
significant search agent. The formulae for determining the values of
the parameters, using the constants A and C, are as follows:

A = a (2r1 − 1) (9)

C = 2r2 (10)
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a = 2− 2t/tmax (11)

The random numbers r1 and r2 are included in (0,1). A linear
decrease from 2 to 0 can be seen in the convergence factor as the
number of rounds increases. The current iteration count, denoted
by t, is limited to a maximum of tmax, where t is the initial value. In
addition to the search encirclement mechanism, a spiral movement
pattern is used. When hunting, the whale uses a spiraling motion
around the most effective search agent. The following equations
depict the spiral motion: (8) and (9).

X⃗ (t+ 1) = D⃗′.ebl.cos (2πl) + X⃗* (t) (12)

D⃗′ = |X*(t) −X (t) | (13)

where D⃗′ is the shortest possible path between the i-th and the
best possible whales. The interference coefficient of spiral motion
is 1, represented by the value of b. In, the number l is chosen at
random (−1,1). The search envelopment mechanism and alterations
to the spiralmotion are given equal weight in thismodel to represent
the actual behavior of whales during predation more accurately.
Another way to keep the WOA from getting stuck in a local search
is to randomly choose search places within the viable region. This
section defines the formula for global searching:

X (t+ 1) = Xrand (t) −A|XCrand (t) −X (t) | (14)

where at t-th iteration, the position of the random whale is
denoted by Xrand(t), the current whale is denoted by X(t), and the
encircling step size is denoted by A|CXrand(t) −X(t)|.

3.3 Dipper throated optimization algorithm

Using analogies between swimming birds and flying birds,
dipper-throated optimization (DTO) seeks to maximize desirable
features (El-Kenawy et al., 2022b; Kong et al., 2022).While foraging,
these birds constantly adjust their positions and speeds to minimize
the time spent traveling to their intended meal. Where and how fast
the birds are flying are shown in the following matrices.

X =

[[[[[[[[[[

[

X1,1 X1,2 X1,3 … X1,d

X2,1 X2,2 X2,3 … X2,d

X3,1 X3,2 X3,3 … X3,d

… … … … …

Xm,1 Xm,2 Xm,3 … Xm,d

]]]]]]]]]]

]

(15)

Y =

[[[[[[[[[[

[

Y1,1 Y1,2 Y1,3 … Y1,d

Y2,1 Y2,2 Y2,3 … Y2,d

Y3,1 Y3,2 Y3,3 … Y3,d

… … … … …

Ym,1 Ym,2 Ym,3 … Ym,d

]]]]]]]]]]

]

(16)

where Xi,j is the ith bird position in the jth dimension for
i ∈ [1,2,3,…,m] and j ∈ [1,2,3,…,d], and its velocity in the jth

dimension is indicated by Yi,j. For each bird, the fitness function
values f = f1, f2, f3,…, thefollowingmatrixdeterminesfn.

f =

[[[[[[[[[[

[

f1 (X1,1,X1,2,X1,3,…,X1,d)

f2 (X2,1,X2,2,X2,3,…,X2,d)

f3 (X3,1,X3,2,X3,3,…,X3,d)

…

fm (Xm,1,Xm,2,Xm,3,…,Xm,d)

]]]]]]]]]]

]

(17)

3.4 The proposed optimization algorithm

In this section, we propose a novel algorithm that combines the
optimization algorithms given in the previous areas in a unified
approach for optimizing the weights of an ensemble model. The
developed optimization algorithm is denoted by dynamic whale
and dipper throated optimization (DWDTO) algorithm during
this research. The steps of the proposed optimization algorithm
are presented in Algorithm 1. In these steps, both DTO and
WOA algorithms are hybridized in a unified algorithm in which
the dynamic swapping between the DTO and WOA algorithms
improves the search space exploration. The results are evaluated
using a set of error evaluation indicators to highlight their viability.

3.5 Feature selection

The feature selection process eliminates excessive, redundant,
and noisy data. The main benefit of the feature selection is that
it helps improve the model’s performance as it decreases the
dimensionality of the dataset. Since employing raw features might
produce ineffective results, optimal feature selection can be essential
in providing precise forecasts. Consequently, several techniques
employed various feature selection strategies before using the data
to train a model (Han et al., 2019; Huang et al., 2021; El-kenawy
et al., 2022; Takieldeen et al., 2022). Relevant features are selected
from raw data using the binary version of the proposed optimization
algorithm, described by the steps presented in Algorithm 2.

4 Experimental results

This section starts with introducing the dataset used in the
conducted experiments. This dataset is first preprocessed to handle
the missing values and outliers. Then we apply the proposed feature
selection algorithm to filter the dataset features and nominate the
most significant set of features that can help boost the prediction
results. Finally, the results of the optimized ensemble model are
presented and discussed with statistical analysis to prove the
statistical significance and difference of the proposed approach.

4.1 Wind power dataset

This work is based on a dataset publicly available on Kaggle
(Bhaskarpandit, 2020) and the histogram charts of the features
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1: Initialize birds’ positions Xi(i = 1,2,…,n) for n

birds, birds’ velocity Yi(i = 1,2,…,n), objective

function fn, iterations t,Tmax, parameters of

r1,r2,r3,K,K1,K2,K3,K4,K5,z

2: Calculate fitness of fn for each bird Xi

3: Find best bird position Xbest

4: Convert best solution to binary [0,1]

5: Set t = 1

6: while t ≤ Tmax do

7: for (i = 1:i < n+1) do

8: if (t{%}2 == 0) then

9: if (r3 < 0.5) then

10: Update the current swimming bird’s position

as: X(i+1) = Xbest(i) −K1.|K2.Xbest(i) −X(i)|

11: else

12: Update the current flying bird’s velocity as:

Y(i+1) = K3Y(i) +K4r1(Xbest(i) −X(i)) +K5r2(XGbest −X(i))

13: Update the current flying bird’s position as:

X(i+1) = X(i) +Y(i+1)

14: end if

15: else

16: Update birds’ positions using:

X(i+1) = Xbest(i) −A|CXbest(i) −X(i)|

17: end if

18: end for

19: Update r1,r2,r3,K,K1,K2,K3,K4,K5,A,C

20: Calculate objective function fn for each bird

Xi

21: Find the best position Xbest

22: Set t = t+1

23: end while

24: Return the best solution XGbest

Algorithm 1. The proposed DWDTO algorithm.

included in this dataset are shown in Figure 4. The dataset has a
number of weather, turbine, and rotor options. The recordings of
the dataset were collected in January 2018 and continued through
March 2020 with a rate of ten minutes for every new reading.

There are 118,224 sample points gathered in the dataset with 20
features each. To determine the relationship between the alternate
input variables, the following equation is used to determine the
Pearson coefficients.

ρ (A,B) =
E[(A− μA)(B− μB)]

√∑n
i=1
(Ai − μA)

2√∑n
i=1
(Bi − μB)

2
(18)

To predict the wind turbines’ output power by utilizing many
correlated variables as input quantities, this research proposes an
ensemble model based on LSTM, GRU, and BiLSTM to maintain
a selected set of features for effective prediction. The proposed
ensemble model deals with both time-dependent and historically-
dependent data.

1: Initialize the parameters of GADTO algorithm

2: Convert the resulting best solution to binary

[0,1]

3: Evaluate the fitness of the resulting

solutions

4: Train KNN to assess the resulting solutions

5: Set t = 1

6: while t ≤ Maxiteration do

7: Run GADTO algorithm to get best solutions Xbest

8: Convert best solutions to binary using the

following equation:

Sbinary=

{{{{{
{{{{{
{

1 ifF (Xbest) ≥ 0.5

0 otherwise

,

F(XBest)=
1

1+e−10(XBest−0.5)

9: Calculate the fitness value

10: Update the parameters of GADTO algorithm

11: Update t = t + 1

12: end while

13: Return best set of features

Algorithm 2. The proposed binary bDWDTO algorithm.

4.2 Configuration parameters of
optimization algorithms

The conducted experiments utilize a set of optimization
algorithms for comparison purposes. These algorithms are the
standard DTO (Takieldeen et al., 2022), the standard WOA
(Mirjalili and Lewis, 2016), grey wolf optimization (GWO)
(Mirjalili et al., 2014), firefly algorithm (FA) (Ariyaratne and
Fernando, 2023), particle swarm optimization (PSO) (Awange et al.,
2018), the genetic algorithm (Immanuel and Chakraborty, 2019),
the JAYA algorithm (Venkata Rao and Venkata Rao, 2019), and
the Fire Hawk Optimizer (FHO) algorithm (Azizi et al., 2023). The
basic configuration parameters of these algorithms are presented in
Table 1.

4.3 Evaluation metrics

The evaluation metrics of the results achieved by the conducted
experiments are categorized into two sets of metrics. The first set
of metrics is presented in Table 2 and used to assess the feature
selection results. This set of metrics includes best fitness, worst
fitness, average error, average fitness size, standard deviation, and
average fitness. The second set of metrics is presented in Table 3,
which includes mean bias error (MBE), root means square error
(RMSE), mean absolute percentage error (MAPE), mean absolute
error (MAE), R-squared (R2), determine agreement (WI), Nash
Sutcliffe Efficiency (NSE), relative RMSE (RRMSE), and Pearson’s
correlation coefficient (r).
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TABLE 1 The settings of the parameters of the optimization algorithms.

Algorithm Parameter Value

DTO (Takieldeen et al., 2022) Iterations 500

Number of runs 30

Exploration percentage 70

GWO (Mirjalili et al., 2014) Number of wolves 10

Number of iterations 80

WOA (Mirjalili and Lewis, 2016) Number of whales 10

Number of iterations 80

PSO (Awange et al., 2018) Acceleration constants [2, 22]

Number of particles 10

FA (Ariyaratne and Fernando, 2023) Number of fireflies 10

Number of iterations 80

GA (Immanuel and Chakraborty, 2019) Cross over 0.9

Mutation ratio 0.1

Number of agents 10

TABLE 2 Formulas of themetrics used in evaluating the feature selection
results.

Metric Formula

Best fitness minMi=1S
*
i

Worst fitness maxMi=1S
*
i

Average error 1
M
∑Mj=1

1
N
∑Ni=1mse(V̂i −Vi)

Average fitness 1
M
∑Mi=1S

*
i

Average fitness size 1
M
∑Mi=1size(S

*
i )

Standard deviation √ 1
M−1
∑Mi=1(S

*
i −Mean)2

TABLE 3 Formulas of themetrics used in evaluating the wind power
prediction results.

Metric Formula

RMSE √ 1
N
∑Nn=1(V̂n −Vn)

2

RRMSE RMSE
∑Nn=1V̂n
× 100

MAE 1
N
∑Nn=1|V̂n −Vn|

MBE 1
N
∑Nn=1(V̂n −Vn)

NSE 1− ∑
N
n=1(Vn−V̂n)

2

∑Nn=1(Vn−
̄̂Vn)

2

WI 1− ∑Nn=1|V̂n−Vn|

∑Nn=1|Vn− ̄Vn|+|V̂n−
̄̂Vn|

R2 1− ∑Nn=1(Vn−V̂n)
2

∑Nn=1(∑
N
n=1Vn )−Vn)

2

R ∑Nn=1(V̂n−
̄̂Vn)(Vn− ̄Vn)

√(∑Nn=1(V̂n−
̄̂Vn)

2)(∑Nn=1(Vn− ̄Vn)
2)

4.4 Evaluating the feature selection results

The utility of the developed wind power prediction model will
be tested, and its benefits will be quantified in this research. It is
important to evaluate how well the proposed DWDTO algorithm
works. Experiments were performed using the configuration

parameters presented in the previous section. Table 4 presents the
evaluation of the proposed feature selection method compared to
current feature selection methods in the literature. Considering
fitness, select size, and error, the outcomes show that the proposed
feature selection strategy is effective. With a “Best fitness” of 0.822,
the algorithm appears to have located a solution that excels at
the specified goal. With an “Average select size” of 0.810, it is
clear that the approach has chosen an appropriate number of
features for excellent accuracy without resorting to overfitting. The
“Average error” of 0.837 indicates that the number of errors caused
by the model has decreased according to the chosen features.
Yet, given that the mistake rate is not zero, there is space for
enhancement. The average fitness score of 0.920 for the attributes
that were chosen is relatively high. An “Std fitness” of 0.742
shows a wide range of values for the specified features’ fitness
metrics. This indicates that the fitness score may vary greatly
depending on the characteristic. Finally, the “Worst Fitness” value
of 0.920 is encouraging because it indicates that the feature selection
technique has not chosen any features with a meager fitness score.
The proposed feature selection method has selected a subset of
characteristics with a high fitness score and low error rate. However,
the substantial diversity in fitness scores and the non-zero error
rate implies that more progress is possible. It is possible that
the method’s performance could benefit from more research and
refinement.

In addition, other statistical tests, such as the one-way analysis of
variance (ANOVA) and Wilcoxon signed-rank tests, are performed
to study the difference between the proposed methodology and the
other methods. These tests’ results are presented in Table 5; Table 6,
respectively. In these tables, the indicator of difference is the p-value
which is lower than 0.005, which proves the statistical difference.
Applying the ANOVA test to the outcomes of the proposed feature
selection approach yielded the following findings. The number
of groups in the treatment is represented by the “DF” (degrees
of freedom) value of 8, and the “SS” (sum of squares) value of
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TABLE 4 The results of the proposed feature selectionmethod.

Metric bDWDTO bDTO bWAO bGWO bPSO bFA bGA bJAYA bFHO

Best fitness 0.822 0.898 0.907 0.857 0.915 0.905 0.851 0.986 1.028

Average select size 0.810 1.143 1.173 1.010 1.010 1.044 0.952 0.972 1.212

Average error 0.837 0.913 0.908 0.874 0.908 0.906 0.888 0.855 0.876

Average fitness 0.920 0.945 0.942 0.936 0.935 0.987 0.948 1.104 1.123

Std fitness 0.742 0.765 0.749 0.747 0.746 0.783 0.749 0.891 0.896

Worst Fitness 0.920 1.008 0.983 0.923 0.983 1.003 0.966 1.104 1.108

TABLE 5 Analysis results using ANOVA test.

Metric SS DF MS F (DFn, DFd) p-value

Treatment 0.05862 8 0.007328 F (8, 72) = 25.38 p < 0.0001

Residual 0.02078 72 0.0002887

Total 0.07941 80

0.05862 indicates the total variation explained by the therapy. F
(DFn, DFd) is the F statistic value obtained by dividing the “MS”
(mean square) for the treatment by the “MS” (mean square) for
the residual, which equals 0.007328. The F-value, in this case, is
25.38, and the p-value is less than 0.0001. Therefore, there are
statistically significant differences between the treatment groups.
The “SS” value of 0.02078 for the residual represents the remaining
unexplained data variation after controlling for the treatment effect.
The residuals have 72 “DF,” or degrees of freedom, and each
degree of freedom has an unexplained variance of 0.0002887 “MS.”
Lastly, the sum of the squares of the standard deviations (SS)
is 0.07941, which is the overall variation in the data. The total
degree of freedom (or “DF”) across the entire dataset is 80. These
findings show that the proposed feature selection strategy has
achieved statistically significant variations in treatment outcomes.
The therapy significantly affects the outcome of the feature selection
approach, as seen by the high F-value and low p-value. Furthermore,
the residual values show the remaining unexplained variation in the
data, suggesting that this area may benefit from additional study.

FIGURE 6
The average error of the feature selection results based on the
proposed and other feature selection methods.

Using the Wilcoxon signed-rank test, we compared the
outcomes of the proposed feature selection approach to those
of a baseline set of methods. The median predicted value of
the dissimilarities between the matched samples, denoted by
“Theoretical median,” is zero. The median observed discrepancy
between the paired samples (the “Real median”) is 0.837. The
“Number of values” indicates that nine pairs of datawere used for the
analysis. The sum of signed ranks is the sum of the absolute values
of the rankings of the differences between the matched samples. We
can add up the positive and negative differences rankings and call

TABLE 6 Analysis results usingWilcoxon test.

Metric bDWDTO bDTO bWAO bGWO bPSO bFA bGA bJAYA bFHO

Theoretical median 0 0 0 0 0 0 0 0 0

Actual median 0.837 0.913 0.908 0.874 0.908 0.906 0.888 0.855 0.873

Number of values 9 9 9 9 9 9 9 9 9

Sum of ± ranks 45 45 45 45 45 45 45 45 45

Sum of +ve ranks 45 45 45 45 45 45 45 45 45

Sum of -ve ranks 0 0 0 0 0 0 0 0 0

p-value 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Discrepancy 0.837 0.913 0.908 0.874 0.908 0.906 0.888 0.855 0.873
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TABLE 7 The prediction results using the proposed optimized ensemble.

Metric Proposed LSTM BiLSTM GRU

RMSE 0.0022 0.0786 0.0661 0.0415

R2 0.9999 0.8835 0.9163 0.9667

MAE 0.0003 0.0623 0.0525 0.0306

MBE 7.6E-06 −0.0147 −0.0079 −0.0018

R 0.9999 0.9399 0.9572 0.9832

WI 0.9991 0.8422 0.8671 0.9226

NSE 0.9999 0.8791 0.9145 0.9663

RRMSE 0.4185 23.329 19.621 12.311

TABLE 8 Analysis of the achieved prediction results using ANOVA test.

Metric SS DF MS F (DFn, DFd) p-value

Treatment 0.0001354 8 0.00001693 F (8, 81) = 1,086 p < 0.0001

Residual 0.000001263 81 1.559E-08

Total 0.0001367 89

those the “Sumof +ve ranks” and the “Sumof -ve ranks,” respectively.
It appears that there were largely positive differences between the
matched samples because the “Sum of signed rankings” is 45 and
the “Sum of -ve ranks” is 0, respectively. For a null hypothesis to be
correct, the likelihood of generating a test statistic as extreme as the
observed statistic is 0.004.The lack of statistical significance between
the paired samples is the null hypothesis in this example. Statistically,
there is a substantial difference between the paired samples, as
indicated by the low p-value, which allows the null hypothesis to
be rejected at the 0.05 level of significance. When comparing the
observed median to the theoretical median, the discrepancy (or
“Discrepancy”) equals 0.837. This number indicates the variation
between the two samples in a set. A low p-value indicates that there
is likely to be a statistically significant difference between the two
samples.When there is a positive difference between paired samples,
as shown by the “Sum of signed rankings” and “Sum of +ve ranks,”
it is possible that the proposed feature selection approach worked
better on the selected features than the non-selected ones. The two
groups have an apparent disparity, as seen by the 0.837 median
difference.

On the other hand, Figure 5 shows the accuracy of the wind
power prediction. In this figure, many graphical tools can be
used to examine the results of an ANOVA and analyze the
model’s assumptions while assessing a feature selection approach.
A heatmap plot is a kind of data visualization that uses color
to convey information about the importance of certain features.
Data patterns can be discovered, and the feature selection method’s
efficacy evaluated using the heatmap. Features that are highly
correlated and relevant to the outcome will be clustered together
clearly in a heatmap, as with a high-performance feature selection
approach. However, when testing the normality assumption of
an ANOVA model, a QQ plot can be helpful. The residuals’
distribution is compared to a normal distribution, and outliers
are flagged if they are found. The normality assumption holds
if the residuals on the QQ plot form a straight line. If the line
is not straight, the residuals may not be normally distributed,
calling into question the reliability of the ANOVA findings. The
assumption of homoscedasticity in the ANOVA model states that
the residual variance should be the same for all predictor variable
values. A residual plot can be used to test for homoscedasticity.
The residual plot contrasts the actual values with the expected
ones, and a homoscedastic plot illustrates a uniform distribution
of data points around the zero line. Heteroscedasticity, which
might compromise the reliability of ANOVA results, is indicated
by a plot with a fan shape or an increasing or decreasing spread
of points. Heatmap plots, QQ plots, and residual plots are just
a few examples of graphical tools that can be used to evaluate
the efficacy of feature selection strategies and the validity of the
ANOVA model’s assumptions. A thorough examination of these
plots allows researchers to spot problems in the data or the model
and make corrections that will increase confidence in the ANOVA
findings.

In addition, Figure 6 shows the average error in feature selection
using the proposed method and the other competitor methods.
As seen in this figure, the proposed feature selection algorithm
gets the lowest average error, suggesting it does better than the
different algorithms in picking relevant characteristics for the
prediction task. The scatter figure demonstrates that the proposed
feature selection algorithm obtains the lowest average error across
multiple datasets, proving its effectiveness and generalizability.
That the algorithm can identify the most informative features
for the prediction task and reduce data dimensionality without
compromising accuracy is a significant indication of the algorithm’s

TABLE 9 Analysis of the achieved prediction results usingWilcoxon test.

Metric DWDTO DTO WAO GWO PSO FA GA JAYA FHO

Theoretical median 0 0 0 0 0 0 0 0 0

Actual median 0.0022 0.0046 0.0051 0.0053 0.0057 0.0061 0.0066 0.0045 0.0040

Num. values 10 10 10 10 10 10 10 10 10

Sum of ± ranks 55 55 55 55 55 55 55 55 55

Sum of +ve ranks 55 55 55 55 55 55 55 55 55

Sum of -ve ranks 0 0 0 0 0 0 0 0 0

p-value 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact

Discrepancy 0.0022 0.0046 0.0051 0.0053 0.0057 0.0061 0.0066 0.0045 0.0040
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TABLE 10 Statistical analysis of the achieved prediction results.

Metric DWDTO DTO WAO GWO PSO FA GA JAYA FHO

Num. values 10 10 10 10 10 10 10 10 10

Minimum 0.0021 0.0045 0.0050 0.0053 0.0057 0.0061 0.0062 0.0039 0.0039

Maximum 0.0022 0.0046 0.0053 0.0057 0.0059 0.0065 0.0068 0.0048 0.0042

Range 0.0001 0.0001 0.0003 0.0004 0.0002 0.0004 0.0006 0.0009 0.0003

Mean 0.0022 0.0046 0.0051 0.0054 0.0057 0.0062 0.0065 0.0045 0.0040

Std. 0.00003 0.00005 0.00007 0.00015 0.00005 0.00015 0.00015 0.0002 0.0001

Mean std error 0.00001 0.00002 0.00002 0.00005 0.00002 0.00005 0.00005 0.0001 0.00002

Harmonic mean 0.0022 0.0046 0.0051 0.0054 0.0057 0.0062 0.0065 0.0045 0.0040

Skewness −3.162 −2.672 1.335 1.38 1.938 1.401 −1.835 −1.824 1.29

Kurtosis 10 7.258 5.384 0.4016 5.514 0.5072 5.662 5.446 2.985

trustworthiness. Also, the graphic clearly shows how the proposed
feature selection algorithmcompares to the other algorithms utilized
in the study and where the discrepancies lie. This knowledge can
be used to determine the best feature selection strategy for a
given prediction problem, considering the dataset and prediction
method in question. The proposed approach achieves the lowest
average error and surpasses the other algorithms in selecting
relevant features for the prediction job, as shown by a plot of
the average error of the algorithms employed in feature selection
compared to the proposed algorithm. This demonstrates that
the proposed approach is an efficient and trustworthy tool for
feature selection, which can be utilized to enhance the precision
and productivity of prediction algorithms across a wide range of
applications.

4.5 Prediction results

The prediction results listed in Table 7 based on the adopted
evaluation metrics show the superiority and effectiveness of the
proposed optimized ensemble model compared to other models.
Compared to the LSTM, BiLSTM, and GRU prediction models, the
results of the suggested ensemble model for wind power prediction
demonstrate outstanding accuracy and performance.With anRMSE
of 0.0022, the suggested model has a relatively modest average
deviation from the true values in its predictions. With an R2 of
0.9999, the model provides a close fit to the data, leaving little room
for error. The model’s correctness is further supported by the MBE
of 7.6E-06 and the MAE of 0.0003. The high WI value of 0.9991
and R-value of 0.9999 shows that the values predicted and observed
are highly correlated. An NSE of 0.9999 means the suggested model
captures the observed data’s variability remarkably well.The RRMSE
of 0.4185 further shows that the proposed ensemble model has
a small relative error compared to the average of the real values.
Our findings show that the proposed ensemble model excels in
all respects over the state-of-the-art LSTM, BiLSTM, and GRU
prediction models. There is a good chance that this model could
be used in real-world wind power forecast applications due to its
high accuracy and significant connection with actual data. These

FIGURE 7
RMSE values calculated for the results achieved by the proposed
optimization algorithm.

findings have the potential to aid in the selection of prediction
models for wind power generation and shed light on the creation
of more precise and efficient models for forecasting renewable
energy.

Similar to the evaluation of the feature selection results, the
results of the wind power prediction are statistically evaluated in
terms of the ANOVA,Wilcoxon, and statistical analysis as presented
in Table 8, Table 9, and Table 10, respectively. The results in these
tables confirm the statistical significance and difference of the
proposed methodology compared to the other recent methods.

On the other hand, a set of figures was generated to show
this finding to emphasize the accuracy of the prediction results
achieved by the proposed approach. Figure 7; Figure 8; Figure 9;
Figure 10 show the prediction errors using the proposed approach
with comparison to other approaches. It can be easily noted in these
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figures that the proposed methodology is superior in predicting
wind power.

The plots of RMSE values show that the proposed method
achieves the least range of RMSE values compared to the other
methods. This means the proposed method outperforms the
competing methods on all datasets examined. The charts also make
it easy to see the differences between the methods by displaying
the range of RMSE values attained by each. The histogram of
RMSE values further supports the proposed method’s improved
performance. The suggested method consistently achieves excellent
accuracy throughout the investigated datasets, as shown by the
histogram, which shows that most RMSE values generated by
the method are concentrated around a small range of values.
The RMSE values for the other approaches are more dispersed,
with some datasets obtaining very high error rates. This indicates
that the proposed method is superior to the alternatives in
terms of robustness, reliability, and flexibility regarding datasets.
Plots of the RMSE values and a histogram show the suggested
methodology’s superior performance over the other methods.
The histogram shows that the suggested method provides high
accuracy consistently across different datasets, with a restricted
range of RMSE values and a concentration of values around
that range. Insights into constructing more accurate and efficient
regression models can be gained from these findings, making them
crucial for influencing the selection of approaches for regression
tasks.

Here, we contrast the performance of an ensemble model
optimizedwith theDTOmethodwith that of the proposed ensemble
model optimized with the DWDTO algorithm. The Receiver
Operating Characteristic (ROC) curve is utilized to visualize how
well the proposed model is performing. This curve displays the
sensitivity versus the false positive rate (1—specificity) for various
cutoffs in the prediction process. Examining the ROC curve

FIGURE 9
The receiver operating characteristic curve of the proposed ensemble
model versus another ensemble model.

reveals that the proposed ensemble model employing the DWDTO
method outperforms the one employing the DTO technique. The
receiver operating characteristic (ROC) curve for the proposed
ensemble model using the DWDTO method demonstrates that the
model achieves a greater true positive rate (sensitivity) than the
ensemble model using the DTO algorithm at lower false positive
rates (1—specificity). It follows that the proposed ensemble model
outperforms the ensemble model trained using the DTO approach
in its capacity to correctly detect positive events (high wind power
generation) while avoiding false positive cases (low wind power
generation). Higher specificity and sensitivity values on the ROC

FIGURE 8
RMSE histogram values calculated for the results achieved by the proposed optimization algorithm.
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FIGURE 10
Visualizing the proposed optimized ensemble method prediction results.

curve demonstrate that the proposed ensemble model optimized
with the DWDTO algorithm performs better than that optimized
with the DTO strategy. This shows that the proposed model is
more trustworthy for decision-making in energy systems since it
can predict wind power generation more accurately and with less
likelihood of false positives or negatives.

5 Conclusion

This research proposes an optimized ensemble model based
on a novel optimization algorithm. The proposed optimization
methodology is referred to as DWDTO. This algorithm is used
in feature selection and optimization of the ensemble weights to
improve the precision of wind power forecasting. A dataset publicly
available on Kaggle is utilized to prove the proposed methodology’s
effectiveness. The proposed optimized ensemble is the foundational
forecasting model for the non-linear connection between data-
variable features and wind power. The proposed DWDTO is

developed for determining the ensemble weights’ optimal values.
It is shown that the proposed optimized ensemble model is the
most effective of other developed comparative forecasting models
in terms of improving prediction error. The RMSE of the proposed
model was the lowest of the forecasting models in all the conducted
experiments, with a value of 0.0022. Wind power studies using data
from a single wind farm reveal that the proposed prediction model
is effective and that the mapping connection of the created power
prediction model is straightforward. The future perspective is to
evaluate the proposed methodology using a larger dataset to show
its generalization.
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