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Nonlinear parity-time-symmetric wireless power transfer (NPTS-WPT) is a novel
wireless power transfer technology. NPTS-WPT systems exhibit the resonant
frequency bifurcation phenomenon in the strong coupling region. However,
working frequency selection mechanisms and control methods for use in the
bifurcation region remain unclear. In this study, the description function method
was used to model and analyze the dynamics of NPTS-WPT systems. The
frequency stability, evolution and convergence characteristics of resonant
frequency bifurcation were studied for varying distances between the receiver
(Rx) and transmitter circuits varies. In addition, the loop detuning characteristics
and the mechanism by which the amplification factor of the operational amplifier
influences the system’s frequency-hopping behavior were determined. The
detuning rate must be greater than the detuning tolerance to cause resonant
frequency-hopping. Moreover, we propose a method to induce changes in the
natural frequency of the Rx circuit by adding a detuning control circuit at the Rx,
thereby allowing the resonant frequency to be selected and controlled. Finally, the
conclusions from the theoretical analysis and the feasibility of the proposed
frequency control methods were validated using an experimental system. The
proposed resonant frequency control methods offer a viable method for
directional frequency selection and artificial frequency control in NPTS-WPT
systems operating in the strong coupling region.
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1 Introduction

As a novel wireless power transfer (WPT) technology, the nonlinear parity-time-
symmetric (NPTS) WPT (NPTS-WPT) system was first reported in 2017 in Nature
(Assawaworrarit et al., 2017). The study reported that the transfer efficiency between
coils with diameters of 58 cm can be maintained at approximately 100% when the
distance between the coils is 20–70 cm after a nonlinear gain saturation mechanism is
introduced into the parity-time (PT)-symmetric circuit containing the two coupled coils.

Compared with the electromagnetic induction method and the traditional magnetic
resonance method, the distinctive characteristic of an NPTS-WPT system is that without the
use of additional control circuit modules or software algorithms and by relying solely on the
principal characteristics of the circuit, the output frequency of the drive circuit at the transmitter
(Tx) is adjusted automatically when the distance between the receiver (Rx) and Tx coils changes
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or other parameters fluctuate. The Tx and Rx loops thus remain in a
resonant state at all times, thereby maintaining stable and highly
efficient power transfer efficiency within the specified range and
exhibiting strong robustness.

NPTS-WPT has received increased research interest in recent
years. In 2018 Younes Ra’di, in cooperation with Fu Liu et al.,
used electric field coupling between metal plates instead of the
magnetic field coupling coils used in a previous study
(Assawaworrarit et al., 2017), thereby expanding the power
transfer coupling mode at the Rx and Tx circuits (Ra’di et al.,
2018). In 2019, Fu Liu further optimized and improved the
circuit topology and the principle prototype (Liu F. et al., 2019),
and used pulse oscillation instead of single harmonic oscillation.
This approach can maintain a transfer efficiency of more than
90% over a wide load fluctuation range. Based on the principle of
the Duffing resonator, Abdelatty proposed a position-insensitive
WPT system containing nonlinear capacitors (Abdelatty et al.,
2019). This system provides a constant transfer efficiency of
approximately 80% when the axial distance between the Tx and
Rx coils is 15 ± 10 cm, the coil diameter’s lateral misalignment
is ±50%, and the angular misalignment is ±75°. Zhang from
South China University of Technology performed an innovative
exploration of the NPTS topology for use in fields such as single-
line electric field coupling power transfer (Shu and Zhang, 2018),
constant-efficiency wireless charging for unmanned aerial
vehicles based on magnetic field coupling (Zhou et al., 2019),
and electric-magnetic field dual coupling WPT (Liu and Zhang,
2018). Compared with the traditional design (Assawaworrarit
et al., 2017), the principal difference is that a half-bridge inverter
is used instead of an operational amplifier (OP amp) as the Tx
circuit driver, and the current signal extracted from this Tx
circuit is taken as the feedback signal and used to control the
operation of the half-bridge inverter switching tube, thereby
yielding a nonlinear saturation gain and improved overall power
transfer efficiency. In 2020, a Massachusetts Institute of
Technology (MIT) team achieved stable and highly efficient
WPT by using a class-E amplifier with current-sensing
feedback in the PT-symmetric circuit (Assawaworrarit and
Fan, 2020a). In their improved circuit, the PT symmetry
ensures a constant effective load impedance for the switch
amplifier. The amplifier continues to operate efficiently, even
if the transmission distance changes. In a previous study (Zhou
et al., 2020), NPTS-WPT technology was employed to read the
circuit design of passive wireless sensors. The read-out distance
was approximately four times as long as that obtained when
using conventional WPT methods while maintaining the same
sensitivity. Another study (Ishida et al., 2021) presented the
design of a low-frequency NPTS-WPT system operating at
frequencies below 20 kHz. A high transmission power of
7.6 W was achieved when the Rx and Tx coils were wound on
a Mn-Zn ferrite core, and the Tx circuit used a high voltage OP
amp. First, they created a transmission system circuit model by
using the symmetric and asymmetric parameters of the Rx and
Tx circuits. This model was based on the mutual inductance
coupling theory, which is used in this paper. Next, they analyzed
the effects of these parameters on the power transmission
characteristics (Dong et al., 2019a; Li et al., 2020) and

proposed a novel current-type NPTS circuit topology (Dong
et al., 2019b).

The NPTS-WPT system drives the coupling coils by using the
self-excited oscillation of an OP amp working in the nonlinear
saturation region. Compared with switching inverters that are
commonly used in electromagnetic induction and conventional
magnetic resonance methods, NPTS-WPT provides low energy
conversion efficiency and limited transmission power and is thus
not suitable for use in high-power wireless transfer applications
that require high overall transmission efficiency, such as electric
vehicle wireless charging. However, because of outstanding
advantages such as strong robustness, long transmission
distance, and simple circuit topology, NPTS-WPT has broad
application prospects in the field of low-power wireless
charging, where distance variations and parameter fluctuations
occur, such as information cross-linking between ammunition and
weapons systems and where the provision of an external wireless
power supply for implantable medical diagnostic equipment. As
novel concept, the related research is still in its infancy.

Several studies have verified that in the strong coupling region,
NPTS-WPT systems exhibit resonant frequency bifurcation
(Assawaworrarit et al., 2017; Liu and Zhang, 2018; Shu and
Zhang, 2018; Dong et al., 2019a; Dong et al., 2019b; Zhou et al.,
2019; Assawaworrarit and Fan, 2020a; Li et al., 2020; Zhang, 2020;
Zhou et al., 2020; Ishida et al., 2021; Yatsugi et al., 2021), which is
similar to traditional magnetic resonance frequency characteristics
(Nguyen and Agbinya, 2015; Liu M. et al., 2019; Song et al., 2021).
Different resonant frequency points have an important impact on
the system’s transmission efficiency and transmission distance.
Most scholars consider that the frequency bifurcation
phenomenon is not conducive to the operation of the system.
The main research direction has been to adjust the circuit
parameters to eliminate this phenomenon (Truong, 2021).
However, the real-world WPT systems are not in a completely
symmetrical state (Li et al., 2020), and the transmission power and
efficiency at the two bifurcation frequencies are different. Thus, the
transmission performance of the system can be improved by
controlling and selecting the working frequency. Furthermore,
this method can be used for simultaneous wireless power and
information transfer (SWPIT) systems where the high and low
frequencies represent information ‘1′and ‘0′respectively.

Although studies on magnetic resonance, they have discovered
and explained the occurrence of the frequency bifurcation
phenomenon, they have not offered an in-depth discussion on
the evolution of change in the frequency or propose a method for
selection and control of the resonant frequency. Because the
NPTS-WPT system has two resonant frequency branches in the
strong coupling region, which resonant frequency branch will be
selected during practical operation, and whether there are any
technical means to enable the system to hop from one resonant
frequency branch to the other. We have created a dynamic model
for an NPTS-WPT system by using the description function
method (DFM) and used the model to study the resonant
frequency bifurcation and frequency-hopping mechanisms. On
this basis, we 0discussed the methods for the selection and control
of the resonant frequency in the strong coupling region. Finally, we
experimentally verified the correctness of the conclusion derived
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from the theoretical analysis and the feasibility of the proposed
technical methods.

2 Dynamic model of the NPTS-WPT
system

2.1 Circuit model simplification

The typical circuit principle of an NPTS-WPT system is
illustrated in Figure 1A. Resistor R1 and the OP amp form a
negative resistance, which is used to convert part of the direct
current (DC) into an alternating current (AC) to feed the WPT
system. RF and RG are, respectively, the feedback and gain
resistances of the OP amp. Through the appropriate design of
the values of RF and RG, the required voltage amplification factor
in the linear region of the OP amp is achieved. R2 is the load
resistance of the Tx circuit. L1 and L2 are, respectively, the
inductances of the Tx and Rx coils, and M is the mutual
inductance of the two coils. R01 and R02 represent the internal
resistances of the Tx and Rx coils, respectively. C1 and C2 are the
matching capacitors for the Tx and Rx loops, respectively, and are
used to set the natural frequencies of the Tx and Rx loops. V1 and V2

are the voltages across the Tx and Rx coils, respectively, and I1 and I2
are the currents that flow through the Tx and Rx coils, respectively.

Refs (Assawaworrarit et al., 2017; Dong et al., 2019a) show that
the steady-state voltage and current in this circuit are both
sinusoidal signals; therefore, this circuit above can be simplified
using the phasor method. The phasor model (without consideration
of the negative resistance) is shown in Figure 1B.

According to Kirchhoff’s law,

jωL1 + R01( ) _I1 + jωM _I2 � _V1

jωM _I1 + jωL2 + R02 + R2

1 + jωR2C2
( ) _I2 � 0

1
jωC1

_I3 − _I1( ) � _V1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

The equivalent impedance between b and c can be obtained from
Eq. 1 (while excluding the negative resistance) as follows:

Zbc jω( ) ≡ _V1

_I3
� Z31 Z11Z22 − Z2

12( )
Z31Z22 + Z11Z22 − Z2

12

(2)

where.
Z11 � jωL1 + R01, Z12 � jωκ

����
L1L2

√
, Z31 � 1/(jωC1),

κ � M/
����
L1L2

√
, Z22 � jωL2 + R02 + R2/(1 + jωR2C2), and κ is the

coupling coefficient between the two coils.
Therefore, the NPTS-WPT system can be simplified further, as

illustrated in Figure 1C, where Vo is the output voltage of the OP amp.

2.2 Dynamics modeling by using the DFM

The DFM is a common analytical method used for nonlinear
systems, and can analyze aspects such as the stability and limit cycle
of high-order nonlinear systems (Engelberg, 2002). The DFM is
generally used to model power converters in power systems (Sinha
et al., 2018). To use the DFM, the system must be analyzed in the
s-domain. When the self-excited oscillation of the system and the
independence of its characteristics from the initial state are
considered, jω in Eq. 2 can be replaced with s, Accordingly, we
obtain

FIGURE 1
(A)Circuit diagram of an NPTS-WPT system. (B) Phasor model of the NPTS-WPT system. (C) Simplified circuit diagram of the NPTS-WPT system.
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Zbc s( ) � Zbc jω( ) (3)
When the functions of the OP amp are considered based on its

virtual-short and virtual-break characteristics, Eqs. 4, 5 hold true:

V1 s( ) � Zbc s( )
Zbc s( ) + R1

Vo s( ) (4)

V1 s( ) � RG

RG + RF
Vo s( ) (5)

The transfer function G(s) is defined using Eq. 4 as follows:

G s( ) ≡ V1 s( )
Vo s( ) �

Zbc s( )
Zbc s( ) + R1

(6)

Additionally, the voltage amplification factor of an OP amp in
the linear region, which is denoted as kOP, can be defined using Eq. 5
as follows:

kOP ≡
Vo s( )
V1 s( ) �

RG + RF

RG
(7)

The linear feedback block diagram of the system can be
obtained using equations. (6) and (7), as shown in Figure 2A,

where Vo is the input to G(s) and the output from kOP, and V1 is
the output from G(s) and the input to kOP. This is similar to the
aforementioned circuit diagram, where kOP is taken as the negative
input to the OP amp. The block diagram of the nonlinear feedback
considering the saturation nonlinearity of the OP amp shown in
Figure 2B.

Here, the description function for the saturation nonlinearity
can be expressed as follows:

N A( ) � 2kOP
π

arcsin
a

A
( ) + a

A

��������
1 − a

A
( )2

√⎡⎢⎢⎣ ⎤⎥⎥⎦ (8)

In Equation 8, where A is the signal amplitude [−a, a] represents
the linear region of the OP amp, and a represents the saturation,
which is illustrated in Figure 3A. The saturation of an OP amp
depends on its supply voltage. For subsequent analysis, the
saturations at various supply voltages were measured for the
LM7171 OP amp, as shown in Figure 3B, where APS = (V+ −
V−)/2, and V+ and V− are, respectively, the positive and negative
supply voltages of the OP amp.

FIGURE 2
(A) Linear feedback block diagram of system. (B) Nonlinear feedback block diagram of the system.

FIGURE 3
(A) Saturated nonlinear parametric diagram. (B) Relationship between a and supply voltage.
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The characteristic equation of the nonlinear feedback system
shown in Figure 2B is

1 −N A( )G s( )kOP � 0 (9)
Eq. 9 can be converted into the following:

−kOPG s( ) � −1/N A( ) (10)
where −1/N(A) is referred to as the negative reversal characteristic of
the description function.

The transfer function for the linear portion of the system can be
defined as follows:

H s( ) ≡ − kOPG s( ) (11)
According to Eqs. 1–(11),

H s( ) � −kOP b3s3 + b2s2 + b1s + b0
a4s4 + a3s3 + a2s2 + a1s + a0

(12)

where

a0 � R1R2 + R1R02 + R2R01 + R01R02

a1 � R2 + R02( ) L1 + C1R1R01( ) + R1 + R01( ) L2 + C2R2R02( )
a2 � 1 − k2( )L1L2 + L1C1 + L2C2( )R1R2

+ L1R02 + L2R01( ) C1R1 + C2R2( ) + C1C2R1R2R01R02

a3 � 1 − k2( )L1L2 C1R1 + C2R2( ) + C1C2R1R2 L1R02 + L2R01( )
a4 � 1 − k2( )L1L2C1C2R1R2

b0 � R01 R2 + R02( )
b1 � L1R2 + L1R02 + L2R01 + C2R2R01R02

b2 � 1 − k2( )L1L2 + C2R2 L1R02 + L2R01( )
b3 � 1 − k2( )L1L2C2R2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

3 Resonant frequency-hopping and
selection method

The NPTS-WPT system has two resonant frequency points
when operating in the strong coupling region. However, this
system cannot simultaneously be operated at two frequency
points—it must operate at one point or the other. This raises
the questions of whether or not this choice is random and
whether a system running at a specific frequency point can
then hop to another frequency point for operation through
artificial and technical means. These problems are in this
section.

3.1 Frequency bifurcation phenomenon in
the strong coupling region

In this study, for an NPTS-WPT system with the parameters
listed in Table 1, we determined the evolution process of the system’s
resonant frequencies with changes in the distance between the Tx
and Rx coils by using the DFM presented in Section II and then used
the resonant frequency control method in the strong coupling
region. The measured curve for the relationship between the
coupling coefficient and the distance is shown in Figure 4. All
calculational and experimental parameters used in this study are
presented in Table 1 unless otherwise specified. The Rx and Tx coils
are spiral coils with the same diameter of 90 mm. These coils were
wound using enameled copper wires with a diameter of 1 mm. The
number of turns for both coils is 7 and the power supply voltage
is ±12 V.

The Nyquist diagram of H(s) and the image of −1/N(A) were
drawn on the complex plane, with results as shown in Figure 5. The
image of −1/N(A) on the complex plane was a ray on the negative
real axis that started at (−1/kOP,0) and moved toward (−∞,0) with
increasing A. The directions of the arrows shown in the figure were
consistent with the growth direction of A. The Nyquist diagram of
H(s) can only show the nonnegative angular frequency portion. The
directions of the arrows on the curves indicate the direction in which
ω is increasing. The value of ω at the intersection of H(s) and −1/
N(A) is the solution to Eq. 11, i.e., the system resonance frequency.
For example, in Figure 5B, the values of ω at the intersections are
defined as ω1, ω2 and ω3, where ω3 ≥ ω2 ≥ ω1 > 0. These intersections
can be either stable or unstable. Specifically, in the direction of the
H(s) curve where it is increasing along ω, if the direction in
which −1/N(A) is increasing with increasing A is from the right
side of the H(s) curve toward the left side, then the intersection is
stable; in contrast, if the direction in which −1/N(A) is increasing
with increasing A is from the left side of the H(s) curve toward the
right side, then the intersection is unstable.

TABLE 1 Computational and experimental parameters.

Parameters Values Parameters Values

L1 8.85 μH R2 3 kΩ

L2 8.79 μH RF 510 Ω

C1 2.86 nF RG 5.1 kΩ

C2 2.88 nF R01 0.35 Ω

R1 27 Ω R02 0.35 Ω

FIGURE 4
Curve of κ value versus distance between the coils.
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When the κ value was high (i.e., κ = 0.16, as shown in Figure 5A),
H(s) and −1/N(A) intersected twice (corresponding to ω1 and ω3).
According to the intersection stability judgment method described
above, ω1 and ω3 were both stable and are thus represented by solid
dots in the figure. In Figure 5B, κ = 0.073, and when compared with
Figure 5A, the inner circle formed by H(s) is smaller because of the
reduction in the value of κ. H(s) intersected with −1/N(A) thrice. ω1 and
ω3 were stable in this case, while ω2 was unstable and was thus
represented by a hollow dot in the figure. As κ decreased further, the
inner circle formed by H(s) continued to shrink. When this shrinking
circle was exactly tangential to the negative real axis, a critical state was
reached, as illustrated in Figure 5C (where κ = 0.027). In addition,ω2 and
ω3 converged into a point, represented by ωc in this case. Here, ωc

represents the convergence of the original stable point ω3 and the
unstable point ω2 is called the critical stable angular frequency and is
represented by a half-solid dot in the figure. The corresponding coupling
coefficient is denoted as κc and is called the critical coupling coefficient.
When κ continued to decrease further, H(s) and −1/N(A) had only one
intersection at ω1 and this frequency point was stable.

FIGURE 5
Images of H(s) and −1/N(A)on the complex plane: (A) κ=0.16, (B) κ=0.073 (C) κ=0.27, and (D) κ=0.0245. The stretched-out views are shown in the
images at the intersections.

FIGURE 6
Curves of resonant frequency versus distance between coils.
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The resonant frequency curves for varying distances between the
Tx and Rx coils are shown in Figure 6. The area in which κ > κc is
called the strong coupling region. Here, the system had two stable,
resonant frequency branches (i.e., f1 and f3), which are called the
low-frequency branch and the high-frequency branch, respectively.

In addition, there was an unstable intermediate frequency branch
(i.e., f2) when the distance between the Tx and Rx coils was within a
certain range of values. The intermediate frequency branch f2 cannot
be observed experimentally because it is merely a theoretical
solution derived from the theoretical analysis. As κ continued to

FIGURE 7
Graphics of H(s) and −1/N(A) on the complex plane during detuning when κ = 0.073: (A) γ = 0.06; (B) γ = 0.104; (C) γ = 0.15; (D) γ = - 0.04;
(E) γ = - 0.072; (F) γ = - 0.1.
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decrease (and the distance between the Tx and Rx coils increased),
the three resonant angular frequencies continued to approach each
other and evolved into stable and critical stable, resonant angular
frequencies at the critical distance. The area in which κ < κc is called
the weak coupling region. In this case, the system exhibited only one
stable resonant frequency branch. In the strong coupling region,
when the distance between the two coils decreased, the difference
between the high-frequency and low-frequency branches increased
in tandem. However, in the weak coupling region, the resonant
frequency of the system basically remained unchanged.

3.2 Effects of detuning on the frequency

Preliminary studies have found that artificial detuning between
the Rx and Tx circuits can affect the system’s resonant frequency (Li
and Huang, 2022; Liu et al., 2022; Wang et al., 2023). When the
detuning rate is sufficiently high, the resonant frequency-hopping
phenomenon occurs. For the WPT system shown in Figure 1A,
changes in the inductance L2 or the resonance matching capacitance
C2 will lead to a natural frequency offset at the Rx circuit. This may
cause system detuning. Here, γ is defined as the natural frequency
offset rate and can be expressed as follows:

γ � L2C2 − L2
*C2

*( )/L2
*C2

* (14)
where L2* and C2

* are substitute parameters for L2*C2
* � L1C1, i.e., L2*

and C2
* respectively represent the inductance and capacitance values

at the Rx circuit when the natural frequency of the Rx and Tx circuits
is consistent; in other words, γ = 0 at this time.

Figure 7 shows the Nyquist curve for H(s) and the image
of −1/N(A) at various values of γ. In the calculation example, γ
was adjusted by changing the value of C2; κ = 0.073, L2 � L2* �
8.79μH and C2

* � 2.88nF; and the remaining parameters are as
shown in Table 1 and Figure 7A shows the graph obtained when
γ = 0.06. When compared with Figure 7B, the inner circle formed
by the curves shifted downward. According to the frequency
stability analysis method, ω1 and ω3 were both stable resonant
angular frequencies, but ω2 was an unstable resonant angular
frequency. When γ increased continuously, ω1 and ω2 gradually
approach each other and ultimately converged when γ = 0.104;
the angular frequency at this convergence is denoted as ωc and is
represented by a half-solid circle, as illustrated in Figure 7B. This
frequency point cannot maintain the self-excited oscillation of
the system because it is a critical stable point. When the value of γ
increased further, there was only one intersection between H(s)
and −1/N(A), as shown in Figure 7C. In this case, there was only
the high-frequency branch ω3 in the system, and this frequency
point was stable.

The case in which γ < 0 was analyzed next. The image where
γ = −0.04 is shown in Figure 7D. Compared with Figure 5B, the inner
circle formed by H(s) in this case shifted upward. According to the
frequency stability analysis method, ω1 and ω3 were both stable
resonant angular frequencies, while ω2 was again an unstable
resonant angular frequency. When γ decreased continuously, ω3

and ω2 gradually approached each other and ultimately converged
when γ = −0.072; this frequency point is also denoted by ωc, as
shown in Figure 7E. When γ decreased further, there was only one
intersection between H(s) and −1/N(A), as illustrated in Figure 7F.

In this case, there was only the low-frequency branch ω1 in the
system, and this frequency point was stable.

In summary, when γ > 0 and the value of γ increased
continuously, the low frequency ω1 and the unstable point ω2

gradually moved closer to each other and ultimately converged
into a critical stable frequency point before departing from the
negative real axis. As a result, there was only the high-frequency
resonance branch ω3 within the system. When γ < 0 and γ decreased
continuously, the high frequency ω3 and the unstable point ω2

gradually moved closer to each other and ultimately converged into
a critical stable frequency point before departing from the negative
real axis. As a result, there was only the low-frequency resonance
branch ω1 in the system.

3.3 Occurrence of frequency-hopping

Figure 8 shows the curves of variations in the resonant frequency
with γ at various κ values. Using the curve plotted with κ = 0.073 as
an example, on the high-frequency branch, when γ decreased
continuously, the resonant frequency of the system climbed
continually along the high-frequency branch; the resonant
frequency then hopped from the high-frequency branch to the
low-frequency branch when γ reached γ1. At this point, the
system’s resonant frequency continued to move left along the
low-frequency branch when γ was decreased further. On the low-
frequency branch, when γ increased continuously, the system’s
resonant frequency moved continually along the low-frequency
branch; the resonant frequency then hopped from the low-
frequency branch to the high-frequency branch when γ reached
γ2. When γ continued to increase, then the resonant frequency of the
system continued to move right along the high-frequency branch
(Cao et al., 2022; Tang et al., 2022). Arrowsmark the points γ1 and γ2
to indicate that this frequency-hopping behavior is uniaxial. This
means that the resonant frequency of the system can only hop from
the high-frequency branch to the low-frequency branch at point γ1,
and the system cannot hop from the low-frequency branch to the

FIGURE 8
Frequency-hopping curves under incomplete symmetry
condition.
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high-frequency branch. Similarly, at point γ2, the resonant
frequency of the system can only hop from the low-frequency
branch to the high-frequency branch, and the system cannot hop
from the high-frequency branch to the low-frequency branch.

However, the change in the resonant frequency is bidirectional
and reversible before γ reaches either γ1 or γ2, regardless of whether
the system runs on the high-frequency or low-frequency branch. In
other words, if the system is operating on the high-frequency
branch, the resonant frequency of the system will increase
toward the left as γ decreases continuously. If γ then begins to
increase before it reaches γ1, the resonant frequency of the system
will return along the same route via the high-frequency branch and
move downward to the right without hopping to the low-frequency
branch (Assawaworrarit and Fan, 2020b; Hu et al., 2022; Hua et al.,
2022). Similarly, if the system is running on the low-frequency
branch, the resonant frequency will move down toward the right as γ
increases continuously. If γ then begins to decrease before it reaches
γ2, the resonant frequency of the system will return along the same
route via the low-frequency branch and climb toward the left
without hopping to the high-frequency branch.

The parameter Δγ (Δγ = γ2 − γ1) is defined as the detuning
tolerance, which represents the maximum offset at which the system
can maintain the original resonant frequency branch without
hopping. As shown in Figure 8, the comparison of the three
curves (for κ = 0.073, 0.054 and 0.041) shows that a larger value
of κ corresponds to a larger Δγ. There was clearly only one resonant
frequency within the system in this case, and the frequency-hopping
behavior disappeared when the coupling coefficient was smaller
than the critical coupling coefficient.

The variation and hopping mechanisms for the resonant
frequency can be interpreted from the perspective of system
stability. Parameter changes or external disturbances (e.g.,
changes in the equivalent values of the capacitance and
inductance, κ values, and other parameters) that occur during
system operation may cause changes in the resonant frequency.
If there are still two stable resonant frequency points after the change
to the new parameters, the system will opt to run at the stable point
closest to the operating point identified before the parameter change,
rather than at stable points far away from that operating point.
“Close” and “far” here refer to the differences between the two
resonant frequencies. The frequency points are clearly closer to each
other when located on the same resonant frequency branch than
when they are on different branches. However, if there is no longer a
stable frequency point on the original operating frequency branch
following the change in operating parameters, frequency-hopping
becomes inevitable (Yang et al., 2022). Therefore, when the distance
between the Tx and Rx coils gradually increases or decreases in the
strong coupling region, the system operating frequency changes
along the original resonant frequency branch, but not sharply. The
operating frequency does not hop to another resonant frequency
branch and thus causes an abrupt change unless the original
frequency branch no longer exists. These resonant frequency
selections and hopping processes make it clear that the system
operation involves specific inertance and inertia properties.

According to the analysis presented above, the process of
disappearance of a stable frequency branch involves three stages:
stability, critical stability and disappearance. Critical stable points
result from the convergence of the stable resonant frequency with

the unstable resonant frequency, as illustrated in Figures 7B,E.
However, in some cases, there may be no critical stable state, as
in the example shown in Figure 9. Before their convergence, ω2 and
ω3 no longer represent the roots of Eq. 12 or the intersections of H(s)
and −1/N(A). The parameter difference between Figures 9, 7A is that
the initial point of −1/N(A) shifted to the left in Figure 9 because the
amplification factor kOP decreased from 1.1 to 1.01 within the linear
region of the OP amp. In addition, the frequency-hopping event
occurs prematurely because ω1, which was supposed to be a stable
frequency point, becomes an unstable point. Clearly, kOP plays an
important role in the frequency-hopping behavior.

Figure 10 shows the system frequency-hopping diagram for
several different values of kOP, with the values of the rest of the
parameters remaining unchanged. The value of kOP can be adjusted
by varying the RG value. As the figure shows, the detuning tolerance
Δγ decreased continually when kOP decreased. A larger value of Δγ

FIGURE 9
Hopping before frequency convergence.

FIGURE 10
Effects of kOP on frequency hopping.
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means that it is more difficult for frequency-hopping to occur in the
system. Therefore, the system is more capable of avoiding abrupt
frequency changes in case of detuning. This ability stems from
negative resistance, which is dependent on both a and kOP (Dong
et al., 2019a). Because a only affects the steady-state amplitude of the
system and not its resonant frequency, the frequency-hopping is
independent of a. However, kOP affects the frequency-hopping
because as it decreases, the ability of the negative resistance to
provide power decreases, thus impairing the system’s ability to
maintain its original state without abrupt changes.

3.4 Resonant frequency control method

When frequency bifurcation occurs in the strong coupling region
of a system, the two resonant frequency branches are equivalent.
Therefore, when the system begins to oscillate, the selected operating
frequency is determined by the asymmetry of the initial conditions.
This situation is known as symmetry-breaking solution. The
asymmetry of the initial conditions in an NPTS-WPT system
refers to the random noise, glitches and numerous external
disturbances that occur in the circuits at the moment that the
system is powered on. These factors play important roles in the
frequency selection process when the system oscillation begins. The
initial operating frequency is normally random and uncontrollable.
However, as can be observed from the analysis in Sections 3.2 and
3.3 indicates that, the system can be controlled to hop from the
original resonant frequency point to another such point through the
artificial detuning adjustment of the Rx circuit performed when the
system runs steadily. Furthermore, the system can return to its
original resonant frequency point through external rational
induction. Therefore, the resonant frequency branch in a strong
coupling region is selectable and controllable.

We illustrate the resonant frequency selection and control
method is illustrated by using the example of the frequency-
hopping curve (κ = 0.073) shown in Figure 11. When the system

started, then either ω10 or ω30 was selected randomly as the
operating frequency. Without loss of generality, we assumed the
system to be running at the low frequency ω10. By using the external
control circuit, γ was increased sharply while γ > γ2. For example, if
we let γ = γ4 and then reset γ to zero, the system ran at the frequency
ω30 because when γ > γ2, only the high-frequency branch remained
in the system; i.e., this is the only choice. Subsequently, the value of γ
decreased, and because of the inertia of the frequency variation, the
system reached ω30 along the high-frequency branch. Similar
behavior was observed when the system started in the case where
it was assumed to be running at the high frequency ω30. By using the
external control circuit, γwas reduced sharply and the inequality γ <
γ1 was ensured. When γ = γ3 and γ was reset to zero, the system ran
at the low frequency ω10. When the system originally operated at the
low frequency ω10 during the aforementioned adjustment, γ

decreased at a specific time, and regardless of how much γ

decreased, the system operated at the low frequency ω10 after γ

returned to zero. Similarly, when the system originally operated at
the high frequency ω30 and γwas increased at a specific moment, the
system will then run at the high frequency ω30 after γ returns to zero,
regardless of how much γ increased. In summary, regardless of
whether the system runs at the low or high resonant frequency under
the initial conditions, it will run at the high-frequency resonant
frequency point provided that γ is sufficiently large, is increased
sharply at a specific moment and its value later returns to zero.
Similarly, the system will run at the low-frequency resonant
frequency point provided that γ is sufficiently small, is reduced
sharply at a specific moment and its value later returns to zero.

4 Resonant frequency control
experiment

To verify the correctness of the proposed control method, we
designed a detuning control circuit for operation at the Rx to enable
the system to select the designated resonant frequency branch to
verify.

The operating parameters of the transfer system were consistent
with those listed in Table 1. The distance between the Rx and Tx
coils was set as 55 mm (i.e., κ=0.073) during the experiment. In this
position, the system exhibited two resonant frequencies with
theoretical values of 1.036 and 0.968 Mhz. Under the initial
conditions, L2 = 8.79 μH, C2 = 2.88 nF and γ = 0. As shown in
Figure 11, to ensure reliable frequency-hopping, we set cross point
γ2 = 0.944 when γwas increasing and cross point γ1 = − 0.075 when γ
was decreasing. Therefore, the adjustment of the equivalent
inductance and capacitance values at the Rx circuit can be
designed as shown in Figure 12. Regardless of whether the
system was running on a low- or high-frequency resonance
branch, when system oscillation began, it ran on the low-
frequency branch according to Figure 11 when L2 switched from
8.79μH to 1.21 μH (i.e., when γ = − 0.20) and then switches back to
8.79 μH after 5 μs. The system will then run on the high-frequency
branch when C2 switched from 2.88 nF to 11.03 nF (i.e., when γ = −
0.20) and then returned to 2.88 nF after 5 μs.

The above adjustment of the inductance and capacitance values
of the Rx circuit was achieved using the circuit shown in Figure 13A.
L2 and C2 enabled the natural frequency of the Rx loop to be

FIGURE 11
Frequency control principle.
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consistent with that of the Tx loop. Switches S1 and S2 were
disconnected from the circuit under normal operating conditions
but were connected briefly when frequency-hopping was required.

To switch between the equivalent inductance and capacitance values
in the Rx circuit shown in Figure 12, the detuning control circuit
parameters were configured as follows: L21 = 1.40 μH and C21 =
8.15 nF. Two pulses with a period of 250 μs and a peak pulse width of
5 μs are generated using the control module during the experiment
to control the connection and disconnection of switches S1 and S2.
The time interval between the two pulses was 120 μs. Figure 13B
shows the experimental facility.

Figure 14 presents the waveforms measured during the
experiment. Switches S1 and S2 were connected for a short time and
were disconnected later in the detuning control circuit to control the
changes in the system operating frequency.When S1 was connected and
then disconnected, the system ran on a high-frequency resonant
branch; however, when switch S2 was connected and then
disconnected, the system then ran on a low-frequency resonant
branch. The operating frequencies of switches S1 and S2 were
stabilized at 0.998 and 0.942Mhz, respectively. The results for
resonant frequency-hopping and selection were consistent with those
from the theoretical analysis. When the detuning switches S1 and S2
were each connected for 5 μs, resonant frequency-hopping was induced
successfully, thus indicating that the time required to induce the
detuning is short. When S1 and S2 were connected, the Rx circuit
received little power because of loop detuning, but the amplitude
fluctuation at the Tx circuit is insignificant. After the system ran
steadily at each of the two resonant frequency points, a considerable
difference was observed in the voltage amplitude in the Rx circuit.
When the Rx circuit ran at the high resonant frequency in the present
system, the voltage amplitude at the coil end is higher. Therefore, the
system could be controlled to run on the designated resonant frequency
branch to obtain the optimal transfer performance by using the
proposed resonant frequency control technology. Therefore, the
experimental results verified the correctness of the frequency-
hopping theory and the effectiveness of the proposed control method.

FIGURE 12
Variation in inductance and capacitance in the Rx circuit over time.

FIGURE 13
Resonant frequency control experiment: (A) Diagram of the
detuning control circuit. (B) Experimental facilities.
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In the frequency control experiment shown in Figure 14, the
stabilized system ran on the designated resonant frequency branch
after the operation of the detuning switches S1 and S2. However, the
frequency-hopping behavior was not synchronized with the detuning
switch operation. A delay in hopping was observed, particularly when

hopping from a high-to a low-frequency branch. As can be seen from
the waveforms for case ③ in Figure 14A, the amplitudes of the front
and rear waveforms differed considerably. After S2 was connected and
then disconnected from the circuit, the system continued to run on the
high-frequency resonant branch for a while before hopping to the low-

FIGURE 14
(A) Frequency-hopping test waveforms. The system is controlled to run on the high-frequency branch (B) or the low-frequency branch (C).
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frequency resonant branch. The transient waveforms before and after
frequency-hopping were analyzed further, and Figure 15 shows the
stretched-out waveform views before and after the actions of switches S1

and S2. Under these transmission conditions, S1 was connected and
then disconnected from the circuit. It took approximately 7 μs for the Rx
and Tx circuits to make the required adjustment before the system

FIGURE 15
Image (A) is the frequency hoppingwaveforms. Images (B–G) are the transient waveforms of①-⑥. Images (B) (D) and (G) show the systemoperates
at high frequency, and Image (E) shows the system operates at low frequency. Switches S1 (F) and S2 (C) are connected for 5 μs and are disconnected
later, respectively. The existence of ③ illustrates the Tx and Rx circuits require delays hopping between frequencies.
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transit from the low-to the high-frequency resonance. After S2 was
connected and then disconnected from the circuit, the Tx and Rx
circuits exhibited delays of approximately 68 and 73 μs, respectively, to
transit from the high-to the low-frequency resonance. The test results
obtained for the distance between the Rx and Tx ends as 30, 40, 50 and
55 mm are presented in Table 2. From the data in the table, it can be
seen that there was a delay in frequency-hopping at different distances.
The low-frequency to high-frequency hopping delay was generally
smaller than the high-frequency to low-frequency delay, and the
hopping delay at the Tx end was slightly smaller than the hopping
delay at the Rx end. The frequency jump process began with the closure
of the detuning switch, causing the Rx end to become detuned, thereby
inducing a change in the operating state of the Tx end. After oscillation
adjustment, the Tx end completed the frequency jump, and the Rx end
was coupled through electromagnetic induction before adjusting to a
new resonant frequency branch for operation. Therefore, the delay time
at the sending end was smaller than the delay time at the Rx end. In
addition, we attempted to change the closing time of detuning switches
S1 and S2 from 5 to 3 μs, observed that the system achieved frequency-
hopping control, indicating that a shorter detuning time can induce
frequency-hopping. However, the reason for the longer delay of high-
frequency to low-frequency jumps requires further theoretical analysis
in the future.

5 Conclusion

In this study, theDFMwas used tomodel and analyze the dynamics
of NPTS-WPT systems. Resonant frequency-hopping was analyzed,
and it was found that resonant frequency-hopping can be induced
through system detuning occurring as a result of a change in the natural
frequency of the Rx loop. Larger values of the coupling coefficient and
the amplification factor of the OP amp produce a higher detuning
tolerance and enable the system to maintain the original operating
frequency branch without hopping stronger. Based on the evolution
and hopping law of the resonant frequency, we proposed a frequency
selection and control method. The system operating frequency can be
induced to hop from one resonant frequency to another by adding a
detuning control circuit to the Rx loop, which adjusts the equivalent
inductance or capacitance as required at the Rx circuit. Finally, the
experimental NPTS-WPT frequency-hopping device was designed. The
experimental results demonstrated that a short detuning time
successfully induces frequency-hopping and also show that there is a
delay in the frequency-hopping process when compared with the
control process. This also verifies the correctness of the frequency-
hopping theory and the feasibility of the proposed control method.

Therefore, the proposed frequency control method realizes the
improvement of the operating frequency point from random
selection previous studies to artificial directional selection and
control under the condition of resonant frequency bifurcation.
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TABLE 2 Delay times of frequency-hopping.

Distance (mm) Delay time at Tx circuits/μs Delay time at Rx circuits/μs

High to low frequency Low to high frequency High to low frequency Low to high frequency

30 11 10 13 10

40 23 4 25 4

50 43 8 44 8

55 68 7 73 7

Frontiers in Energy Research frontiersin.org14

Li et al. 10.3389/fenrg.2023.1174301

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1174301


References

Abdelatty, O., Wang, X. Y., and Mortazawi, A. (2019). Position-insensitive wireless
power transfer based on nonlinear resonant circuits. IEEE Trans. Microw. Theory Techn.
67, 3844–3855. doi:10.1109/tmtt.2019.2904233

Assawaworrarit, S., and Fan, S. (2020b). Efficient and robust wireless power transfer
based on parity-time symmetry. AIP Conf. Proc. 2300 (1), 020005. doi:10.1063/5.
0031691

Assawaworrarit, S., and Fan, S. H. (2020a). Robust and efficient wireless power
transfer using a switch-mode implementation of a nonlinear parity-time symmetric
circuit. Nat. Electron. 3, 273–279. doi:10.1038/s41928-020-0399-7

Assawaworrarit, S., Yu, X. F., and Fan, S. H. (2017). Robust wireless power transfer
using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390. doi:10.1038/
nature22404

Cao,W.,Wang, C., Chen,W., Hu, S., Wang, H., Yang, L., et al. (2022). Fully integrated
parity–time-symmetric electronics. Nat. Nanotechnol. 17, 262–268. doi:10.1038/
s41565-021-01038-4

Dong, W. J., Li, C. S., Zhang, H., and Ding, L. B. (2019b). Wireless power transfer
based on current non-linear PT-symmetry principle. IET Power Electron 12, 1783–1791.
doi:10.1049/iet-pel.2018.5937

Dong, W. J., Zhang, H., Li, C. S., and Liao, X. (2019a). Research on variable gap
wireless energy transmission method for fuzes based on nonlinear PT symmetry
principle. Acta Armamentarii 40, 35.

Engelberg, S. (2002). Limitations of the describing function for limit cycle prediction.
IEEE Trans. Autom. Control 47, 1887–1890. doi:10.1109/tac.2002.804473

Hu, Z., Zeng, Z., Tang, J., and Luo, X. B. (2022). Quasi-parity-time symmetric
dynamics in periodically driven two-level non-Hermitian system. [J] J. Phys. 71 (7),
074207–75186. doi:10.7498/aps.70.20220270

Hua, Z., Chau, K. T., Liu, W., and Tian, X. (2022). Pulse frequency modulation for
parity-time-symmetric wireless power transfer system. IEEE Trans. Magnetics 58 (8),
1–5. Art no. 8002005. doi:10.1109/TMAG.2022.3153499

Ishida, H., Furukawa, H., and Kyoden, T. (2021). Scheme for providing parity-time
symmetry for low-frequency wireless power transfer below 20 kHz. Electr. Eng. 103,
35–42. doi:10.1007/s00202-020-01041-3

Li, C. S., Dong, W. J., Ding, L. B., Zhang, H., and Sun, H. (2020). Transfer
characteristics of the nonlinear parity-time-symmetric wireless power transfer
system at detuning. Energies 13, 5175. doi:10.3390/en13195175

Li, J., and Huang, Y. (2022). Influence analysis of metal foreign objects on the
wireless power transmission system. Front. Electron. 3, 2022. doi:10.3389/felec.2022.
1033016

Liu F, F., Chowkwale, B., Jayathurathnage, P., and Tretyakov, S. (2019). Pulsed self-
oscillating nonlinear systems for robust wireless power transfer. Phys. Rev. Appl. 12,
054040. doi:10.1103/physrevapplied.12.054040

Liu, G. J., and Zhang, B. (2018). Dual-coupled robust wireless power transfer based on
parity-time-symmetric model. Chin. J. Elect. Eng. 4, 50.

Liu, J., Min, Y., Gao, J., Yang, A., and Zhou, J. (2022). Design and
optimization of a modular wireless power system based on multiple

transmitters and multiple receivers architecture. Front. Energy Res. 10.
doi:10.3389/fenrg.2022.896575

Liu M, M., Chan, K. W., Hu, J. F., Lin, Q. F., Liu, J. W., and Xu, W. Z. (2019). Design
and realization of a coreless and magnetless electric motor using magnetic resonant
coupling technology. IEEE Trans. Energy Convers. 34, 1200–1212. doi:10.1109/tec.2019.
2894865

Nguyen, H., and Agbinya, J. (2015). Splitting frequency diversity in wireless power
transmission. IEEE Trans. Power Electron. 30, 6088–6096. doi:10.1109/tpel.2015.
2424312

Ra’di, Y., Chowkwale, B., Valagiannopoulos, C., Liu, F., Alù, A., Simovski, C. R., et al.
(2018). On-site wireless power generation. IEEE Trans. Antennas Propag. 66,
4260–4268. doi:10.1109/tap.2018.2835560

Shu, X. J., and Zhang, B. (2018). Single-wire electric-field coupling power
transmission using nonlinear parity-time-symmetric model with coupled-mode
theory. Energies 11, 532. doi:10.3390/en11030532

Sinha, M., Poon, J., Johnson, B., Rodriguez, M., and Dhople, S. (2018). Decentralized
interleaving of parallel-connected buck converters. IEEE Trans. Power Electron. 34,
4993–5006. doi:10.1109/tpel.2018.2868756

Song, J., Yang, F. Q., Guo, Z. W., Wu, X., Zhu, K. J., JiangSun, J. Y., et al. (2021).
Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl. 15,
014009. doi:10.1103/physrevapplied.15.014009

Tang, Y., Liang, C., and Liu, Y. (2022). Research progress of parity-time symmetry and
anti-symmetry. [J] J. Phys. 71 (17), 171101–171123. doi:10.7498/aps.71.20221323

Truong, B. (2021). Further results on “design guidelines to avoid bifurcation in a
series–series compensated IPTS”: Theoretical analysis and experimental validations.
IEEE Trans. Ind. Electron. 68, 3643–3648. doi:10.1109/tie.2020.2978715

Wang, W., Duan, M., Zeng, Z., Liu, H., and Ji, Z. (2023). Research on optimal coil
configuration scheme of insulator relay WPT system. Front. Electron. 4, 2023. doi:10.
3389/felec.2023.1034082

Yang, D., Lin, Q., Li, X., and Cai, L. (2022). Efficiency and power of the parity-time-
symmetric circuit for wireless power transfer. J. Electr. Eng. Technol. 17, 3355–3362.
doi:10.1007/s42835-022-01095-2

Yatsugi, K., Oishi, K., and Iizuka, H. (2021). Ringing suppression of SiC MOSFET
using a strongly coupled external resonator through analogy with passive PT-symmetry.
IEEE Trans. Power Electron. 36, 2964–2970. doi:10.1109/tpel.2020.3013399

Zhang, Z. Q. (2020). Fractional-order time-sharing-control-based wireless power
supply for multiple appliances in intelligent building. J. Ad. Res. 25, 227–234. doi:10.
1016/j.jare.2020.04.013

Zhou, B. B., Deng, W. J., Wang, L. F., Dong, L., and Huang, Q. A. (2020). Enhancing
the remote distance of LC passive wireless sensors by parity-time symmetry breaking.
Phys. Rev. Appl. 13, 064022. doi:10.1103/physrevapplied.13.064022

Zhou, J. L., Zhang, B., Xiao, W. X., Qiu, D. Y., and Chen, Y. F. (2019). Nonlinear
parity-time-symmetric model for constant efficiency wireless power transfer:
Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind.
Electron. 66, 4097–4107. doi:10.1109/tie.2018.2864515

Frontiers in Energy Research frontiersin.org15

Li et al. 10.3389/fenrg.2023.1174301

https://doi.org/10.1109/tmtt.2019.2904233
https://doi.org/10.1063/5.0031691
https://doi.org/10.1063/5.0031691
https://doi.org/10.1038/s41928-020-0399-7
https://doi.org/10.1038/nature22404
https://doi.org/10.1038/nature22404
https://doi.org/10.1038/s41565-021-01038-4
https://doi.org/10.1038/s41565-021-01038-4
https://doi.org/10.1049/iet-pel.2018.5937
https://doi.org/10.1109/tac.2002.804473
https://doi.org/10.7498/aps.70.20220270
https://doi.org/10.1109/TMAG.2022.3153499
https://doi.org/10.1007/s00202-020-01041-3
https://doi.org/10.3390/en13195175
https://doi.org/10.3389/felec.2022.1033016
https://doi.org/10.3389/felec.2022.1033016
https://doi.org/10.1103/physrevapplied.12.054040
https://doi.org/10.3389/fenrg.2022.896575
https://doi.org/10.1109/tec.2019.2894865
https://doi.org/10.1109/tec.2019.2894865
https://doi.org/10.1109/tpel.2015.2424312
https://doi.org/10.1109/tpel.2015.2424312
https://doi.org/10.1109/tap.2018.2835560
https://doi.org/10.3390/en11030532
https://doi.org/10.1109/tpel.2018.2868756
https://doi.org/10.1103/physrevapplied.15.014009
https://doi.org/10.7498/aps.71.20221323
https://doi.org/10.1109/tie.2020.2978715
https://doi.org/10.3389/felec.2023.1034082
https://doi.org/10.3389/felec.2023.1034082
https://doi.org/10.1007/s42835-022-01095-2
https://doi.org/10.1109/tpel.2020.3013399
https://doi.org/10.1016/j.jare.2020.04.013
https://doi.org/10.1016/j.jare.2020.04.013
https://doi.org/10.1103/physrevapplied.13.064022
https://doi.org/10.1109/tie.2018.2864515
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1174301

	Frequency-hopping mechanism and control method for nonlinear parity-time-symmetric wireless power transfer systems
	1 Introduction
	2 Dynamic model of the NPTS-WPT system
	2.1 Circuit model simplification
	2.2 Dynamics modeling by using the DFM

	3 Resonant frequency-hopping and selection method
	3.1 Frequency bifurcation phenomenon in the strong coupling region
	3.2 Effects of detuning on the frequency
	3.3 Occurrence of frequency-hopping
	3.4 Resonant frequency control method

	4 Resonant frequency control experiment
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


