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Accurate forecasting of wind speed is crucial for power systems stability.
Many machine learning models have been developed to forecast wind
speed accurately. However, the accuracy of these models still needs more
improvements to achieve more accurate results. In this paper, an optimized
model is proposed for boosting the accuracy of the prediction accuracy of
wind speed. The optimization is performed in terms of a new optimization
algorithm based on dipper-throated optimization (DTO) and genetic algorithm
(GA), which is referred to as (GADTO). The proposed optimization algorithm is
used to optimize the bidrectional long short-term memory (BiLSTM) forecasting
model parameters. To verify the effectiveness of the proposed methodology,
a benchmark dataset freely available on Kaggle is employed in the conducted
experiments. The dataset is first preprocessed to be prepared for further
processing. In addition, feature selection is applied to select the significant
features in the dataset using the binary version of the proposed GADTO
algorithm. The selected features are utilized to learn the optimization algorithm
to select the best configuration of the BiLSTM forecasting model. The optimized
BiLSTM is used to predict the future values of the wind speed, and the resulting
predictions are analyzed using a set of evaluation criteria. Moreover, a statistical
test is performed to study the statistical difference of the proposed approach
compared to other approaches in terms of the analysis of variance (ANOVA) and
Wilcoxon signed-rank tests. The results of these tests confirmed the proposed
approach’s statistical difference and its robustness in forecasting the wind speed
with an average root mean square error (RMSE) of 0.00046, which outperforms
the performance of the other recent methods.
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bidirectional long short-term memory, wind speed forecasting, metaheuristic
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1 Introduction

Increasing reliance on renewable energy supplies directly results
from the need to meet rising energy demands while mitigating
the negative environmental impacts of traditional fossil fuels.
Renewable energy options are vital to lessen this impact and lessen
reliance on conventional fuels. In particular, nations that have signed
the Paris Climate Agreement have committed to lowering their
emissions of greenhouse gases. Due to its accessibility and lack
of emissions, wind power is gaining popularity. The potential of
wind energy has been widely recognized in the previous 2 decades.
As the cost to maintain and operate wind turbines drops and
their dependability improves, the number of wind farms grows
exponentially. Yet, the reliability of wind farms is impacted by the
intermittent and variable nature of wind energy (Albalawi et al.,
2022; Chen et al., 2022). Therefore, it is becoming increasingly
important that wind energy be predictable (Zeng et al., 2020).

There has been a surge in a study on predicting wind speeds
in the past decade. Physical, statistical, machine learning, and
hybrid forecasting methods are the most common approaches
(Shang et al., 2022). To generate mathematical equations, physical
approaches draw on concepts from geophysical fluid dynamics
and thermodynamics. The NWP (numerical weather prediction
system) model underpins most physical approaches. The intricate
mathematical design of NPW models makes them extremely time-
consuming to compute (Carvalho et al., 2012). Because of this,NPW
models are often reserved for long-term forecasting, making them
impractical for short-term wind power predictions.

Statisticalmodels assume a linear relationship between observed
wind data and wind speed to predict wind speed. While many
statistical models can account for linear trends in wind speed
and direction, very few can account for the data’s nonlinear
characteristics (Fang and Chiang, 2016; Khafaga et al., 2022).
The capacity of artificial intelligence (AI) models to understand
the input-output connection from historical data has led to
their increased adoption in wind forecasting. In particular, AI
algorithms decipher nonlinear relationships in the data and
spot previously concealed patterns, allowing for accurate value
predictions (Doaa et al., 2022; Sun and Jin, 2022). The capacity
to update the model in response to new information is another
benefit of AI-based models (Demolli et al., 2019). While there are
benefits to using a variety of AI techniques, there are also drawbacks
to consider (Shang et al., 2022). Consequently, the advantages of
several approaches are utilized in hybrid or combination models.

The structure of a renewable energy management system is
shown in Figure 1 (Fathima and Palanisamy, 2016). To aid in
the routine upkeep and emergency repairs of electrical equipment
in a manufacturing facility, farm, or even an entire municipality,
an EMS is in place to handle energy control, management,
maintenance, and consumption concerns. It can keep tabs on the
machinery’s working condition and promptly boost management.
For managers of an electrical company, money can be saved and
used to increase equipment life by practicing good management.
The system may promptly send out an alarm to aid management
personnel in monitoring and repair, reducing losses to a minimum
in the case of equipment breakdowns or other situations. The
EMS may also message the appropriate people when it detects
that specific high-energy-use gadgets are getting on in years.

Data collection, storage, processing, statistics, query, and analysis,
as well as data monitoring and diagnostics, are all possible in
a renewable energy management system (REMS) thanks to the
employment of programmed control system technology, network
communication, and database technology. Figure 1 shows how
the EMS accomplishes its monitoring and management aims
by dispatching electricity generated by renewable sources in
accordance with a projection of that power made using a forecasting
model. Per-unit energy consumption and economic and energy
efficiency are lowered through centralized monitoring and efficient
administration of energy data. In light of this, the model used for
making predictions is a vital EMS input.

Physical, statistical,machine learning, and hybridmodels are the
most common categories used to categorize methods for predicting
wind speed (Shang et al., 2022). To predict wind speed, physical
models often use data about the weather, including meteorological
characteristics and geographical information. Regarding general-
purpose physical models, the numerical weather prediction (NWP)
approach is among the most well-known and successful ones. Using
the widely-used weather research and forecast (WRF) model, the
authors of (Carvalho et al., 2012) evaluate several computational
and physical approaches. To provide more accurate estimates of
wind speeds at the Earth’s surface, the authors of (Hoolohan et al.,
2018) integrate the NWP with the Gaussian process regression. The
primary challenges of NWP approaches are the computing demands
and the update frequency of forecasts.

The prediction of near-term wind speeds relies heavily on
statistical approaches. In their ground-breaking research, authors
(Brown et al., 1984) predict wind speed using an autoregressive (AR)
model. According to (Torres et al., 2005), the authors indicate the
mean hourly wind speed 10 h into the future using the ARMA
(autoregressive moving average process) approach. The authors
of (Rajagopalan and Santoso, 2009) use this technique similarly
to predict wind speed. Their findings suggest their algorithm
can reliably estimate speeds within 1 h. For predicting the next
hour’s wind speed, the authors of (Sfetsos, 2002) offer an ARIMA
(autoregressive integrated moving average) model that considers
averages over the previous 10 minutes and hour. Based on the
data, it appears that 10-min averages are more reliable. To forecast
wind speed up to 2 days in advance, the authors of (Kavasseri
and Seetharaman, 2009) investigate fractional-ARIMA models.
Wind power generation forecasting is much easier with ARIMA,
as demonstrated by the authors of (Eldali et al., 2016). Using a
combination of the ARIMA and clustering approaches, the authors
of (Akhil et al., 2022) offer a model for predicting wind speed
a full year in advance. Short-term predictions of offshore wind
speed are shown in (Liu et al., 2021), which presents a seasonal
ARIMA model. They evaluate how well-known machine learning
methods like the GTU (gated recurrent unit) and the LSTM
(long short-term memory) perform in comparison to the ARIMA
model (long short-term memory). Their findings suggest that the
seasonal ARIMA model performs better than the GTU and the
LSTM. Univariate ARIMA is compared with NARX (nonlinear
autoregressive exogenous) models by the authors of (Cadenas et al.,
2016). The findings demonstrate that the NARX performs better
wind speed prediction than the ARIMA.

Nonlinearity in wind data has increased interest in using
artificial intelligence systems for predicting wind speeds. For
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FIGURE 1
The typical architecture of wind speed prediction and power generation system.

nonlinear data, in particular, ANN (artificial neural network) is an
effective technique (Sun and Jin, 2022). The authors of (Cadenas
and Rivera, 2009) study short-term wind speed predictions using
ANN models. Two-layer ANN appears to perform best in both the
learning and prediction phases.The authors of (Dumitru andGligor,
2017) use a FANN (feedforward neural networks) model to predict
daily wind features from historical data. In (Higashiyama et al.,
2017), the authors use CNN (convolutional neural networks) to
process high-dimensional data for wind forecasting. They suggest
a feature extraction technique based on convolutional neural
networks to reduce the size of the massive datasets generated
by NWP. A further investigation (Yu et al., 2019) uses CNN to
predict wind power generation, this time factoring in the wind’s
temporal and geographical variations. For their short-term forecast
of Estonia’s wind energy output, the authors of (Shabbir et al.,
2022) use a recurrent neural network (RNN) algorithm (LSTM).
According to their findings, LSTMoutperforms SVR (support vector
machines) and NAR (neighbor-association recognition) (Nonlinear
Autoregressive Neural Networks).

For more precise and efficient wind speed predictions, hybrid
and combination models incorporate the best features of many
models. As an example, the authors of (Li et al., 2018) use the
wavelet transform in predicting to filter out high-frequency data
and SVR. To improve the precision of wind power forecasting, the
authors of (Liu et al., 2018) suggest a two-stage approach. First,
WPD splits wind speed time data into sublayers (Wavelet Packet
Decomposition). They use convolutional neural networks (CNNs)
andCNNLSTMs (convolutional long short-termmemory networks)
to create predictions at both high- and low-frequency layers. Hybrid
models are a type ofmodel in which an ANNmodel’s input variables
and problem parameters are determined using a different approach.
In (Sun and Jin, 2022), for instance, ARIMA is used to identify ANN
model input neurons. In (López and Arboleya, 2022), the authors
select their input variables using the Pearson Correlation Coefficient
(PCC). The authors suggest utilizing these parameters as inputs for
LSTM and DNN (Dynamic Neural Networks) models. The authors
of (Xiong et al., 2022) use the attention mechanism to prioritize
input variables. Data decomposition into subseries is a relatively
new method used in hybrid models. For instance, the authors’
decomposition of wind speed data into subseries is performed
using a wavelet technique in (Yu et al., 2018). The RNN (recurrent
neural networks) and its variations LSTM and GTU are used to
extract more nuanced information from low-frequency subseries

for forecasting. They found that decomposition, in addition to
using hybrid models, improves the reliability of predictions. In
(Shang et al., 2022), the authors deconstruct historical wind speed
data using CEEMD (complementary ensemble empirical mode
decomposition). Then they use SOM (subspace-oriented metric)
clustering to organize the resulting data (self-organizing map). To
better predict how much energy will be generated by the wind, the
authors of (Praveena andDhanalakshmi, 2018) use a FuzzyK-Means
approach to group together comparable days.

As the most dominant approach used in time series forecasting
is the bidirectional long short-term memory (BiLSTM), as it
gives promising prediction results, it is noted that this approach
needs further improvements to boost its performance. This gap
in the performance of the BiLSTM prediction model forms
the main motivation for this research. In this research, a new
metaheuristic optimization algorithm is proposed for feature
selection and for optimizing the parameters of BiLSTM to boost
its performance. The feature selection is performed using a new
binary algorithm based on hybrid genetic and dipper-throated
optimization algorithms. In addition, the continuous version of
this algorithm is used to optimize the parameters of the BiLSTM.
The proposed model is capable of capturing the data’s long-term
variations. The results are assessed using a set of evaluation metrics
and a set of statistical tests to confirm its superiority, effectiveness,
and statistical difference when compared to other competing
models. The main contributions of this work are listed in the
following:

• A new optimization algorithm is proposed for optimizing the
parameters of BiLSTM.
• A new feature selection algorithm is proposed to select the best

features for improving wind speed prediction.
• A comparison between the feature selection results is

performed in terms of the proposed feature selection algorithm
and the other eight feature selection algorithm.
• A comparison between the results of wind speed prediction

using BiLSTM when optimized using the proposed GADTO
algorithm and four other optimization algorithms.
• Statistical analysis of the results is presented and discussed to

show the significant difference between the proposed and other
methods.
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FIGURE 2
The architecture of the proposed methodology.

The structure of this paper is organized as follows. In Section 2,
the proposed method is presented and discussed. Section 3 explains
the details of the experimental setup and the computational findings.
Section 4 concludes with a brief discussion of the results and
suggestions of this work for further study.

2 The proposed methodology

The proposed wind forecasting methodology is shown in the
flowchart depicted in Figure 2. In this figure, there are five key
phases. The first phase is data preprocessing, in which the dataset
is collected and preprocessed to remove outliers and handle missing
values, and the data is cleaned. In addition, this phase includes data
normalization that helps to eliminate the potential for bias toward
outlying numbers. The second phase is feature selection, in which a
novel feature selection algorithm is proposed based on the dipper
throated and genetic optimization algorithms. The third phase is

the optimization of the long short-term memory prediction model.
The optimization of this model is applied in terms of the proposed
optimization algorithm. The fourth stage is predicting the wind
speed using the optimized model. The fifth stage is the evaluation
and statistical analysis of the achieved prediction results.

2.1 Description of the dataset

The benchmark dataset employed in this work is freely available
on Kaggle (Fedesoriano, 2022).This dataset contains 6,574 instances
in a collection of responses from a set of sensors within a weather
station that measures five weather variables. The device was put at
21M in a vacant part of the wind farm. From the beginning of 1961
to the end of 1978, the data were collected for 17 years. Precipitation,
high and low temperatures, and the grass’s lowest temperature were
supplied daily as recorded by theGroundTruth.Table 1 presents the
dataset’s variables and the corresponding description. In addition,
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TABLE 1 The variables of the wind speed dataset employed in this research.

Variable Description

IND First indicator value

IND.1 Second indicator value

IND.2 Third indicator value

RAIN Precipitation Amount (mm)

T.MIN Minimum Temperature (°C)

T.MIN.G 09utc Grass Minimum Temperature (°C)

T.MAX Maximum Temperature (°C)

WIND Average wind speed [knots]

the behavior of the variables is shown in the plots of Figure 3,
and the histogram of these variables is depicted in Figure 4.
These plots give insights into the nature of the variables, which
necessitates a robust forecasting model to achieve high prediction
results.

2.2 Data preprocessing

Obtaining a reliable prediction model requires preprocessing of
the raw data. Removing anomalies from the data, such as outliers
and missing values, is necessary. Interpolation of the observed data
is used for imputation in time series to replace missing values.
In addition, scaling the data into the interval [0, 1] is achieved
using min-max normalization. The historical data is then split into
training, validation, and testing sets. The machine learning model is
constructed from the training set, with already known inputs and
outputs. The model’s hyperparameters are tuned with the help of
the validation set. The testing set is used for estimating how well a
model will do with data that was not used to train it. The training set
accounts for 70% of the dataset, the validation set accounts for 10%,
and the test set accounts for 20%.

2.3 Long short-term memory (LSTM)

Due to its outstanding potential to preserve sequence
information across time, long short-term memory (LSTM) is a

FIGURE 3
The time series of the datset variables in the adopted dataset.

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1172176
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Alhussan et al. 10.3389/fenrg.2023.1172176

FIGURE 4
Histogram of the dataset variables employed in this research.

FIGURE 5
The typical architecture of LSTM prediction model.

complicated computing unit that can achieve better results in
sequence modeling applications results from applying LSTM to
a wide range of domains show that it can define data connected with
time series dependencies and capture the data variance pattern. The
bursting and disappearing gradient problem in recurrent neural
network (RNN) training may be dealt with by using LSTn. This
new sort of neural network was developed to handle the challenges
of RNNs in learning these types of long-term incompatibilities.
The strongest method for recognizing and altering the long-range
context is the LSTM architecture’s built-in memory cells. Three
primary gates comprise an LSTM block: the input gate, the forget
gate, and the output gate with a memory cell. The cellular states are
controlled by gates like these and the sigmoid activation function.
In Figure 5, the LSTM cell layout is shown, which includes the
LSTM’s essential components, such as the added element level and
themultiplication symbol, which stands for themultiplication of the
element levels (Abdel Samee et al., 2022; El-Kenawy et al., 2022).

The input gate determines the magnitude of the values
entering the cell and being stored in the processor’s memory
(it). The information in a memory cell is pruned down to only
the necessary bits using a mechanism called a forget gate ( ft),

which also determines the percentage of the original values to
be retained. The LSTM’s output is activated by the output gate
(ot), and the activated information defines its output. Furthermore,
the input node (gt) acts as an activation vector for cells. The
mathematical performance of the LSTM is depicted by the following
equations, where ht is the hidden variable, and sigma is the logistic
sigmoid.

f (t) = σ(Wxfxt +Whfht−1 +Wc fct−1 + b f) (1)

i (t) = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2)

g (t) = ftgt−1 + it tanh(Wxgxt +Whght−1 + bg) (3)

o (t) = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4)

h (t) = ot tanh(gt) (5)

2.4 Bidirectional long short-term memory
(BiLSTM)

To improve the efficiency of the classification procedure, LSTM
is used to develop BiLSTM. As shown in Figure 6, BiLSTM is
developed by fusing RNNs with LSTM methods (which provide
access to a broad context). Compared to traditional RNNs and time-
windowed multilayer perceptrons, BiLSTM networks are quicker
and more accurate and beat unidirectional networks like LSTM.
In addition, BiLSTM includes extensive information for all phases
before and after each step in the specified sequence. Moreover,
the LSTM technique calculates the hidden layers in BiLSTM.
One distinguishing feature of BiLSTM over LSTM is its ability
to process input in both directions, thanks to using two hidden
layers that feed their respective outputs into the same output layer
(Saeed et al., 2020; Sami Khafaga et al., 2022a; Sami Khafaga et al.,
2022b).
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FIGURE 6
The typical architecture of BiLSTM prediction model.

2.5 Genetic algorithm

The genetic algorithm (GA) optimization is inspired by the
genomics operations based on the crossover and mutation process.
In this work, the genetic algorithm is hybridized with the DTO
algorithm to form the proposed GADTO algorithmwhich is used in
feature selection and parameters optimization of the long short-term
memory employed for predicting the wind speed values. One of the
main steps of the genetic algorithm is the mutation operator, which
produces a new solution with characteristics that differ from those
of the parent’s chromosomes. This provides many different solutions
rather than just one ideal solution. In this work, we developed a new
mutation method for improving the search space exploration. The
mutation operation is applied to the positions of the birds of the
DTO algorithm to enable them to explore more areas in the search
space. The mutation is performed using the following equation.

P (t+ 1) = 2⋆ k⋆ z2 − h⋆ P (t) ⋆
cos (P (t))

1− cos (P (t)
(6)

where P(t) and P(t+ 1) denote the individual position at iteration t
and t+ 1, respectively. k is a random number in the range [0,2], z is
a random number in the range of [0,1] with exponential behavior,
and h is a random number in the range (Abdel Samee et al., 2022;
Akhil et al., 2022).

2.6 Dipper throated optimization

The optimization process of the dipper throated optimization
(DTO) is based on two types of groups of birds, namely, swimming
birds and flying birds. These birds are looking for food, so they
update their positions (P) and velocities (V) to reach the food
efficiently.The followingmatrices represent the location and velocity
of the birds.

P =

[[[[[[[[[[

[

P1,1 P1,2 P1,3 … P1,d

P2,1 P2,2 P2,3 … P2,d

P3,1 P3,2 P3,3 … P3,d

… … … … …

Pm,1 Pm,2 Pm,3 … Pm,d

]]]]]]]]]]

]

(7)

V =

[[[[[[[[[[

[

V1,1 V1,2 V1,3 … V1,d

V2,1 V2,2 V2,3 … V2,d

V3,1 V3,2 V3,3 … V3,d

… … … … …

Vm,1 Vm,2 Vm,3 … Vm,d

]]]]]]]]]]

]

(8)

Where Pi,j, refers to the position of the ith bird in the jth

dimension for i ∈ [1,2,3,…,m] and j ∈ [1,2,3,…,d], and its velocity
in the jth dimension is indicated by Vi,j. For each bird, the values
of the fitness functions f = f1, f2, f3,…, fn are determined by the
following matrix.

f =

[[[[[[[[[[

[

f1 (P1,1,P1,2,P1,3,…,P1,d)

f2 (P2,1,P2,2,P2,3,…,P2,d)

f3 (P3,1,P3,2,P3,3,…,P3,d)

…

fm (Pm,1,Pm,2,Pm,3,…,Pm,d)

]]]]]]]]]]

]

(9)

2.7 The proposed optimization algorithm

The steps of the proposed optimization algorithm are presented
in Algorithm 1. In these steps, both DTO and GA algorithms are
hybridized in a unified algorithm in which the dynamic swapping
between the DTO and GA algorithms improves the search space
exploration. This algorithm benefits from the mutation step of
the GA algorithm to help birds of the DTO algorithm better
explore the search space and thus can find the best solution more
accurately. In this algorithm, t and Tmax refer to the iteration
number and the maximum number of iterations, respectively. The
values of the parameters r1, r2, r3,K,K1,K2,K3,K4,K5,z are selected
randomly. Pbest and PGbest refer to the local and global best
solutions.

2.8 Feature selection

The feature selection process eliminates excessive, redundant,
and noisy data. The main benefit of the feature selection is that
it helps improve the model’s performance as it decreases the
dimensionality of the dataset. Since employing raw features might
produce ineffective results, optimal feature selection can be essential
in providing precise forecasts. Consequently, several techniques
employed various feature selection strategies before using the data
to train a model (El-kenawy et al., 2022). Relevant features are
selected from raw data using the binary version of the proposed
optimization algorithm, which is described by the steps presented in
Algorithm 2.

3 Experimental results

The conducted experiments are classified into two types. The
first type is a set of experiments targeting and evaluating the
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1: Initialize birds’ positions Pi(i = 1,2,…,n) for n

birds, birds’ velocity Vi(i = 1,2,…,n), objective

function fn, iterations t,T max , parameters of

r1,r2,r3,K,K1,K2,K3,K4,K5,z

2: Calculate fitness of fn for each bird Pi

3: Find best bird position Pbest

4: Convert best solution to binary [0,1]

5: Set t = 1

6: while t ≤ T max do

7: for (i = 1:i < n+1) do

8:  if (t{%}2 == 0) then

9:   if (r3 < 0.5) then

10:    Update the current swimming bird’s position

as: P(i+1) = Pbest(i) −K1.|K2.Pbest(i) −P(i)|

11:   else

12:    Update the current flying bird’s velocity

as:

V(i+1) = K3V(i) +K4r1(Pbest(i) −P(i)) +K5r2(PGbest −P(i))

13:    Update the current flying bird’s position

as: P(i+1) = P(i) +V(i+1)

14:   end if

15:  else

16:   Mutate birds’ positions using:

P(i+1) = 2⋆K⋆z2 −h⋆P(i) ⋆ cos(P(i))
1−cos(P(i)

17:  end if

18: end for

19: Update r1,r2,r3,K,K1,K2,K3,K4,K5,z

20: Calculate objective function fn for each bird

Pi

21: Find the best position Pbest

22: end while

23: Return the best solution PGbest

Algorithm 1. The proposed GADTO algorithm.

proposed feature selection algorithm. Whereas the second type is a
set of experiments that assessed the optimized LSTM model, which
is optimized using the proposed GADTO algorithm. This section
presents the results achieved by these sets of experiments in addition
to the statistical analysis of these results.

3.1 Configuration parameters of
optimization algorithms

The conducted experiments include a set of optimization
algorithms; namely, standard GA (Immanuel and Chakraborty,
2019) standard DTO (Takieldeen et al., 2022), particle
swarm optimization (PSO) (Awange et al., 2018), grey wolf
optimization (GWO) (Mirjalili et al., 2014), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016) and firefly
algorithm (FA) (Ariyaratne and Fernando, 2023). The basic
configuration parameters of these algorithms are presented in
Table 2.

1: Initialize the parameters of GADTO algorithm

2: Convert the resulting best solution to binary

[0,1]

3: Evaluate the fitness of the resulting

solutions

4: Train KNN to assess the resulting solutions

5: Set t = 1

6: while t ≤ Maxiteration do

7:  Run GADTO algorithm to get best solutions

Pbest

8:  Convert best solutions to binary using the

following equation:

Binary_Solution =
{{
{{
{

1 ifF (Pbest) ≥ 0.5

0 otherwise

,

F (Pbest) =
1

1+e−10(Pbest−0.5)

9:  Calculate the fitness value

10:  Update the parameters of GADTO algorithm

11:  Update t = t + 1

12: end while

13: Return best set of features

Algorithm 2. The proposed binary GADTO (bGADTO) algorithm.

3.2 Evaluation metrics

The evaluation metrics of the results achieved by the conducted
experiments are categorized into two sets of metrics. The first
set of metrics is presented in Table 3 and used to assess the
feature selection results. This set of metrics includes best fitness,
worst fitness, average error, average fitness, average fitness size, and
standard deviation.The second set ofmetrics is presented inTable 4,
which includes mean bias error (MBE), root mean square error
(RMSE), mean absolute percentage error (MAPE), mean absolute
error (MAE), R-squared (R2), Willmott’s Index (WI), Nash Sutcliffe
Efficiency (NSE), relative RMSE (RRMSE), and Pearson’s correlation
coefficient (r). The tables show the number of iterations (M) for
the proposed and competing methods, the best solution at iteration
j is denoted by (S⋆j ) and the size of that solution (size(S⋆j )) for
that iteration. A total of N points were used for the evaluation.
The predicted values are denoted by V̂n, while observed values are
denoted by Vn.

3.3 Feature selection results

The evaluation of the feature selection results are discussed in
this section. Table 5 presents the results achieved by the proposed
feature selection compared to other feature selection methods. In
this table, the average error metric indicates the misclassification
rate of the feature selection algorithm. In this case, the average
error rate is 0.406, which suggests that the algorithm is correct
about 59.4% of the time (since the error rate is 1 - accuracy). This
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TABLE 2 Configuration parameters of the optimization algorithms.

Algorithm Parameter Value

GA Immanuel and Chakraborty (2019) Cross over 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Number of iterations 80

Number of agents 10

DTO Takieldeen et al. (2022) Iterations 100

Number of runs 30

Exploration percentage 70

PSO Awange et al. (2018) Acceleration constants (2, 12)

Number of particles 10

Number of iterations 80

GWO Mirjalili et al. (2014) Number of wolves 10

Number of iterations 80

WOA Mirjalili and Lewis (2016) Number of whales 10

Number of iterations 80

FA Ariyaratne and Fernando (2023) Number of fireflies 10

TABLE 3 Themetrics used in evaluating the feature selection results.

Metric Formula

Best fitness minMi=1S
⋆
i

Worst fitness maxMi=1S
⋆
i

Average error 1
M
∑Mj=1

1
N
∑Ni=1mse(V̂i −Vi)

Average fitness 1
M
∑Mi=1S
⋆
i

Average fitness size 1
M
∑Mi=1size(S

⋆
i )

Standard deviation √ 1
M−1
∑Mi=1(S

⋆
i −Mean)2

metric can be useful in evaluating the overall performance of the
feature selection algorithm. The average select size metric indicates
the average percentage of the selected feature set. In this case, the
average percentage is 0.379, which suggests that the algorithm selects
fewer features when compared to the other methods in the table.
This can indicate that the algorithm is effective at identifying a small
subset of important predictors. The Average Fitness metric indicates
the average fitness or quality of the selected feature set. Fitness
measures howwell the selected features predict the outcome variable
(in this case, wind speed). In this case, the average fitness is 0.489,
which suggests that the selected feature set performs reasonably
well at predicting wind speed. The Best Fitness metric indicates the
best fitness or quality of the selected feature set. In this case, the
best fitness is 0.391, which suggests that the algorithm was able
to identify a subset of features that performs well at predicting
wind speed. The Worst Fitness metric indicates the worst fitness
or quality of the selected feature set. In this case, the worst fitness

TABLE 4 Themetrics used in evaluating the wind speed prediction results.

Metric Formula

RMSE √ 1
N
∑Nn=1(V̂n −Vn)

2

RRMSE RMSE
∑Nn=1V̂n
× 100

MAE 1
N
∑Nn=1|V̂n −Vn|

MBE 1
N
∑Nn=1(V̂n −Vn)

NSE 1− ∑
N
n=1(Vn−V̂n)

2

∑Nn=1(Vn−
̄̂Vn)

2

WI 1− ∑Nn=1|V̂n−Vn|

∑Nn=1|Vn− ̄Vn|+|V̂n−
̄̂Vn|

R2 1− ∑Nn=1(Vn−V̂n)
2

∑Nn=1 (∑
N
n=1Vn)−Vn)

2

r ∑Nn=1(V̂n−
̄̂Vn)(Vn− ̄Vn)

√(∑Nn=1(V̂n−
̄̂Vn)

2)(∑Nn=1(Vn− ̄Vn)
2)

is the same as the average fitness (0.489), which suggests that no
selected feature sets perform significantly worse than average. The
Std.Thefitnessmetric indicates the fitness scores’ standard deviation
for the selected feature sets. A larger standard deviation indicates
that the fitness scores are more spread out, while a smaller standard
deviation indicates that they are more tightly clustered. In this case,
the standard deviation is 0.311, which suggests that the fitness scores
are moderately spread out. These results suggest that the proposed
feature selection algorithm (bGADTO) can identify a small subset
of important predictors that perform reasonably well at predicting
wind speed. While the average error rate of 0.406 suggests that the
algorithm may not be highly accurate, the fact that the best fitness
score is relatively low (0.391) suggests that there are selected feature
sets that perform quite well. The moderate standard deviation of
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TABLE 5 Evaluation results of the proposed feature selectionmethod and other methods.

bGADTO bDTO bGWO bPSO bWAO bFA bGA

Average error 0.406 0.482 0.443 0.477 0.477 0.475 0.457

Average Select size 0.379 0.712 0.579 0.579 0.742 0.613 0.521

Average Fitness 0.489 0.513 0.505 0.504 0.511 0.555 0.517

Best Fitness 0.391 0.467 0.425 0.484 0.475 0.474 0.420

Worst Fitness 0.489 0.577 0.492 0.552 0.552 0.572 0.535

Std. Fitness 0.311 0.334 0.316 0.315 0.318 0.352 0.318

fitness scores suggests that the algorithm can identify multiple
feature sets that perform reasonably well.

On the other hand, the study of the statistical difference of
the proposed feature selection algorithm compared to different
algorithms is performed using the analysis of variance (ANOVA)
test as shown in Table 6. In this table, [Treatment, SS] = 0.04658
represents the sum of squares for the treatment effect. It measures
the variation in the response variable (e.g., wind speed) that is
explained by the treatment (e.g., the feature selection algorithm).
In this case, the sum of squares is 0.04658. [Treatment, DF] =
6 represents the degrees of freedom for the treatment effect. It
is calculated as the number of treatments minus one. In this
case, there are six treatments, so the degrees of freedom are six
minus one or five. [Treatment, MS] = 0.007763: This represents the
mean square for the treatment effect. It is calculated by dividing
the sum of squares by the degrees of freedom. In this case, the
mean square is 0.007763. [Treatment, F (6, 63)] = 144.8: This
represents the F-statistic for the treatment effect. It is calculated
by dividing the mean square for the treatment effect by the mean
square for the error term (which measures the variation in the
response variable that is not explained by the treatment). In this
case, the F-statistic is 144.8. [Treatment, p-value] = “¡0.0001”:
This represents the p-value for the treatment effect. It measures
the probability of observing the F-statistic (or a more extreme
F-statistic) if the null hypothesis is true (i.e., if the treatment
does not affect the response variable). A p-value of less than 0.05
is typically considered statistically significant, which means we
can reject the null hypothesis and conclude that the treatment
significantly affects the response variable. These results suggest that
the feature selection algorithm significantly affects the prediction
of wind speed. The F-statistic of 144.8 and the p-value of less than
0.0001 indicate that the variation in wind speed explained by the
feature selection algorithm is significantly greater than the variation
not explained by the algorithm. The relatively large F-statistic and
low p-value suggests that the effect of the feature selection algorithm
is quite strong. The results also provide some information about the
specific treatments that were used in the experiment. The fact that
there are six degrees of freedom for the treatment effect suggests
that there were six different treatments (e.g., six different feature
selection algorithms or six different parameter settings for a single
algorithm). The mean square for the treatment effect (0.007763)
indicates that there is relatively little variation between the different
treatments, while the sum of squares (0.04658) indicates that there
is a significant amount of variation overall. This suggests that some

TABLE 6 ANOVA test applied to the feature selection evaluation results.

SS DF MS F (DFn, DFd) p-value

Treatment 0.04658 6 0.007763 F (6, 63) = 144.8 p < 0.0001

Residual 0.003379 63 0.00005363

Total 0.04996 69

treatments may be more effective than others but that no clear
winner consistently outperforms the others. Overall, these ANOVA
results provide valuable information about the effectiveness of a
feature selection algorithm for wind speed prediction. They suggest
that the algorithm significantly affects wind speed prediction and
that there may be some variability in the performance of different
treatments.

The Wilcoxon test results are shown in Table 7. The Wilcoxon
signed-rank test is a non-parametric statistical test used to compare
two related samples. In the context of feature selection for wind
speed prediction, it can be used to determine whether a feature
selection algorithm significantly improves the accuracy of the
predictions. The theoretical median = 0 refers to the expected
median of the distribution of the differences between the predicted
wind speed values with and without the feature selection algorithm.
A theoretical median of 0 suggests that there should be no
significant difference between the two sets of predictions. The
actual median = 0.406 refers to the observed median of the
distribution of the differences between the predicted wind speed
values with and without the feature selection algorithm. An actual
median significantly different from the theoretical median suggests
a significant difference between the two sets of predictions. The
number of values = 10 refers to the number of paired observations
used in the Wilcoxon signed-rank test. Each observation consists
of the difference between the predicted wind speed values with
and without the feature selection algorithm. Sum of signed ranks
(W) = 55 refers to the sum of the signed ranks of the differences
between the predicted wind speed values with and without the
feature selection algorithm. The signed ranks are calculated by
ranking the absolute values of the differences and then assigning
positive or negative signs based on whether the original difference
was positive or negative. A larger sum of signed ranks suggests a
significant difference between the two sets of predictions. The sum
of positive ranks = 55 refers to the sum of the ranks assigned to
the positive differences between the predicted wind speed values
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TABLE 7 Wilcoxon test applied to the RMSE results of feature selectionmethods.

bGADTO bDTO bGWO bPSO bWAO bFA bGA

Theoretical median 0 0 0 0 0 0 0

Actual median 0.406 0.443 0.482 0.477 0.477 0.475 0.457

Number of values 10 10 10 10 10 10 10

Sum of ± ranks (W) 55 55 55 55 55 55 55

Sum of +ve ranks 55 55 55 55 55 55 55

Sum of −ve ranks 0 0 0 0 0 0 0

p-value 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Discrepancy 0.406 0.443 0.482 0.477 0.477 0.475 0.457

FIGURE 7
Analysis plots of the results achieved by the proposed feature selection algorithm.

with and without the feature selection algorithm. A larger sum of
positive ranks suggests that the predictions with the feature selection
algorithm are consistently better than those without the algorithm.
The sum of negative ranks = 0 refers to the sum of the ranks assigned
to the negative differences between the predicted wind speed values
with and without the feature selection algorithm. A sum of negative
ranks of 0 suggests that the predictions without the feature selection
algorithm are not consistently better than the predictions with the
algorithm. p-value = 0.002 refers to the probability of obtaining a
test statistic as extreme as the observed one (i.e., a sum of signed
ranks of 55) under the null hypothesis that there is no significant
difference between the two sets of predictions. A p-value of less than
0.05 is typically considered statistically significant, which means we

can reject the null hypothesis and conclude that the feature selection
algorithm significantly improves the accuracy of the wind speed
predictions. Discrepancy = 0.406 refers to the median difference
between the predicted wind speed values with and without the
feature selection algorithm. A larger discrepancy suggests that the
predictions with the feature selection algorithm are consistently
better than those without the algorithm. These Wilcoxon signed
rank test results provide evidence that the feature selection algorithm
significantly improves the accuracy of the wind speed predictions.
The observed median of 0.406 and the p-value of 0.002 suggest that
the difference between the predicted wind speed values with and
without the feature selection algorithm is significant. The sum of
signed ranks of 55 and positive ranks of 55 further support this
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conclusion, indicating that the predictions with the feature selection
algorithm are consistently better than those without the algorithm.
Overall, these results provide valuable insights into the effectiveness
of the feature selection algorithm for wind speed prediction.

Figure 8 shows the average error of the feature selection
algorithms when compared with the proposed feature selection
method. In this figure, the proposed method achieves the smallest
average error, which indicates the superiority of the proposed
method compared to the other six methods. In addition, several
plots can be used to visualize the results of theANOVA test, as shown
in Figure 7. The residual, homoscedasticity, QQ, and heatmap plots
are commonly used.The residual plot is a scatter plot of the predicted
values versus the residuals (i.e., the differences between the actual
and predicted values). A good residual plot should show no clear
pattern, indicating that the model makes unbiased predictions. In
the context of wind speed prediction, a residual plot can be used to
evaluate the accuracy of amodel’s predictions.The homoscedasticity
plot is a scatter plot of the predicted values versus the residuals.
The residuals are plotted on the y-axis, and the predicted values
are on the x-axis. A good homoscedasticity plot should show
no clear pattern, indicating that the variance of the residuals is
constant across all predicted values. In wind speed prediction, a
homoscedasticity plot can be used to evaluate the stability of a
model’s predictions. The QQ plot is a scatter plot of the quantiles
of the residuals versus the quantiles of a normal distribution. A
good QQ plot should show the residuals following a straight line,
indicating that they are normally distributed. In the context of wind
speed prediction, a QQ plot can be used to evaluate the normality of
the residuals.The heatmap plot is a visual representation of amatrix,
where colors represent the values of the matrix. In wind speed
prediction, a heatmap plot can be used to visualize the correlation
between different features or models. By analyzing these plots,
we can identify any patterns or outliers that may be affecting the
accuracy of our wind speed prediction model. We can also use these
plots to compare the accuracy of differentmodels or feature selection
methods. For example, suppose that one feature selection method
consistently produces a lower residual variance than another. In that
case, we can conclude that it is a better method for our wind speed
prediction task.

FIGURE 8
The average error of the results achieved by the proposed feature
selection algorithm.

TABLE 8 Results of evaluating wind speed forecasting using the baseline
BiLSTM predictionmodel.

RMSE MAE MBE r R2 RRMSE NSE WI

BiLSTM 0.012 0.007 −0.001 0.998 0.997 2.251 0.997 0.981

3.4 Wind speed forecasting results

The evaluation of the forecasting results of the wind speed using
the baseline BiLSTM prediction model are shown in Table 8. In
this table, the RMSE measures how far off the model’s predictions
are from the true values, on average. An RMSE of 0.012 means
that the average difference between the model’s predictions and
the true values is 0.012 units of wind speed. This can be useful in
assessing the overall accuracy of themodel.MAE is anothermeasure
of the model’s prediction accuracy. It is similar to RMSE but looks
at the absolute difference between the model’s predictions and the
true values rather than the squared difference. An MAE of 0.007
means that, on average, themodel’s predictions are off by 0.007 units
of wind speed. MBE is also a measure of the overall bias in the

TABLE 9 Statistical analysis of the RMSE of the prediction results achieved using the proposed GADTO-BiLSTM compared to other methods.

GADTO-BiLSTM DTO-BiLSTM GA-BiLSTM GWO-BiLSTM PSO-BiLSTM

Number of values 10 10 10 10 10

Minimum 0.00032 0.00067 0.00071 0.00087 0.00088

Maximum 0.00048 0.00071 0.00076 0.00090 0.00095

Range 0.00016 0.00004 0.00005 0.00002 0.00007

Mean 0.00046 0.00068 0.00072 0.00088 0.00089

Std. Deviation 0.00005 0.00001 0.00002 0.00001 0.00002

Std. Error of Mean 0.00002 0.00000 0.00001 0.00000 0.00001

Harmonic mean 0.00045 0.00068 0.00072 0.00088 0.00089

Skewness −3.148 1.897 1.493 1.886 1.936

Kurtosis 9.934 2.224 0.7724 2.149 2.492
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TABLE 10 ANOVA test results when applied to the wind speed predictions
achieved by the proposed and the competing algorithms.

SS DF MS F (DFn, DFd) p-value

Treatment 0.00000125 4 3.126E-07 F (4, 45) = 420.8 P¡0.0001

Residual 3.343E-08 45 7.43E-10

Total 0.000001284 49

model’s predictions. It tells us whether the model overestimates or
underestimates the true values. In this case, anMBEof −0.001means
that, on average, the model’s predictions are lower than the true
values.The r coefficientmeasures the linear relationship between the
model’s predictions and the true values. A value of 0.998 suggests
a strong positive linear relationship between the two, which is a
good sign for the model’s predictive power. R2 measures how much
variation in the wind speed data can be explained by the model’s
predictions. A value of 0.997means that 99.7% of the variation in the
data can be accounted for by the model, which is another indication
that the model is performing well. The RRMSE is a normalized
version of the RMSE that considers the range of the wind speed data.
A value of 2.251 means that the RMSE is 2.251% of the range of the
data, which can help to put the RMSE in context and compare it to
other models. The NSE measures the model’s predictive efficiency
relative to the mean of the observed data. A value of 0.997 suggests
that the model performs nearly as well as the “perfect” model,
which would have an NSE of 1. The WI is another measure of the
model’s predictive efficiency. A value of 0.981means that themodel’s
predictions are promising, with only 1.9% error compared to the
average absolute error of the observations. Although these results
are promising, but they still need more improvements to boost the
prediction efficiency. This motivate the authors of this paper to
develop new optimization algorithms to boost the performance of
the BiLSTM prediction model to achieve more efficient results.

The statistical analysis of the results is shown in Table 9.
Ten different scenarios were used to assess the accuracy of
wind speed forecasts and generate these findings. The proposed
approach (GADTO + BiLSTM) has this table’s lowest minimum and
maximum error values. Furthermore, the skewness of a distribution
of predictedwind speeds quantifies this asymmetry.The distribution

is substantially skewed to the left (negatively skewed), skewness
of −3.148. This indicates that it is more likely than not that the
predicted wind speeds will be lower than the actual values. Kurtosis
quantifies how “peaky” the distribution of predicted wind speeds
is. With a kurtosis of 9.934, the distribution is likely to be highly
peaked, with amore pronounced peak than in a normal distribution.
This may suggest that the wind speed estimates are less dispersed
around the mean. The harmonic mean is a special kind of average
that differs from the more typical arithmetic mean in its calculation
method. The average reciprocal of the predicted wind speeds is
0.00045,which gives us the harmonicmeanof predictedwind speeds
of 0.00045. Calculating average speeds over a specified period is
one example of an application where this might be helpful. The
median indicates the average value of a set of estimates for wind
speed. Half of the estimates for the wind speed will be lower than
the median of 0.00045, while the other half will be higher. This
can be helpful when the predicted wind speed distribution has
outliers that could throw off the average. Together, these measures
of quality assurance point to a wind speed prediction distribution
that is substantially skewed to the left and has a stronger peak than
a normal distribution would. According to the harmonic mean and
median, the average predicted wind speed is roughly 0.00045. With
these measures, we may learn more about the dispersion and central
tendency of the predicted wind speeds and how they compare to
the actual values. These findings validate the proposed method’s
advantage over four competing strategies. In addition, the RMSE
results presents in this table significantly outperform the results
achieved by the baseline BiLSTM, which proves the effectiveness of
the proposed methodology.

The results of the ANOVA test, when applied to the results of
the wind speed prediction using the optimized BiLSTM prediction
model, are shown in Table 10. The F-statistic is a test statistic
used to compare the degree to which one group (treatment)
varies from another. Our F-statistic is a very respectable 420.8.
Within-group degrees of freedom are indicated by the number
(45), while between-group degrees of freedom is measured by the
number (45). The number of groups or treatments and sample
size determines the degrees of freedom. If the F-statistic is large,
then the variability between groups is larger than the variability
within groups. This p-value is related to the F-statistic (P0.0001).
Under the assumption that the null hypothesis is correct, the p-value

TABLE 11 Wilcoxon test results when applied to the wind speed predictions achieved by the proposed and the competing algorithms.

GADTO-BiLSTM DTO-BiLSTM GA-BiLSTM GWO-BiLSTM PSO-BiLSTM

Theor. median 0 0 0 0 0

Actual median 0.00048 0.00067 0.00071 0.00087 0.00088

Num. of values 10 10 10 10 10

Sum of ± ranks 55 55 55 55 55

Sum of +ve ranks 55 55 55 55 55

Sum of −ve ranks 0 0 0 0 0

p-value 0.002 0.002 0.002 0.002 0.002

Significant? Yes Yes Yes Yes Yes

Discrepancy 0.00048 0.00067 0.00071 0.00087 0.00088
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FIGURE 9
The RMSE values measured from the results achieved by the proposed
and other compared optimization methods when applied to optimize
the BiLSTM forecasting model.

indicates the likelihood of witnessing the calculated test statistic
(i.e., no differences between the groups). For statistical significance,
the p-value must be less than 0.05, indicating substantial evidence
against the null hypothesis. The p-value, in this case, is less than
0.0001, suggesting statistically significant variations in predicted
wind speed across the treatment groups. Based on these findings,
the predicted wind speeds vary significantly between the various

FIGURE 10
Histogram of the RMSE achieved by the proposed and other methods
for optimization methods when applied to optimize the BiLSTM
forecasting model.

groups or treatments. A high degree of variability between groups
relative to within groups is shown by the F-statistic of 420.8 and the
p-value of less than 0.0001, providing strong evidence against the
null hypothesis that there are no differences between the groups.

Table 11 presents the Wilcoxon signed rank test results. Similar
to the ANOVA test, the Wilcoxon test is applied to the prediction
results using the proposed optimized BiLSTM and the other
optimization methods. The results in this table show the statistical
difference between the proposed and other methods.

The RMSE values calculated for the achieved results of the
proposed GADTO-BiLSTM method and other methods are shown

FIGURE 11
Visualizing the results of the achieved prediction results achieved by the optimized BiLSTM forecasting model.
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in Figure 9. In this figure, the proposed method achieved the
minimum value of RMSE, which emphasizes the superiority of the
proposed method.

This experiment helps study the stability of the proposed
approach for various test cases. The histogram of the RMSE values
is depicted in Figure 10. This histogram shows the number of
experiments and the RMSE value achieved for each experiment.
The figure shows that most test cases achieved the minimum RMSE
values, reflecting the proposed method’s stability. In addition, the
plots shown in Figure 11 are used to visualize the prediction results
using the proposed GADTO-BiLSTM. The residual error shown
in residual and homoscedasticity plots is minimal in these plots,
emphasizing the robustness of the prediction results. In addition,
the QQ plot and heatmap show accurate results and thus confirm
the proposed methodology’s effectiveness.

3.5 Discussion

To robustly handle the wind speed forecasting process, we
evaluated two algorithms in this section. The first algorithm was
developed to optimize the BiLSTM prediction model to improve
prediction results. Whereas the second algorithm was developed
to address the feature selection process to guarantee to perform
the prediction in terms of the best set of features. This algorithm
proposed to fill the gap of low accuracy of the current prediction
models. In this section, two sets of experiments were conducted.
The first experiment targeted evaluating the performance of the
proposed feature selection algorithm, bGADTO. To prove the
effectiveness of the proposed algorithm, six recent feature selection
algorithms were included in the conducted experiments. The results
proved the superiority of the proposed methodology based on a
standard set of evaluation criteria. On the other hand, the second set
of experiments was conducted to evaluate the performance of the
optimized BiLSTM model, which is optimized using the proposed
GADTO algorithm. Four other approaches were employed in the
conducted experiment to show the effectiveness and superiority of
the proposed model. The presented results in this section and the
visual plots confirmed the proposedmethodology’s effectiveness and
efficiency in predicting wind speed with the smallest error.Themain
advantage of this work is that the proposed optimization algorithm
could improve the performance of the BiLSTM forecasting model
as one of the most common approach in predicting time series
data. The results showed that the improvements achieved by
the proposed optimization algorithm are superior to the other
optimization algorithms. The limitations of this algorithm are not
clearly identified in this work, but it is planned to use this algorithm,
in the future work, with more prediction tasks of varying sizes to
identify its limitations.

4 Conclusion

One of the essential factors in the efficient distribution of
electricity is the quality of the energy management system, which
has been the focus of recent studies in the field of renewable energy.

Predicting how fast the wind will blow is another crucial factor. This
paper proposes a new approach for robust wind speed prediction
based onBiLSTMand a novel optimization algorithm.Theproposed
optimization algorithm is based on GA and DTO and is referred
to as the GADTO algorithm. This optimization algorithm is used
to optimize the parameters of BiLSTM prediction model. GADTO-
BiLSTM denotes the optimized model. In addition, the binary
version of this optimization algorithm is used for selecting the most
significant set of features to boost the prediction accuracy. To prove
the superiority of the proposed method, four other optimization
methods are included in the conducted experiments. The proposed
approach is evaluated in terms of a freely available Kaggle dataset
used as the benchmark dataset. The results of the proposed feature
selection method and the proposed optimized model are evaluated
using a set of criteria and statistical tests compared to other
competing methods. These tests’ results emphasized the proposed
method’s statistical difference and superiority in predicting wind
speed in the adopted dataset. Based on the adopted evaluation
criteria, the achieved RMSE is (0.012), MAE is (0.007), MBE is
(−0.001), r is (0.998), R2 is (2.251), NSE is (0.997), and WI is
(0.981). These results confirm the effectiveness of the proposed
methodology in wind speed prediction. The future perspective of
this work includes evaluating the proposed methodology on a larger
dataset and including more optimization methods and prediction
models to confirm the superiority of the proposed methodology.
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