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Non-intrusive load monitoring (NILM) is a technique that uses electrical data
analysis to disaggregate the total energy consumption of a building or home into
the energy consumption of individual appliances. To address the data uncertainty
problem in non-intrusive load monitoring, this paper constructs an ambiguity set
to improve the robustness of the model based on the distributionally robust
optimization (DRO) framework using the Wasserstein metric. Also, for the hard-
to-solve semi-infinite programming problem, a novel and computationally
efficient upper-layer approximation is used to transform it into an easily
solvable regularization problem. Two different data feature extraction methods
are used on two open-source datasets, and the experimental results show that the
proposed model has good robustness and performs better in identifying devices
with large fluctuations. The improvement is about 6% compared to that of the
convolutional neural networkmodel without the addition of distributionally robust
optimization. The proposed method supports transfer learning and can be added
to the neural network in the form of a single-layer net, avoiding unnecessary
training times, while ensuring accuracy.
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1 Introduction

Most countries around the world are witnessing rapid growth in building energy use;
commercial and residential buildings account for more than one-third of the global energy
consumption, while accounting for more than 40% of global carbon dioxide emissions (Yoon
S H et al., 2018). In order to improve energy efficiency, it is necessary to adopt more suitable
energy management techniques (Zhang D et al., 2021) or the use of smart devices to collect
more detailed equipment data (Xie H et al., 2023). Since the 1990s, non-intrusive load
monitoring (NILM) (Hart G W, 1992) has become one of the dominant frameworks in the
field of energy consumption detection (Azizi E et al., 2021; Gillis J M et al., 2017). NILM is a
technology that uses electrical data analysis to disaggregate the total energy consumption of a
building or home into the energy consumption of individual appliances. This can be achieved
without the need for additional hardware sensors, by analyzing the electrical data to identify
the energy consumption of each appliance, including energy consumption, frequency of use,
and energy peaks. Compared to traditional energy monitoring techniques, NILM technology
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has the advantages of being non-intrusive, less costly, scalable, and
providing more accurate energy consumption data. This technology
increases the interaction between electricity suppliers and
consumers. For suppliers, NILM can help them understand the
power models of various appliances more accurately, and for
consumers, they can target specific appliances for a more rational
use (Liu Y et al., 2018).

In general, there are two approaches to NILM technology, the
event-based approach and the event-less approach. The former
method usually performs device identification through state
transitions of a single appliance in the total measurement data.
The latter often does the matching by separating the sample data of
one or more appliances from the aggregated data. In this paper, we
adopt an event-based detection method, which has the following
steps: event monitoring, feature extraction, and load identification.
The task of the event detection phase is mainly to record the changes
in aggregated data caused when one or more appliances are activated
or when a state transition occurs and then, to extract the features of
the data in this phase; the extracted features should maximize the
differences between different appliances and minimize the
differences between the same appliances (Zheng Z et al., 2018).
The selection of an effective set of appliance features is still
challenging and an appropriate feature representation can greatly
affect the accuracy of appliance recognition (Liu Y et al., 2018), after
which the feature can be used in load recognition to identify
different appliance classes.

Load recognition is one of the important tasks of NILM, which
uses machine learning techniques to extract the electrical feature
vectors of each appliance from the aggregate measurements and
match them to their respective classes at the output (Azizi E et al.,
2021). The electrical appliance feature data are extracted at different
sampling rates (high or low frequency) and which data are used
depend on the appliance features required by the adopted algorithm.
Low-frequency data usually record appliance data over long periods
with long intervals between data, usually seconds or minutes. High-
frequency data provide more detailed data features to allow us to
consider the steady-state, transient, and other characteristics of
appliances and to extract the relationship between voltage and
current. Several related studies have demonstrated the feasibility
of identification techniques for high-frequency features (Du L et al.,
2015; De Baets L et al., 2018; De Baets L et al., 2018; Wang A L et al.,
2018; Abd El-Ghany H A et al., 2021; Chea R et al., 2022; Lu J et al.,
2023). Wang A L et al. (2018) developed a classification method for
household appliances based on the shape features of V-I trajectories.
Du L et al. (2015) used binary mapping of voltage and current
trajectories to obtain features for appliance classification and to
compare and analyze the different features; the binary images were
directly input in the classifier, which achieved good accuracy on the
PLAID (Gao J et al., 2014). De Baets L et al. (2018) proposed that the
V-I trajectories were interpreted as weighted pixelated images,
trained and tested on the WHITED dataset and the PLAID, and
the experiments showed that it was also feasible to directly use the
processed V-I pixel maps as input in the neural network.

For the practical application of NILM, there are two main
common challenges: 1) the accuracy of the extracted feature-
vector data directly affects the final accuracy of the model, and it
is crucial to resolve the instability of the data. 2) Training a
recognition model from scratch for different brands of appliances

can be time-consuming and expensive in terms of computational
resources, and even with an extensive coverage database,
maintaining the database would be a challenge as the number of
appliances increases. Transfer learning allows different tasks to use
the same learning framework, which reduces modeling and
computational costs and is one of the solutions to problem 2.
For problem 1, currently, the common methods used to solve
this problem mathematically are stochastic programming (SP)
and robust optimization (RO). SP assumes that the uncertainty
of the problem follows an assumed probability distribution; then, it
is feasible to transform it into a deterministic problem, but the
intractable problem is to find the appropriate assumed distribution
(Asensio M et al., 2015). RO neglects to extract probabilistic
information about the uncertainty and instead, gives rather
conservative solutions, i.e., always looking for the best solution in
the worst case (Wei W et al., 2014).

To combine the characteristics of SP and RO, researchers have
proposed a new approach called distributionally robust optimization
(DRO) (Delage E et al., 2010; Rahimian H et al., 2019; Cheramin M
et al., 2022). Unlike the probability distribution assumed in SP, DRO
presents the probability distribution as an ambiguity set and
minimizes the expected consumption in the worst case. There are
two main approaches for constructing the ambiguity set: one based
on moments and the other on distances. Considering that, we only
have part of the available historical data and do not know the real
probability distribution information; the constructed ambiguity set
should contain the real data distribution as much as possible in order
to get better results. It should be noted that as the historical data
gradually increases, the ambiguity set becomes progressively smaller
and is closer to the true distribution than the ambiguity set at lower
data volumes.

Our contribution has three main aspects: 1) we proposed the
DRO approach can be used in NILM and supports transfer learning.
The optimization module of DRO can be used as part of an end-to-
end deep learning network, while allowing incorporation into the
pipeline in the form of a single-layer network structure. This
approach allows for easier modification of the network, thus
improving the recognition of appliance features. 2) In addition to
using V-I trajectory maps for the representation of appliance
features, we apply the Euclidean distance matrix as a
preprocessing of the data, and this method improved the
uniqueness of appliance features. 3) We evaluate this method in
two open-source datasets. Unlike traditional methods, we use
aggregated data from the entire house for training and testing,
instead of using data from the submeters of a single appliance
for learning, which is more realistic.

2 A proposed distributionally robust
method

2.1 Classical learning model

The goal of supervised learning is to derive an unknown
objective function f: X → Y from the available historical data.
We assume that the training samples are independent of each other
and follow an unknown distribution P: X × Y; then, the objective
function f maps any input, x ∈ X to y ∈ Y (e.g., for a binary
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classification problem, the label is −1 and 1), since the space of all
mapping functions from X to Y is very large and learning the target
function from an infinite number of samples is also very difficult.
Therefore, it is convenient to constrain the search space to a
structured family of candidate functions, H ⊆ RX, e.g., H is the
space of all linear functions or all neural networks with a fixed
number of layers, so we refer to the candidate function h ∈ H as a
hypothesis and H as the hypothesis space.

Considering a convolutional neural network with M layers, we
can obtain the following:

H � h ·( )
∣∣∣∣∣∣∣ ∃ϕm ·( ), m ∈ M,
h x( ) � σM WM . . . σ1 W1x( )( )( ){ } (1)

σ is the activation function for each layer. Empirical risk
minimization (ERM) allows the trained machine learning model
to achieve excellent performance on data sampled from the
distribution followed by its training dataset. Then, the target
problem can be written as follows:

inf
h∈H

1
N
∑N
i�1
 h xi( ), yi( )⎧⎨⎩ ⎫⎬⎭ � inf

h∈H
EP̂N

 h x( ), y( )[ ]{ } (2)

where P̂N is a simple unbiased estimator of the unknown true
distribution P* based on the empirical data (x, y), and P̂N can be
obtained by the Dirac measure, shown as follows:

P̂N � 1
N
∑N
i�1
δ xi ,yi( ) (3)

Intuitively, as N → ∞, P̂N should tend to the true distribution
P* of (x, y). For the sake of description, we note that ξi � (xi, yi) and
L(ξ, h) � (h(x), y).

Non-intrusive load monitoring usually requires only the
aggregated signals of the whole building to be collected, and by
analyzing the aggregated signals, the working status of each sub-
appliance in the building can be derived. Non-intrusive load
monitoring can be divided into two aspects, load decomposition
and load identification, and the experiments in this paper are based
on load identification. Since the data used are high-frequency data,
the transient characteristics are equivalent to the electrical
characteristics that cause the events, and the transient
characteristics include both voltage and current. Therefore, the
input of the model in the experimental part of this paper is the
transient electrical characteristics and the output is the equipment
that matches such electrical characteristics, so as to achieve the
purpose of load identification.

For the load identification problem, assuming that there are K
classes of appliances and we have a sample x ∈ X, our goal is to
predict its label, represented by a K-dim vector y ∈ {0, 1}K, where
y � y1, y2, y3, . . . , yK{ }, ∑K

i
yi � 1, and yi � 1, if and only if x

belongs to class i. For a given input x, the conditional
distribution of y can be written as follows:

p y
∣∣∣∣x( ) �∏K

i

p yi
∣∣∣∣xi( ) �∏K

i

pyi

i (4)

where p(yi|xi) � ew
ix/∑K

k�1e
wkx , i ∈ [K], and W are the weight

matrices; the log-likelihood can be written as follows:

logp y
∣∣∣∣x( ) �∑K

i

yilog ew
ix/∑K

k�1
ew

kx⎛⎝ ⎞⎠ � yWx − log1eWx

where W ≜ [W1,W2, . . . ,WK]. The loss function is defined as
L(ξ, h) � log1eWx − yWx. Thus, our target is as follows:

inf
h∈H

EP̂N
L ξ, h( )[ ]{ } (5)

2.2 An approximation based on the
Wasserstein metric

In fact, if only the empirical risk is minimized as in (2), there are
many hypotheses other than the log-loss function that are
compatible with the existing training data, achieving an accurate
prediction of the output value from the input values in the existing
dataset (Defourny B et al., 2010). Considering only minimizing the
empirical loss, it causes an overfitting of the sample; this can lead to
these hypotheses producing predictions that do not match the
expectations on the datasets, other than the training data. This
means that even if good results are obtained on E

P̂N
[L(ξ, h)], the

error EP*[L(ξ, h)] outside the existing sample will be large for an
unknown true distribution P*.

Regularization is an effective method to combat overfitting, so it
is better to approximate the solution of a regularized problem as
opposed to solving the problem in (5). A common regularization is
mostly seen in the following form:

inf
h∈H

EP̂N
L ξ, h( )[ ] + λΩ ·( ){ } (6)

where Ω(·) is a penalty term, λ is the regularization weight of the
regularization function, and the function minimizes the sum of the
average loss and penalty terms. Usually, Ω(·) � ‖ · ‖p, and the value
of p is 1, 2 or ∞. Even though there are many ideal theoretical
models for the interpretation of regularization, there is a consensus
that regularization methods that have been successfully validated in
practice are heuristic methods (Wan L et al., 2013). Most popular
interpretations of regularization methods rely on a priori probability
distribution assumptions, which remain arbitrary in some
perspectives. Equation 6, which consists of in-sample error and
overfitting penalty, can be seen as an in-sample estimate of the out-
of-sample error; however, this problem remains difficult to prove.

Based on the Wasserstein metric, we can consider getting the
expected loss under distribution Q close to the empirical
distribution P̂N, i.e., distribution Q is able to produce training
data outside of P̂N with high confidence. In this way, we can
achieve the goal of obtaining out-of-sample data. The distance
measure between the two distributions P and Q can be expressed
as follows:

W P,Q( ) � inf
π∈ ΞxΞ( )

Eπ d ξP, ξQ( )[ ]: ξP ~ P, ξQ ~ Q{ }

� inf
π∈ ΞxΞ( )

∫Ξ×Ξd ξP, ξQ( )Π dξP, dξQ( ):
π dξP,Ξ( ) � P dξP( ),
π dξQ,Ξ( ) � Q dξQ( ),

d ξP, ξQ( ) � xP − xQ
���� ����p + κ1 yP≠yQ{ }

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)
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where(·) is the set of probabilitymeasures on ameasurable space, π is
the joint distribution of ξP and ξQ; ξP and ξQ follow distribution P and
Q, respectively. d(·) is the metric between two distributions on Ξ, and κ
is a positive constant. Explained in a different way, W(P,Q) usually
represents the solution to a transportation problem and mathematically
represents the overall minimum cost of moving distribution P to
distribution Q; d represents the cost of moving unit ξP to ξQ.

2.2.1 Ambiguity set
Considering the ambiguity set, the constructed Wasserstein ball

(Zhao C et al., 2018) constructed with empirical distribution P̂N

centered at a given radius ϵ is as follows:

Bϵ P̂N( ) � P|W P, P̂N( )≤ ε{ } (8)

subject to the constraint that a suitable and sufficiently large ball will
contain all the distributions of the unknown true input–output
distribution P*, and for the selection of the radius (Duan C et al.,
2018), it gives a possible choice. At this point, the worst-case
expectation is sup

P∈Bϵ(P̂N)
EP[L(ξ, h)], which is also the upper bound

on the out-of-sample errorEP*[L(ξ, h)]. This allows us to replace (6)
with a new formulation that is able to achieve the minimum
expectation in the worst case, shown as follows:

inf
h∈H

sup
P∈Bϵ P̂N( )

EP L ξ, h( )[ ]
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭ (9)

2.2.2 Support set
The purpose of the data-driven support set is to capture a priori

information about the range of inputs and outputs. We adopt upper
and lower bounds on each dimension to specify the support set of
uncertainty, given as follows:

Ξ � ξ|Π− ≤ ξ ≤Π+{ }, (10)
where the upper and lower bound can be determined based on
ξi{ }N

i�1, and (10) can be reformulated as follows:

Ξ � ξ|Aξ ≤ b{ } (11)
where A � [I;−I] and b � [Π+,Π−].

3 The proposed solution methodology

3.1 Reformulation of the proposed model

Problem (9), obtained previously, is hard to reformulate because
of the presence of function variables in the set of ambiguity sets in
the worst-case expectation problem. In the study by Defourny B
et al. (2010), the proposed strong duality conclusion can help us
reformulate the worst-case expectation. Thus, the sub-problem in
the inner part of Eq. 9 can be rewritten in the following form:

sup
π∈ ΞxΞ( )

∫ΞL ξ, h( )π dξ, Ξ̂( )
s.t.

∫Ξ×Ξ̂d ξ, ξ̂( )π dξ, dξ̂( )≤ ε

π Ξ, dξ̂( ) � P̂N dξ̂( )
P dξ( ) � π dξ, Ξ̂( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(12)

Since P and P̂N are discrete, i.e., Ξ̂ � ξi{ }N
i�1, we can obtain the

following:

P dξ( ) � π dξ, Ξ̂( ) � 1
N
∑N

i�1P
i dξ( ) � 1

N
∑N

i�1π dξ
∣∣∣∣∣ξ̂ � ξi( )

and

π dξ, dξ̂( ) � π dξ, ξ̂ � ξ( ) · P̂N ξ i( ) � 1
N
Pi dξ( )

According to these two equations, it is possible to equivalently
rewrite (12) to obtain the following:

lim
Pi ≥ 0

1
N
∑N

i�1∫Ξ
L ξ, h( )Pi dξ( )

s.t.

1
N
∑N

i�1∫Ξ
d ξ, ξi( )Pi dξ( )≤ ε

∫ΞPi dξ( ) � 1,∀i ∈ N[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(13)

Considering the Lagrangian dual function of (13), it is not
difficult to obtain the following:

min
λi ,β≥ 0

∑N

i�1λi + εβ

s.t.{L ξ, h( ) −Nλi − βd ξ, ξi( )≤ 0,∀ξ ∈ Ξ,∀i ∈ N[ ]
(14)

where β≥ 0 and λi are dual variables of the constraints.

3.2 Upper approximation of the proposed
model

Equation 14, obtained previously, is a large-scale semi-infinite
programming problem that is still intractable. We solve this problem
in this section by obtaining a conservative upper bound through
multiple upper approximations (Everett III H, 1963). First, based on
the definition of the Lipschitz constant, we further define an
extended definition of Lipschitz for a function f: X → Y; using
the norm on S and S ⊆ X, we define the Lipschitz module of f as
follows:

lip f( ):� lim
z,z′∈S

f z( ) − f z( ′)���� ����
z − z′
���� ���� : z ≠ z′{ }

Then, an approximate upper bound for (14) can be obtained as
follows:

14( )� inf
λ≥0

εβ+ 1
N
∑N

i�1 sup
ξ∈Ξ

L yh x( )( )−λ x−xi���� ����+κ1 yP≠yQ{ }( )[ ]
≤ inf

λ≥0
εβ+ 1

N
∑N

i�1 sup
ξ∈Ξ

L yih xi( )( )+ lip L( ) yh x( )−yih xi( )∣∣∣∣ ∣∣∣∣( )[
−λ x−xi���� ����+κ1 yP≠yQ{ }( )]
≤ inf

λ≥0
εβ+ 1

N
∑N

i�1 sup
ξ∈Ξ

L yih xi( )( )+ lip L( )lip h( ) x−xi���� ����1 yP≠yQ{ }[
+lip L( ) h x( )+h xi( )∣∣∣∣ ∣∣∣∣1 yP≠yQ{ } −λ x−xi���� ����+κ1 yP≠yQ{ }( )]
≤ inf

λ≥0
εβ+ 1

N
∑N

i�1 sup
ξ∈Ξ

L yih xi( )( )−λ x−xi���� ����+κ1 yP≠yQ{ }( )[
+lip L( )max 2

c

κ
,lip h( ){ } x−xi���� ����+κ1 yP≠yQ{ }( )],
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where c � suph∈H,x∈X|h(x)| because of the Lipschitz continuity of L
and the first inequality holds; similarly, the second inequality holds
because of the Lipschitz continuity of h. We note that
λ � lip(L)max lip(h), 2c/κ, 1/κ{ }, and we are able to obtain the
upper bound on the worst-case expectation:

1
N
∑N

i�1 h xi( ), yi( ) + εlip L( )max lip h( ),max 1, 2suph∈H,x∈X h x( )| |{ }
κ

⎧⎨⎩ ⎫⎬⎭ (15)

If κ → ∞, we have a further upper approximation of the DRO
model, given as follows:

inf
h∈H

1
N
∑N

i�1 h xi( ), yi( ) + εlip L( )lip h( ){ } (16)

3.3 Solving the reformulated model

Gouk H et al. (2021) provide a comprehensive analysis of the
application of the Lipschitz function to neural networks. The composite
property allows us to extend the single Lipschitz constant to the entire
neural network; using the property lip(h)≤∏M

m�1lip(σm)‖Wm‖, we
can obtain an upper bound for lip(h) with the following:

16( ) � inf
h∈H

1
N
∑N

i�1 h xi( ), yi( ) + εlip L( )∏M

m�1lip σm( ) Wm‖ ‖{ }.
(17)

σm is the activation function of the mth layer of the neural
network with [M] layers; ‖Wm‖ is the operator norm induced by the
norm on space Rnm and Rnm+1 . As κ → ∞ and set ~σ � ∏M

m�1lip(σm),
(17) satisfies the following:

1
N
∑N

i�1 h xi( ), yi( ) + εlip L( )∏M

m�1lip σm( ) Wm‖ ‖

� 1
N
∑N

i�1 h xi( ), yi( ) + ε~σlip L( )∏M

m�1 Wm‖ ‖

≤
1
N
∑N

i�1 h xi( ), yi( ) + ε~σlip L( ) ∑M

m�1
Wm‖ ‖
M

( )M

(18)

It has been proved in Everett III H, 1963 that when (17) has an
optimal solution h* (since each hypothesis h has its unique weight
matrix, W[M] � (WM, . . . ,W2,W1), the optimal solution for W at
this point can be written as W[M]* ), then h* is also an optimal
solution to the following constraint problem:

inf
h∈H

1
N
∑N
i�1
 h xi( ), yi( )

s.t. ∑M

m�1
Wm‖ ‖
M

( )M

≤
θ

M
( )M

for θ � ∑M
m�1‖W*

m‖. Therefore, there exists a Lagrange multiplier ~λ,
such that W[M]* is the solution to the minimization of the following
penalized problem:

inf
h∈H

1
N
∑N
i�1
 h xi( ), yi( ) + ~λ∑M

m�1
Wm‖ ‖. (19)

This means that when κ → ∞, there exists ~λ> 0, such that the
upper bound of the distributionally robust optimization model (9) is
(19), which is a minimization problem with regularization terms.

4 Experiment design

4.1 Datasets

In our experiments, we use aggregated data from the whole building
rather than measurements from submeters. We use two open-source
datasets, PLAID (Gao J et al., 2014) and LILACD (Kahl M et al., 2019),
both of which are high-frequency datasets, as the data used in the
experiments. Among these, the aggregated data in PLAID aremeasured
at 30 kHz and contain 1478 different states, such as on or off, for
12 different devices from 11 different appliance types in more than
55 households in Pittsburgh, Pennsylvania, United States of America.
The latter aggregated data contain 16 different types of appliances
sampled at 50 kHz. The datasets are pre-defined with labels for on and
off occurrences, simplifying the identification of voltage and current
details during the event. PLAID is a dataset of residential buildings
where appliances are solely single-phase, unlike LILACD, which is a
novel industrial dataset with an assortment of industrial and household
electrical equipment. Additionally, the appliances in LILACDoperate in
both three-phase and single-phase modes, rendering the situationmore
intricate in comparison to PLAID. In the following device labeling, the
prefix “3p” indicates that the device works in the three-phase mode.

4.2 Evaluation metrics

As recommended by Makonin S et al. (2015), we use the F1-
score and Matthews correlation coefficient (MCC) to evaluate the
classification performance by using the following equation:

Fscore � 2 × Precision × Recall

Precision + Recall

Precision � TP

TP + FP

Recall � TP

TP + FN

Fmacro � 100 ×
1
K
∑K

i�1F
i
score

where TP is true positive, TN is true negative, FP is false positive, and
FN is false negative, K is the number of appliances, Fscore is the
harmonic mean of precision and recall, and Fmacro is the average of
the Fscore of all devices, also known as the macro average. For a given
confusion matrix C withK classes, the MCC can be defined as follows:

MCC � c × s −∑M
i pi × ti,,,,,,,,,,,,,,,,,,,,,,

s2 −∑M
i p

2
i( ) × s2 − ∑M

i t
2
i( )√

where ti � ∑M
k Cki, pi � ∑M

k Cik, c � ∑M
k Ckk, and s � ∑M

i ∑M
j Cij.

4.3 Experiment setting

In our experiments, we used two methods of extracting
features; the first one is the commonly used V-I trajectory
map, which extracts the current and voltage trajectories at the
steady state in one current cycle at high-frequency data and,
thus, obtains the relationship between voltage and current in one
cycle. Figure 1A indicates the aggregated current data obtained
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over a period of time. Starting from a current of 0, multiple
cycles of fluctuations are selected, and the average value obtained
is the current curve, as shown in (B). It should be noted that
because the training data are selected from partial points in one
measurement, the current of the original data do not always start
from 0; therefore, some alignment of data is required. (C)
represents the voltage data of the target appliance with the
same horizontal coordinate as the current data, and the
voltage data are also averaged over multiple cycles. To choose
the data of the same moment, the horizontal coordinate as the
voltage and the vertical coordinate as the current, we compress
the data to obtain the V-I trajectory map of the specified size,
and (D) is a pixelated V-I map with a width of 50. The second
method uses the Euclidean distance matrix proposed in the
study by Dokmanic I et al. (2015) and uses the matrix to
represent the relationship between each element of the time-
series signal to measure the correlation between different point
locations. For example, if there are sequences t1, t2, . . . , tT{ } of
length T, we can obtain the Euclidean distance matrix ET×T,
shown as follows:

ET×T �
dt1 ,t1 / dt1 ,tT

..

.
1 ..

.

dtT,t1 / dtT,tT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where di,j denotes the difference between point i and point j,
di,j � ‖ti − tj‖p. The p value we considered in the experiment is

1. When the value of d between two points exceeds threshold ϵ, the
value of the corresponding position in the map is 1. Subplot (E) in
Figure 1 shows the Euclidean distance matrix representation of the
appliance.

FIGURE 1
Extraction of current and voltage signals from the aggregated measurements. (A) Aggregate current. (B) Current waveform when CFL is turned on.
(C) Voltage waveform when CFL is turned on. (D) V-I trajectory of CFL. (E) EDM of CFL.

FIGURE 2
Structure of the network and addition of DRO modules.
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In our experiments, we used a convolutional neural network to
construct the structure shown in Figure 2 and trained the model
using the V-I trajectories obtained from the PLAID to obtain a pre-
trained convolutional neural network model capable of classifying
V-I trajectory maps. The network contains five layers, including
three convolutional layers and two fully connected layers, and ReLU
is used as the activation function for each convolutional and fully
connected layer. The first convolutional layer filters the input image
with 16 kernels of size 5, straddling two pixels. The second
convolutional layer takes the output of the first convolutional
layer as the input and filters it with 32 kernels. The third
convolutional layer filters it with 64 kernels of size 5. The role of
the neural network is to perform feature extraction on the input
data. The convolutional and fully connected layers of the pre-trained
model can be considered as a cascade of feature extractors, and we
carry out a separate process for the last fully connected layer for the
purpose of fusing the DRO model, as follows:

1) All the layers except the last fully connected layer are extracted
from the pre-trained model.

2) A fully connected layer combining the DROmodel is linked to it.
3) Using V-I trajectory maps and the Euclidean distance matrix

obtained from both datasets as the input, the last layer of the new

network is separately trained until the stopping criterion is
satisfied.

It should be noted that in order to prevent the influence of the
epoch of training sessions on the accuracy, we also carry out the
same epoch of training for the pre-trained model as we did for the
DRO model, so as to obtain the model without DRO added for the
same epoch of training. We also performed several cross-validations
of the data based on stratified sampling, and the final mean value was
obtained as the final value.

As we derived previously, the empirical cross-entropy with the
regularization term ‖Wm‖ is an upper bound for the worst case of all
distributions in the Wasserstein ball, m ∈ [M], and since the
empirical loss is still non-convex, it is suitable to use a local
optimization method for the solution; we use a stochastic
approximate gradient descent algorithm to adjust Wm, updated
as follows:

Wk+1
m � proxηk ~λ Wm‖ ‖ Wk

m − ηk∇Wm h xik , yik( )( )( ),
where ηk is the step size and ik is randomly selected from the index
set [N]. According to Nitanda A (2014), the proximal operator of
the convex function φ is defined as follows:

FIGURE 3
Effect of different penalty coefficients on the DRO model with PLAID data.

TABLE 1 Summary of the results of the two preprocessing methods combined with the DRO model under the PLAID.

DRO addition Preprocessing method F1-score MCC

No V-I trajectory with CNN 0.9166 ± 0.018 0.9091 ± 0.03

No EDM with CNN 0.9065 ± 0.026 0.9175 ± 0.08

Yes V-I trajectory with CNN 0.9261 ± 0.019 0.9207 ± 0.06

Yes EDM with CNN 0.9278 ± 0.018 0.9239 ± 0.04

No V-I trajectory with KNN 0.7663 ± 0.022 0.7428 ± 0.01

No EDM with KNN 0.7789 ± 0.019 0.7582 ± 0.02

No V-I trajectory (De Baets L et al., 2018) 0.8733 ± 0.02 0.8679 ± 0.02
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proxφ Wm( ):� argmin
W ′

m

φ W ′
m( ) + 1

2
W ′

m −Wm

���� ����2F,
where ‖ · ‖F stands for the Frobenius norm.

4.4 Results on the PLAID

On the PLAID, we first experimented with different
initializations of the penalty coefficient, ~λ, for the regularization
term. As shown in Figure 3, the hyperparameter ~λ is
0, 0.1, 0.2, 0.4, ..., 1.0{ }; 0 represents the neural network without
adding the DRO model, and the remaining non-zero values
represent the coefficient values of the penalty terms. It can be
seen that the larger lambda values lead to an excessive upper
bound on the approximation of the model, which weakens the
differences between different appliances, thus leading to a lower
classification performance. The classification accuracy of the model
gradually decreases when the parameter is greater than 1; when the

parameter is around 0.6, the model seems to gain stable
performance, and the conclusions are roughly similar under both
preprocessing methods.

As a result, with the help of DRO, the F1-score of the PLAID
improved from 0.9166 ± 0.023 to 0.9261 ± 0.019 and from
0.9065 ± 0.018 to 0.9278 ± 0.018 under the two preprocessing
methods, respectively. In addition to which, we selected the CNN
model from the literature (De Baets L et al., 2018) and the KNN
method from the study by Gurbuz F B et al. (2021) to classify the
appliance features, as shown in Table 1. Thus, it can be shown that
the distributionally-robust optimization method effectively
improves the classification ability of the network. For a more
detailed analysis, we use the confusion matrix to visualize the
classification of the proposed model. As shown in Figure 4, each
row of the matrix represents the predicted labels; each category
represents the true labels; the diagonal line indicates the number of
each category correctly identified, i.e., the degree of matching
between the predicted and true values; and the values outside the
diagonal line indicate the portion of incorrect predictions.

FIGURE 4
(A) V-I trajectory map without DRO addition. (B) V-I trajectory map with DRO addition. (C) Euclidean distance matrix without DRO addition. (D)
Euclidean distance matrix with DRO addition.
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4.5 Results on the LILACD

The LILACD contains the energy usage of some industrial and
household electrical appliances, and we use the same steps as before
while cross-validation is also applied. The addition of the DRO
model is achieved by replacing the last layer of the pre-trained
model. As a result, the network without DRO addition obtained an
F1-score of 0.85 ± 0.061 when using the V-I trajectory map as the
input, while the model with DRO addition achieved an F1-score of
0.9058 ± 0.077; SVM (Hernandez A S et al., 2021) achieved an F1-
score of 0.787 ± 0.091, and KNN obtained an F1-score of

0.77 ± 0.07. When using the Euclidean distance matrix to
represent the appliance features, the model with DRO addition
achieved an F1-score of 0.87 ± 0.025, which is about 5% higher
than the model without DRO addition and 15% higher than the
traditional machine learning methods, SVM and KNN. To evaluate
the classification performance of each appliance, Figure 5 and
Figure 6 show the detailed F1-score for each appliance. It can be
seen that the DRO model achieves more significant results in the
classification of coffee machines, hair dryers, kettles, and
raclettes, mainly because of the irregular fluctuating
waveforms of the appliance, which made the accuracy

FIGURE 5
F1-score of appliance loads for the LILACD with the V-I trajectory.

FIGURE 6
F1-score of appliance loads for the LILACD with EDM.
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significantly lower. These devices are similar in that they all work
in the form of the generated heat energy, resulting in variable
device states, while the different gears directly affect the final
power output, making it difficult to identify methods with a low
robustness.

Overall, these results indicate that the DRO model significantly
improves robustness performance, allowing the network to cope well
with irregular fluctuations in equipment and to achieve high
accuracy in both residential and industrial equipment classifications.

5 Conclusion and future work

In this paper, we propose a Wasserstein metric-based
distributionally robust optimization framework for the non-
intrusive load monitoring problem and establish a relationship
between robustness and regularization in multiple variables by
reformulating the min–max problem as a regularized empirical
loss minimization problem through multiple upper
approximations. In addition, two appliance feature extraction
methods for high-frequency load data are used in the
experiments to investigate the effect of the DRO method on the
performance of the neural network when the convolutional neural
network has different input data. In addition, the proposed DRO
module can be added to the single-layer neural network in the form
of constraints to improve the network performance. Experiments
show that the proposed method has better robustness for devices
with large fluctuations and can effectively identify device features
compared to the network without DRO. Since there is no method
that can directly solve the proposed DRO model, more accurate
solution methods will be the focus of research in the future.
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