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Carbon capture, utilization, and storage (CCUS) technologies are the most
effective methods to reduce CO2 emissions from fossil fuel power plants. Of
the different CCUS technologies, cryogenic carbon capture (CCC) methods are
themostmature technology as they can obtain remarkably high CO2 recovery and
purity (99.99%). The significant advantage of the CCC process is that it can be
easily retrofitted to existing systems and can handle the gas stream’s impurities.
Different desublimation-based CCC technologies like Cryogenic packed bed, Anti
sublimation, External cooling loop, CryoCell process and Novel low-cost CO2

capture technology (NLCCT) are reported in the literature. The significant
limitations of these processes are the continuous removal of the dry ice into
storage tanks. For the efficient design of CCC systems, accurate prediction of the
phase equilibria data and modeling of the frost formation is called for. This paper
reviews the recently reported cryogenic desublimation technologies and analyses
the various challenges in making them economically viable. The article also
examines the different heat and mass transfer models employed to model CO2

frost formation.
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1 Introduction

According to the International Energy Agency’s Breakthrough Agenda Report 2022
(IEA, 2022), the world is still far from meeting the Paris agreement goal of limiting global
temperature rise to 1.5°C this century. The concentration of CO2 in the atmosphere has
reached an all-time high, rising from 280 ppm in the year 1750–420.23 ppm in 2022
(NOAA/, 2022). An average annual rise of 2.4 ppm has occurred for the past 10 years.
In 2021 global CO2 emissions reached the highest level ever reported, with the majority
coming from the combustion of fossil fuels (IEA, 2022b, 2022). According to the IPCC
scenarios, limiting global warming to less than 1.5°C demands a 43% reduction in
greenhouse gas emissions by 2030 (IPCC, 2022).

CCUS can lower carbon emissions while encouraging the clean use of conventional fossil
fuels. Absorption, Adsorption, Membrane, Hydrate, Microalgae, Chemical looping
combustion and cryogenic carbon capture (CCC) are some of the most widely
researched CCUS strategies (Song et al., 2018). In recent years CCC has gained wide
acceptance as they provide very high CO2 purity and are devoid of chemical reagents and
unwanted pollution (Berstad et al., 2013; Guo et al., 2019; Naquash et al., 2022). CCC makes
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use of the differences in the condensation (cryogenic distillation
techniques) or desublimation points (cryogenic desublimation
techniques) of the constituent gases in the flue gas (FG) to
capture CO2. In the distillation techniques, the CO2 is separated
and recovered in liquid form through distillation columns. Although
high-purity CO2 is obtained, they have the disadvantage of being
highly energy intensive as the system needs to be maintained at very
high pressures to avoid the formation of CO2 frost (Font-Palma
et al., 2021). Distillation methods are energy efficient only for gases
with a high concentration of CO2 (Co) (>50%) (Shen et al., 2022).
Stirling cooler (Song et al., 2012), cryogenic distillation (Yousef et al.,
2017) etc., are some examples. In the case of desublimation
techniques, CCC technology uses the unique thermodynamic
properties of CO2 that at atmospheric pressures and −78.5°C,
CO2 desublimates to a solid state directly from the gaseous state
(Baxter et al., 2009; Hart and Gnanendran, 2009). The CO2 thus
obtained (90%–95%) is collected in the form of a solid and can be
easily transported and stored. The significant limitations include
process blockage due to CO2 frost and removing the captured frost
to storage tanks. Packed bed (Tuinier et al., 2010) and NLCCT (De
et al., 2022) are some examples.

For developing the new and efficient design of capturing
devices, a detailed understanding of the existing capture
technologies and the various modeling strategies is required.
The existing technologies should be evaluated based on the
ECC, capture % and purity, and the heat and mass transfer
models must be analyzed based on their physical significance
and prediction capability. This review provides an exhaustive
literature survey of the current capture technologies based on
the above. The study presents an overview of recent
developments in CCC techniques and their challenges.
Additionally, the paper assesses the existing approaches for
simulating heat and mass transfer during frost formation.

2 CCC by desublimation techniques

Different types of CCC by desublimation techniques have been
developed recently: Packed bed, Anti-sublimation, External cooling
loop, CryoCell and Novel low-cost CO2 capture technology
(NLCCT). A technical comparison of these methods is provided
in Table 1.

2.1 Cryogenic packed bed

CCC by the packed bed is a novel technique. Packed beds made
of glass beads or steel beads are used to capture CO2. The capture
process by packed bed involves cooling, capture and regeneration
cycles (Ali, 2014). The packed bed is first cooled to cryogenic
temperatures and then subjected to FG, where the CO2 in the
gas is desublimated onto the bed as dry ice (Tuinier et al., 2010).
Once the packed bed is saturated with dry ice, it must be removed,
and the packed bed should be regenerated for the next cycle. Tuinier
et al. (2011) proposed a dynamic packed bed (moving bed) method
which recovers CO2 at a rate of 99% and uses 1.8 GJ/t CO2. Babar
et al. (2021) have suggested using multiple packed beds/switched
beds. Once the first bed is saturated, the process changes to the other,
thus making continuous capture possible. The limitation of this
process is the constant removal of the deposited frost from the
packed bed and maintaining all the other components frost free
(Tuinier et al., 2011; Song et al., 2019).

2.2 External cooling loop (ECL)

Baxter et al. (2009) developed a hybrid CCC system using an
ECL. The system makes use of a refrigerant to cool the flue gas. The
flue gas is initially dried and cooled to a temperature just above the
frost point of CO2. The CO2 is then condensed in a desublimating
heat exchanger, where it is precipitated in the form of dry ice. The
dry ice is then separated and pressurized to a liquid state for storage
and transportation. As the heat exchangers are prone to frost, the
system components must be maintained at higher pressures, which
incurs additional energy consumption for compression. This
method provided 99% capture with energy consumption (ECC)
of 0.74 GJ/t CO2 (Baxter et al., 2009; Jensen et al., 2015).

2.3 CryoCell technology

CryoCell technology operates on a similar principle as the ECL
method. The dried FG is cooled to a temperature just above the
freezing point of CO2 by a heat exchanger using the liquid CO2 and
treated gas, returning from the separator. The CO2 is then expanded
using a J-T expansion valve to create a three-phase mixture, from

TABLE 1 Energy consumption comparison of various desublimation methods.

Process Mole fraction of CO2

in flue gas (%)
CO2

capture %
Energy consumption
(GJ/t CO2)

Cost ($) Method Reference

Cryogenic
packed bed

13 99 1.8 55–130 Experiment Tuinier et al. (2011), Ali
(2014), Song et al. (2019)

External cooling
loop (ECL)

4 90 0.74 Experiment and
simulation

Jensen et al. (2015)

CryoCell
technology

20 to 35 34 Experiment and
modeling

Hart and Gnanendran (2009)

AnSU process 12 90 1.18 Experiment Pan et al. (2013)

NLCCT 6.7 99 0.63 7.47/t CO2-
12.64/t CO2

Modelling De et al. (2022)
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which CO2 frost is segregated using a three-phase separator. The
frosted CO2 deposited at the bottom of the separator is removed as a
liquid by melting the frost with the help of a heater (Hart and
Gnanendran, 2009). The liquid CO2 is pumped to the necessary
disposal pressure while the gas is compressed to sales gas criteria.
The process is energy efficient only at higher Co (>20%), and the use
of compressors increases ECC (Song et al., 2019). For 20%–35% Co,
the system produces a capture efficiency of 34% (Hart and
Gnanendran, 2009).

2.4 Anti sublimation unit (AnSU)

Clodic et al. (2003) proposed AnSU. This method uses a sequence
of expanders and evaporators to capture CO2 on the low-temperature
frost evaporators (LTFE). Two LTFEs are used in this process, one for
CO2 capture and the other for regeneration. A series of heat exchangers
cool the FG, and CO2 gets deposited as frost on the surface of the LTFE
(Eide, 2005). For the 12%Co, the process gives an efficiency of 90%with
an ECC of 1.18 GJ/t CO2 (Pan et al., 2013). As the development of the
CO2 frost layer on the heat exchanger surface affects its effectiveness, the
heat exchanger materials should have higher thermal conductivity and
mechanical stresses (Song et al., 2019).

2.5 Novel low-cost CO2 capture technology
(NLCCT)

De et al. (2022) proposed an NLCCT model that can capture
CO2 with low cost and low water consumption. This method uses
cold nitrogen gas refrigerators, regenerative cooling and efficiently
constructed cooling chambers to desublimate the CO2. The
challenge involved is the requirement of higher heat transfer
rates for the heat exchangers and the design of cooling chamber
plates to capture CO2 effectively. For 6.7% Co, the model shows a
capture efficiency of 99% with an ECC of 0.63 GJ/t CO2.

Advancements in CCC methods are severely limited by the high
energy requirements and the capture cost involved (Tuinier et al.,
2010; Song et al., 2019). It was observed that ECC rises exponentially
as the Co decreases below 10% (Clodic et al., 2005). Additionally, as
the CO2 is collected in the form of frost, an accurate representation
of the frost point and valid models that can predict frost growth is
called for.

3 Frost formation and its modeling

Frost formation is quite common in cryogenics, aerospace, and
refrigeration applications. Frost layers are porous patterns with ice
particles and air holes. Frost formation is advantageous in carbon
capture applications. However, it can be undesirable in certain
others as they can increase resistance to heat transfer and clog
flow channels and even cause a system failure (Wu andWebb, 2001;
Wu et al., 2007; Ma et al., 2018). In CCC, frost formation occurs
when the FG is cooled below the desublimation temperature of CO2

corresponding to its partial pressure. Sun et al. (2020) have observed
that the frost development in cryogenic conditions (<−150°C) is
different from frosting under refrigeration conditions (>−20°C)

(Hayashi et al., 1977). The cryogenic frost formation process is
divided into three stages: crystal growth, frost layer growth and frost
layer full growth phase (Piucco et al., 2008). In the first phase, ice
crystal’s initial development occurs; in the subsequent two phases,
the frost growth with an increase in frost density and thickness
occurs (Dave et al., 2017). To predict frost formation and its growth,
frost modeling is essential. Literature shows a lack of studies
regarding CO2 frost compared to water vapor frosting.

3.1 Frosting modelling

Frost model development is critical to forecast the frost point
and to model frost formation and growth. CO2 frost point is
frequently predicted by Equation of states (EOS), and frosting
models are employed to predict frost formation and growth.
Frosting models can be generally categorized into empirical
correlations and analytical methods (Schneider, 1978; Sommers
et al., 2017; Wu et al., 2017).

3.1.1 Thermodynamic modelling by EOS
In CCC methods, CO2 desublimates from the vapor state and

freezes from the liquid state. This makes accurate prediction of the
phase equilibrium of CO2 mixtures essential (de Guido et al., 2014;
Nasrifar and Moshfeghian, 2020). In cases where solid CO2 forms
from a vapor or liquid state, describing Solid vapor equilibrium
(SVE) and solid-liquid equilibrium (SLE) is essential and in cases
where solid CO2 forms in the presence of liquid and vapor,
predicting Solid-Liquid-Vapor (SLVE) is essential (Gu et al.,
2018). Liquid and vapor phases are described by cubic equations
of states such as Peng- Robinson (PR), Soave-Redlich-Kwong (SRK)
and Nasrifar and Bolland (NB) (Soave, 1972; Peng and Robinson,
1976; Nasrifar and Bolland, 2006). Solid CO2 is efficiently described
by the term fugacity (f) (Eq. a), which consists of CO2 sublimation
pressure, vapor fugacity coefficient and Poynting correction factor
(Li et al., 2016).

fs
pureCO2 T, P( ) � psat

CO2φ
sat
CO2 exp

vs
CO2 p−psat

CO2( )
RT

⎡⎣ ⎤⎦ (a)

Riva et al. (2014) reported that for the determination of solid
fugacity in SVE and SLE, various expressions are available in the
literature with the assumption that the solid phase consists of a pure
freezing component. Soave, (1979) focused on SVE conditions of
pure CO2 by equating pure component fugacities in two phases. This
work used SRK EOS to find the liquid and vapor phase fugacities.
Since data on sublimation pressure as a function of temperature are
known for CO2, the traditional solid fugacity model can be utilized
with the PR, RKS, and NB EOS to explain SVE appropriately.
Nasrifar and Moshfeghian. (2020) introduced an SVM model
(solid vapor fugacity model) based on studying the CO2 solid
vapor coexistence curve. SVM requires the enthalpy of
sublimation, triple point and solid CO2 molar volume to
determine the solid fugacity, and it does not require sublimation
pressure. Nasrifar and Moshfeghian. (2022) later developed another
model like SVM known as the SLM model (Solid, liquid fugacity
model), shown in Eq. b. SLM depended on the enthalpy of melting,
triple point and solid CO2 molar volume. Although SVM provided
accurate SVE and SLVE calculations, it was slightly inaccurate for
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TABLE 2 Mass transfer model mechanism.

Author Concept Phase change method Description

Wu et al. (2016) Vapor concentration
difference _mai � τv . αa .ρa . wva − ws T( )( ) (1)

τv-Time relaxation coefficient

αa.ρa-Effective density of humid air

Wu et al. (2017) Gibbs free energy

_mai � τv . αa .ρa( ).wv
wv−wvs

wvs
( ) (2)

(wv−wvs /wvs)-Driving force

τv � 16.705 + 0.0035Re1.684 (2a)
Qia � hia Ti − Ta( ) (2b)
hia � 6λaαiαaNuia

di
2 (2c)

wv- Mass fraction of water vapor

wvs- Mass fraction of saturated water vapor

αa.ρa-Effective density of humid air

Re-Reynolds number

Q-heat transfer hia-Heat transfer coefficient

Sun et al. (2020) Vapor concentration
difference _m � A.hm . Clocal v − Csat v( ) (3)

A- Contacting area of mass transfer. hm- Mass transfer coefficient

hm � Sh.Dv

l
(3a)

Clocal v − Csatv -Mass concentrations of local place and saturated water
vapor

Sh-Sherwood number

Byun et al. (2020) Gibbs free energy theory
_m � τs .Ste. αa .ρa( ) ωa − ωs( ) (4)

Ste- Stefan number

Ste � Cp Tf − Tw( )
hsub

(4a)
τs- Time relaxation factor hsub- Latent heat of sublimation

Tf -Freezing temperature

Qi et al. (2021) Temperature difference
_m � λvαgρgωvdf (5)

λv- Time relaxation coefficient

λv � 3.92 × 10−6.Re1.97.
Tw

273.15
( )1.49

(5a)

df � Ts − T

Ts
( )

Re-Reynolds number. df– Phase change driving force

Haddad et al. (2414) Concentration difference
_mCO2,surf� hm .A.ρflue gas . xCO2/n2 − xsurf( ) (6)

hm- Mass transfer coefficient

hm � hc/ ρf lue gas.Cp f lue gas.Le
2
3( ) (6a)

hc- Heat transfer coefficient

hc � 0.21.ReDh0.8.Pr
0.6 .kflue gas

Dh
(6b)

Le- Lewis number keff,fr-Effective thermal conductivity

Le � kflue gas
ρf lue gaspCp f lue gaspDf lue gas

(6c)
Dh-Hydraulic diameter

_Qfr � keff,frpAp
dT

dy
( )

surf

(6d)

keff,fr �
0.27.ρfr

2386.037 − ρfr
(6e)
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the SLE. By coupling with an EOS, SLM produced satisfactory
predictions of the solid fugacity in SVE, SLE and SLVE
calculations.

fs
CO2 T, P( ) � fL

CO2 T, P( ) exp ΔHtp

RTtp
1 − Ttp

T
( ) − αCO2

ΔHtp

R2T2
P − Ptp( )[ ]

(b)

3.1.2 Mass transfer models
The frosting process is unsteady with simultaneous heat and mass

transfer. Table 2 shows the different frost model mechanisms by the
various researchers. Wu et al. (2016) developed a phase change mass
transfer model based on vapor concentration difference with local
cooling to predict frost layer growth and densification. The
concentration difference and effective density of humid air, along
with the time relaxation coefficient (τv), give the mass transfer rate
as shown in Eq. 1. The driving force for the mass transfer rate is the
difference between the partial pressure of water vapor in the humid air
and the saturation pressure of water vapor corresponding to the surface
temperature of the frost. The value of τv varies from case to case. In this
work, Wu et al. have considered the value of τv to be 10. The frost
formation on a flat aluminium plate cooled to 10°C was modelled using
Euler multiphase flow model. The model was validated, and it was
observed that the variation between the modelled and experimental
weights of frost was within the range of −3.2%–3.9%.

Wu et al. (2017) developed a frost model based on Gibbs free
energy difference to predict the vapor frost formation and
growth. The mass transfer rate from the vapor phase to the
ice phase _mai (Eq. 2), is dependent on the phase change driving
force, water vapor effective density and time relaxation
coefficient (τv) (Eq. 2a). The driving force is equal to the
difference of the Gibbs free energy during phase transition.
The heat transfer between the two phases (Eq. 2b) is related to
the difference in temperature of the two phases and the heat
transfer coefficient hia (Eq. 2c) (Wu et al., 2017). hia consists of
the Nusselt number, which can be determined using the Ranz-
marshal correlation (Ranz and Che, 1952). Compared to
experimental results, the model predicted frost weight and
thickness on a wavy plate with a deviation of −25% ~ + 20%
and −20% ~ + 30%, respectively.

Sun et al. (2020) developed a frost model based on vapor
concentration differences under cryogenic conditions. The mass
transfer rate for vapor phase change (Eq. 3) consists of the driving
force, which is the concentration difference between the local place
and saturated water vapor. The equation includes the mass transfer
coefficient (hm) term, and the contacting area. hm can be calculated
using the Sherwood number (Eq. 3a). Two correlations of the mass
transfer coefficient, the Ranz–Marshal and Jaluria correlations
(Ranz and Che, 1952; Whitelaw, 1981), were used for finding the
effects of frost formation under free convection on a vertical plate.
For forced convection, the Frossling and Tokura correlations can be
employed (Patil, 1988; Tokura et al., 1988). The study shows good
agreement between the simulation and experimental results and
observed the Ranz–Marshal correlation as best suitable for
predicting frost formation under cryogenic conditions.

Byun et al. (2020) predicted frost formation under cryogenic
conditions using Gibbs-free energy. The mass transfer rate

(Eq. 4), in which the driving force is the Gibbs free energy
reduction which is equal to the degree of supersaturation
(ωa − ωs). In this model, a term called Stefan number (Eq. 4a)
was defined for representing the temperatures of both cryogenic
surfaces and air. The value of τs was set to 23.6. The frost density
and thickness values obtained through simulation on a flat plate
show a better comparison with experimental values. It was also
noted that the frost with low density was deposited near the
frosted surface, and frost with high density formed near the
cryogenic surface.

Qi et al. (2021) developed a frost model based on temperature
differences under cryogenic conditions. The model was used to
explain the trace water vapor frost on a flat plate in a cooled N2 gas
flow. The mass transfer rate for the phase change (Eq. 5) uses Lee’s
evaporation and condensation mass transfer model (Lee, 2002),
which served as the foundation for the introduction of driving force
(df ), which is due to the difference in control volume temperature
and saturation temperature. The model consists of the time
relaxation coefficient λv (Eq. 5a) and which depends on the
Reynolds number and temperature of the cold surface. They
validated the simulation with experimental values from the
literature and observed the variation to be less than 7%.

Haddad et al. (2414) modelled CO2 frost development and growth
based on concentration differences under cryogenic conditions.
Simulations are done to separate CO2 from the FG mixture and
biogas. A correlation of the heat transfer coefficient (Eq. 6b)
proposed by Dietenberger et al. (1979) is used for finding the mass
transfer coefficient (Eq. 6a) and the mass flow rate of frosted CO2. The
mass transfer rate (Eq. 6) occurs because of the concentration difference
between the frosted surface and the FG. The mass transfer coefficient
consists of the Lewis number (Eq. 6c) and which links the heat andmass
transfer coefficients. The effective thermal conductivity can be
determined using Eq. 6e (Shchelkunov et al., 1986). Dietenberger
et al. correlation (Eq. 6b) determines the heat transfer coefficient for
flow over a horizontal plate. It was observed that Dietenberger et al.
correlation provided a better estimation of CO2 frost growth.

4 Conclusion

CCUS technology is undoubtedly a highly competitive and feasible
option, considering global climate change and the increasingly urgent
need for the conservation of energy and emission reduction. Compared
to other CCUS technologies, CCC is beneficial for increasing the storage
capacity and obtaining CO2 with high purity.

Of the different technologies experimentally tested, the ECL
method proposed by Baxter et al. had the least ECC (0.74 GJ/t
CO2) with a capture efficiency of 90%. Based on thermodynamic
modeling, the NLCCT technique has reported much lower ECC but
requires experimental validation. For a Co of 6.7%, the NLCCT
provided a capture efficiency of 99% with an ECC of 0.63 GJ/t
CO2. However, the requirement of maintaining the system at high
pressures in ECL and the need for continuous removal of deposited
frost in NLCCT, calls for further advancements in CCC techniques.

Based on the review, it is concluded that the desublimation-based
frost formation has its own frostmechanism and characteristics which
is different from the condensation-based frost formation. For the
prediction of the solid phase in the solid-liquid,solid-vapor and solid-
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liquid-vapor equilibrium, the SLM model proposed by Nasrifar was
found to be accurate. Considering different frost models, Wu et al.
frost model based on vapor concentration difference shows less error
percentage (−3.2%–3.9%) than other models. Regarding the mass
transfer correlations, the Ranz-marshal mass transfer correlation was
found to predict frost under cryogenic conditions accurately. In view
of the heat transfer correlations, Dietenberger et al. correlation
provided a better estimation of the CO2 frost growth. The
correlation was validated for the CO2 frost growth on a flat plate.
Similarly, these heat and mass transfer models need to be verified for
different geometries and conditions. Also, the detailed experimental
analysis would lead to a better understanding of the frost formation
mechanism, which would eventually lead to the development of
accurate models.
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