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A decision framework for orderly
power utilization based on a
computationally enhanced
algorithm

Peng Xu and Beibei Wang*

College of Electrical Engineering, Southeast University, Nanjing, China

In 2022, China faced unusually high temperatures, leading to a lack of
hydropower in the southwest and increased power demand in the east. This
incongruity exerted substantial strain on the power system. To tackle this, a
structured method called orderly power utilization (OPU) is suggested as an
effective approach tomanage short-termpower shortages and prevent recurring
blackouts. However, typical OPU strategies tend to overlook the principles
of fairness, openness, and justice (OEJ), potentially causing problems for
various users, especially major industries. Herein, we introduce a comprehensive
OPU framework. According to the demand difference in OPU plans in
different periods, the optimization cycle is divided into several intervals to
achieve computational enhancement. Furthermore, in the interest of judiciously
managing the manifold OPU resources characterized by heterogeneous
parameters, we introduce an aggregated operational model underpinned by the
formalism of zonotopic sets. Numerical simulation results indicate the great
potential of the proposed method to solve power shortage problems while
upholding the imperatives of OEJ.
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power shortage, orderly power utilization, aggregation of resources, zonotopic sets,
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1 Introduction

The swift progression of the Chinese economic landscape has yielded a substantial
disjunction between power supply and demand, notably pronounced during the acme
of power utilization (Gu and Tian, 2023). This incongruity has consequently fostered an
enduring trajectory of escalating power shortages. In a formal commitment to the global
community, China, in the year 2020, avowed its intent to curtail carbon dioxide emissions,
aiming for their zenith by 2030, and concurrently embarked upon an aspirational trajectory
toward achieving carbon neutrality by the year 2060 (Zhou and Hu, 2021). In March
2021, future development directions in building a new power system to realize much more
renewable energy accommodation were further proposed (Ma, 2021).

In China, the load center and resource center are geographically mismatched. Therefore,
the west-to-east power transmission project in China aims to transmit renewable energy
(wind, solar, or hydro power) from the west to the east over a long distance to relieve
the load in the east, as illustrated in Figure 1. However, intermittency and uncertainty
strongly affect the stable operation of the power grid. Long-term regional, seasonal, periodic,
and structural power shortages will occur in some regions of China (Chi et al., 2021). In
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2022, droughts caused by extremely hot weather have led to
hydropower shortages, and consequently insufficient power
transmitted to the east. In addition, the east region has faced an
increase in total load due to a surge in air conditioning loads. This
collective confluence of factors has culminated in a pronounced
shortage within the power system, underscoring the ramifications
of supply–demand disequilibrium under the prevailing hot climatic
conditions.

Orderly power utilization (OPU), similar to “firm load
shedding” in ERCOT (Chen, 2018), is an importantmeans for power
sectors to address severe short-term power shortages so as to avoid
cycled blackout events. To ensure electricity availability to residents
and important organizations in emergencies, OPU scheduling for
a large range of factories and corporations is used to decrease
their load. Nonetheless, the conventional regimen governing OPU
scheduling is fraught with economic inefficiencies stemming from
its inability to discern between distinct factories and corporations
based on the unique attributes of their production lines (Fan et al.,
2015). Consequently, in instances marked by inadequate power
provisioning, an imperative necessitation arises for the expedient
formulation of an equitable OPU optimization strategy. Such a
strategy assumes heightened significance in its role of preserving
the steadfastness of the societal power supply apparatus while
simultaneously mitigating the repercussions of power deficits on
both the social–economic fabric and the livelihoods of the residents.

OPU has historically functioned as a prescriptive administrative
measure, and a scientific and reasonable OPU implementation
mechanism has not been formed yet. Scholarly discourse has
hitherto delved into the operational mechanics governing OPU
implementation within the Chinese context. The regulation value
of industry users under OPU has been evaluated by establishing an

index system of OPU load in a prior study (Zhang et al., 2019), but
the details of user flexibility were not considered. An orderly power
consumption regulation strategy has been proposed that determines
user priority according to an entropy weight method (Liu et al.,
2021); another proposal involves a smart task scheduling strategy
of OPU according to priority (Tao et al., 2015).

However, these prior studies have not considered OEJ principles
to users in determining theOPU strategies, a practice not in linewith
China’s current national conditions. OEJ indicates that in a relatively
long period of time, indicators such as the number of OPU calls and
the amount of power loss of OPU calls made by a certain user group
are relatively consistent.Therefore, for the entire contract period, the
user’s reduction should be evenly distributed, rather than a sudden
and dramatic reduction in a short period of time.

Throughout the entire cycle of the OPU contract, the daily
OPU plan is determined day ahead. In order to obtain the OPU
plan for the next day, the decision maker needs to forecast the
load/generation information for an entire contract period (for
example, 1 month or half a year) and finish OPU optimization. Take
1 month as an example, only the OPU plan of the second day will be
adopted and other plans that are further away will be only used as a
reference andwill not be implemented, which is similar to the idea of
the model predictive control method (Huang et al., 2023; Yin et al.,
2023). Taking the entire contract cycle into account indicates dealing
with the complexity of optimization and an increase in variables
and the calculation cost, which also presents a challenge in OPU
optimization.

In addition to the computational complexity brought about by
the optimizing cycle, scheduling large-scale distributed resources
also remains a challenge. In OPU optimization, the users also
need to upload the flexibility information of their resources, as

FIGURE 1
Power shortage under the extremely hot weather.
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FIGURE 2
Framework schematic for OPU based on the aggregation of flexibility.

shown in Figure 2. In addition to traditional interruptible load, the
OPU users are equipped with new adjustable devices such as roof
photovoltaic panels and energy storage that can provide flexibility
to the power grid (Ouyang et al., 2022); Fu et al., 2022). However,
the aggregation of large-scale OPU resources is quite difficult
because of resource complexity. Existing methods in the recent
literature have attempted to compute approximate aggregation
models with low mathematical complexity, most of which can
be divided into two categories: outer-approximation methods
(Xu et al., 2018; Yi et al., 2020) and inner-approximation methods.
In inner-approximation methods, three main strategies are used to
evaluate flexibility: regulation range assessment (Šikšnys et al., 2015;
Ayon et al., 2017), power nodes (Ulbig and Andersson, 2012; Koch
and Andersson, 2012), and polytope approximation methods, such
as the inner-box approximation (Chen et al., 2020), symmetrical
zonotope approximation (Müller et al., 2019, 2015), and polytope-
based virtual battery approximation (Wang et al., 2020). In addition,
by scaling and translating a basic homothetic polytope, a maximum
inner aggregation approach has been formulated (Yi et al., 2021).
However, it may work only for resources with similar parameters.
Therefore, this study focused on developing a general method to
enlarge the aggregate feasible region for resources with various
parameters.

Motivated by the previously described challenges, we propose a
generalizedOPU approach for power and regulation services offered
by numerous small-capacity OPU resources. Compared with the
existing literature, this study is novel in the following aspects:

1) We propose an optimization model that considers the entire
contract period to ensure fairness to OPU users participating in

OPU projects. In this model, each OPU user signs a monthly
contract with the power company and can accept the power
company’s day-ahead load shedding order within the scope of
the contract.

2) To improve the efficiency of daily day-ahead OPU decision-
making, a full-cycle-variable-interval OPU (FC-VI-OPU)
optimization strategy is proposed. By decreasing the accuracy
requirements of the model for the future optimization scheme,
the solution speed can be improved.

3) A unified OPU resource flexibility aggregation method is
proposed. Deriving the general representation form of the
zonotope dramatically improves the flexibility loss after large-
scale decentralized resource aggregation, and the adjustment
potential of the OPU resources is maximized.

The remainder of this article is organized as follows:
Section 2 formulates the main OPU problem, in which the
objectives and constraints are provided. Section 3 introduces the
aggregation method and derives the general form of the zonotope
generator. Section 4 presents case studies demonstrating the
effectiveness of the proposed algorithm. Section 5 summarizes the
conclusions.

2 Problem formulation

In this section, we propose our zonotope-based model for OPU
optimization. Different parts of the model, including the objectives
and constraints, are described in the following subsections.
Figure 2 shows the framework schematic for OPU based on the
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aggregation of OPU resources. The utility controller first collects
information, including the predicted generation, load, and flexibility
information uploaded by the user, and then determines whether
load shedding is required. If the load exceeds the maximum power
generation in certain periods, the user is informed of the OPU
order.

2.1 Optimization objectives

When the temporal horizon of planning transitions from days
to months, the overarching objective encompassing OEJ undergoes
a transformation. This shift entails a departure from the initial
aim of harmonizing the day-to-day contractual advancement across
individual power plants. Instead, the recalibrated focus converges
upon facilitating a scenario wherein each participant within the
OPU framework attains a relatively flexible capacity to fulfill the
stipulated monthly contractual obligations. When the monthly load
shedding forecast deviates from the contract electricity, each user
should be able to share the deviated electricity equally. Therefore,
from the monthly time range perspective, the goal of OEJ is to
minimize the deviation between themonthly planned load shedding
and the monthly contract of load shedding.

Herein, the scheduled time is expanded from the next day to
the last day of the month. Qr

i denotes the completed electricity
by the planned date, and Qc

i denotes the monthly contract. pi,t
denotes the load shedding plan of user i at period t. prdt is the
length of period t. Nt is all time periods from the next day to
the end of the month. Then, the scheduled load shedding Qp

i
will be

Qp
i =

N

∑
t=1

pi,tprdt. (1)

The difference between scheduled load shedding of user i and
contract i will be

Bi = [(Qr
i +Q

p
i −Q

c
i )/Q

c
i ] × 100%. (2)

The maximum deviation of load shedding is introduced to be

Bmax =max Bi. (3)

According to OEJ principles, the contract completion of
different users should be as close as possible at the end of the month.
Therefore, the optimization objective function of a full cycle load
shedding plan can be expressed as

f =min
N1max
i=1
{[(Qr

i +Q
p
i −Q

c
i)/Q

c
i] × 100%} . (4)

2.2 Constraints

In this section, different constraints will be illustrated including
the system balance constraint and node voltage constraint.

2.2.1 System balance constraint
The total electricity generation should be equal to the load,

expressed as

∑
N1

pt =∑
N2

Pt, t ∈ T, (5)

where pt denotes the power of the user, Pt denotes the generation
of the generators, and N1 and N2 are the numbers of the user and
generator, respectively.

2.2.2 Node voltage constraint
When the load shedding plan is specified, the node voltage

cannot exceed the limit, expressed as

Vmin
i ≤ Vi,t ≤ V

max
i i ∈ Z, t ∈ T, (6)

where Vmin
i and Vmax

i are the lower and upper limits of the
voltage, respectively, and Vi,t denotes the voltage of node i at
time t.

2.2.3 Power flow constraint
Thepower flow constraint describes the balance of the active and

reactive power flow in each branch, expressed as

Pi,t = ∑
j:i→j
−Pij,t i ∈ Z, t ∈ T, (7)

Qi,t = ∑
j:i→j
−Qij,t i ∈ Z, t ∈ T, (8)

Sij,t = Pij,t + jQij,t

= (gij − jbij)(V
2
i,t −Vi,tVj,t cos θij,t − jVi,tVj,t sin θij,t)

i ∈ Z, t ∈ T, (9)

where Z denotes the node set. Pi,t andQi,t are the net loads of node i,
and Pij,t, Qij,t, and Sij,t are the active, reactive, and apparent power of
line i− j, respectively. gij andbij are the conductance and susceptance
of line i− j, respectively. θij,t denotes the voltage phase difference
between nodes i and j.

The quadratic and trigonometric functions included in the
power flow equation are non-convex functions. Solving the
optimization problems with power flow equations is difficult.
Herein, through the second-order cone relaxation method, the
power flow constraint is transformed into a linear constraint
plus a second-order cone constraint. The nonlinear variable V2

i,t
is transferred to Ri,t. Vi,tVj,t cosθij,t is transferred to Wij,t, and
Vi,tVj,t sinθij,t is transferred to Tij,t. Then, constraints (6)–(9) can be
reformulated as

Pij,t = gijRit − gijWij,t − bijTij,t, (10)

Qij,t = −bijRit + bijWij,t − bijTij,t, (11)

(Vmin
i )

2 ≤ Rit ≤ (V
max
i )

2, (12)

Wij,t ≥ 0, (13)

‖‖‖‖

‖

2Wij,t

2Tij,t

Rit −Rjt

‖‖‖‖

‖

≤ Rit +Rjt. (14)

2.2.4 Maximum load constraint
On the basis of future power generation, the overall load of the

distribution networkmustmeet an upper limit constraint.When the
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predicted load exceeds the upper limit of power generation, OPU
and load reduction are required, which is expressed as

∑
N2

Pt <= Pt,max, t ∈ T. (15)

2.2.5 OPU model with variable intervals
Using the full-cycle OPU optimization model can meet the OEJ

requirements for the scheduling mode, but substantial calculation
is required. Take the orderly power consumption plan at the
beginning of the month as an example. If there is a period
of 1 h, the total number of orderly power consumption plan
periods in the entire monthly cycle is 720. The calculation time
is too long to meet the calculation requirements for orderly
power consumption the day ahead, thus precluding power grid
production applications. If the calculation time interval is increased,
the calculation time requirements can be met, but the needs
for short-term scheduling operation are not met. In the day-
ahead OPU optimization calculation under an OEJ scheduling
mode, the planning requirements vary among periods. The power
consumption plan of users in each period of the next day requires
high calculation accuracy, whereas the calculation accuracy of the
plan after 1 week and 1 month is low.

Therefore, we propose a variable interval OPU optimization
model. The principle of time period selection is as follows: every 1 h
of the next day is a time period, every 2 h is taken as a time period
from day 2 to day 3, every 4 h is taken as a time period from day 4
to day 8, and every 8 h is taken as a time period for the remaining
days of the month. All loads and power generation take the forecast
average value in each interval.

3 Description of OPU resources

In this section, the modeling of the consumer and the
aggregation method based on the zonotopic set are illustrated.

3.1 Polytopic feasible sets

Various types of OPU resources, such as transferable load and
reducible load, exist in power systems, which have great potential
flexibility to provide power balance and regulation services to
power system operators. These devices have low capacity and large
numbers. Most of the OPU resources can be formulated as energy
storage (ES) devices according to Yi et al. (2021). We consider a
single ES resource over a finite discrete time horizon comprising N
time steps, each of duration ts. By definition, the feasible setP ⊆ ℝN

includes all power trajectories p ∈ ℝN that the system can follow.This
set is defined by the dynamics and constraints that the system must
follow. The constraints most common to flexible ES resources are
described as follows:

1) Power constraints: In general, the constant power pt the system
draws from (pt > 0) or feeds into (pt < 0) the power grid during
time step t is bounded as

p
t
≤ pt ≤ p̄t, t = 1,…,N. (16)

2) Ramp-rate constraints: The ramping limitation is modeled as

rt ≤ (pt − pt−1) ≤ ̄rt, t = 2,…,N. (17)

3) Energy constraint: The current energy of ES needs to meet the
upper and lower limit constraints, i.e.,

et ≤ et ≤ ̄et, t = 1,…,N. (18)

4) Energy conversion constraints: This constraint represents the
relationship between the residual energy state and active power
input/output, which can be written as

et = α ⋅ et−1 + η ⋅Δt ⋅ pt, t = 2,…,N, (19)

where α denotes the energy dissipation rate and η denotes the
charging/discharging rate. Δt is the length of the time interval.

The set of all power trajectories p≔ [p1,…,pN]
⊤ that satisfy the

aforementioned constraints is given by the convex polytope, referred
to as the resource polytope, P≔ {p ∈ ℝN : Ap ≤ b}, where A and
b summarize the constraint matrices and the limits of (16)–(19),
respectively. Thus, set P serves as a natural description of the
flexibility of a system. It can be applied to various types of systems,
including storage-like loads, thermostatically controlled loads, and
deferrable loads.

The description of flexibility by polytopes poses substantial
computational challenges in making decisions for an entire group
of systems. Therefore, the polytopes of each OPU user must
be aggregated. The aggregate feasible set P(agg) is given by the
Minkowski sum (M-sum) of all individual feasible sets p(j):

P (agg) ≔ P (1) ⊕⋯⊕P (J)

= {p ∈ ℝN : p = ∑
j∈J

p(j),p(j) ∈ P (j)}. (20)

However, the aforementioned method is not feasible in practical
solutions. With the increase in the dimensions of a convex
polyhedron, the numbers of vertices and permutations increase
exponentially, thus leading to a dimension explosion problem and
greatly increasing the M-sum computational complexity. To address
this difficulty, zonotopes have been proposed to inner-approximate
individual polytopic feasible sets and have been found to have
efficient polymerization characteristics.

3.2 Zonotopic feasible sets

Zonotope, also known as fully symmetric polyhedron, has the
characteristics of less storage space and less computation when
used in aggregation tasks. A zonotope Z can be expressed in terms
of its center c ∈ ℝN and generator vector g(i) ∈ ℝN, ‖g(i)‖

2
= 1, i =

1,…,ng, as

Z = {x ∈ ℝN : x = c+Gβ,− ̄β ≤ β ≤ ̄β} , (21)

where the generators are summarized in the generator matrix G≔
[g(1),…,g(ng)] ∈ ℝN×ng . The scaling factor β ∈ ℝng is symmetrically
bounded by ̄β. c denotes the center. The shorthand Z(G,c, ̄β)
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is used to denote such a zonotope. The generator vectors g(i)

define the directions in which the zonotope can extend, whereas ̄β
determines its extent along the generator directions. More details
about zonotope can be found inMuller et al. (2015) andMüller et al.
(2019).

3.2.1 General form of a generator
Generator design is a key part of the zonotope, which must be

designed according to the specific constraint form. A prior study
(Müller et al., 2019) has proposed a generator set for the power and
energy constraints as

g(i) = [0,…,0,
i
⏞1,0,…,0]

⊤

, and

g(n+j) = [

[
0,…,0, − 1/√2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

j

,1/√2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
j+1

,0,…,0]

]

⊤. (22)

However, the generator form for more general constraints is not
given. In other words, the generator in Müller et al. (2019) is not
effective when a more detailed OPU resource model is considered.
Therefore, we derive the general generator form in this section.

Consider a single OPU resource over a finite discrete time
horizon comprising N time steps. Under a series of constraints,
the feasible region can be expressed as P≔ {p ∈ ℝN : Ap ≤ b}, as
illustrated in Section 3.1. We aim to construct the largest inscribed
zonotope Z(G,c, ̄β) ⊆ P(A,b).

Remark 1: For polytope P and its maximum inscribed zonotope
Zmax, every hyperplane of Zmax can find a hyperplane parallel to it in
P.

To prove remark 1, we take the two-dimensional diagram in
Figure 3A as an example, where hP and hZ denote the hyperplanes
of P and Zmax. Suppose that there is a pair of edges hZ1 and hZ2 in
Zmax, and no corresponding parallel edge exists in hP.The peripheral
edges of hZ1 and hZ2 of P are marked as hP1, hP2, hP3, and hP4. On
the basis of the original Zmax, we can construct new edges h′Z1, h

′
Z2,

h′Z3, and h′Z4, where h′Z1 and h′Z4 are parallel to hP3 and h′Z2 and h′Z3
are parallel to hP4. Therefore, we obtain a larger inscribed Z of hP,
thus contradicting the previous assumption. Therefore, remark 1 is
tenable.

On the basis of remark 1, we can easily deduce that a sufficient
condition for finding Zmax of P is that the generator of Zmax can
generate a hyperplane corresponding to each hyperplane of P. The
hyperplanes are associated with the operational constraints of OPU
resources.

Whether a zonotope can generate a hyperplane corresponding to
each constraint depends on the extension direction of its generator.
Therefore, we derive the general form of the generator to ensure
every possible constraint is considered.

Remark 2: For each constraint ∑Ni=1aixi ≤ b, a general form of
a generator, which generates the corresponding hyperplane, can be
expressed as

gi =
[[

[

0,0,…,
ai+1

√a2
i + a

2
i+1

,
−ai

√a2
i + a

2
i+1

,…,0]]

]

T

∈ RN

i = 1,2,…,N− 1. (23)

To prove remark 2, we take the three-dimensional diagram in
Figure 3B as an example. As shown, the hyperplane hPi is formed

FIGURE 3
Illustration of the zonotope. (A) Two-dimensional diagram of a
polytope and zonotope, where hz1//hz2, hP3//h

′
Z1//h
′
Z4,

hP4//h
′
Z2//h

′
Z3.(B) Three-dimensional diagram of P.

by the constraint a1x1 + a2x2 + a3x3 ≤ b. On the basis of remark 2,
we have two generators associated with the constraint, which can be
expressed as

{{{{{{{{{
{{{{{{{{{
{

gi1 =(
−a2

√a2
1 + a

2
2

,
a1

√a2
1 + a

2
2

,0,)

gi2 =(0,
−a3

√a2
2 + a

2
3

,
a2

√a2
2 + a

2
3

)

. (24)

As shown in Figure 3B, the unit normal vector of hPi can be
formed as

F = [[

[

a1

√a2
1 + a

2
2 + a

2
3

a2

√a2
1 + a

2
2 + a

2
3

a3

√a2
1 + a

2
2 + a

2
3

]]

]

T

. (25)

For ∀β̃ ∈ [− ̄β, ̄β], we obtain a vector Z̃ = c + β̃ ⋅G. Then, the
projection length of Z on normal vector F can be expressed as

L = Z̃ ⋅ F

= (c+ β̃ ⋅G) ⋅ F

= (c ⋅ F+ ∑
g∈G,g≠g1&g2

β′g ⋅ F)+ (βi1g
i
1 ⋅ F+ β

i
2g

i
2 ⋅ F) . (26)
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FIGURE 4
Optimization result of case 1.

Because β is bounded, the first part in Eq. 26 is also bounded.
According to Eqs 24 and 25, the second part is equal to 0.

c ⋅ F+ ∑
g∈G,g≠g1&g

′
2

β′g ⋅ F ∈ [c,d]

βi1g
i
1 ⋅ F+ β

i
2g

i
2 ⋅ F = 0

. (27)

For ∀βi1,β
i
2, L can obtain the minimum c and maximum value d

at certain β′. Therefore, two parallel planes of Z perpendicular to F
must exist, thus proving that remark 2 is tenable.

According to remark 2, for a polytope with M constraint, we
have an (N-1)M generator. The number of generators increases
rapidly with the increase in constraints, thus posing a large
computational burden in finding the maximum zonotope. Because
many repetitions exist in these generators, duplicate generatorsmust
be filtered according to the following principles:

Remark 3: For generators gi and gj in generator set G, if gi = gj
or gi = −gj, then gi and gj are duplicate generators, and one of them
should be removed from G.

3.2.2 Computing the optimal zonotope
This section demonstrates how to compute a zonotope that

inner-approximates a given polytope based on the given generator
G. The approximation problem of the zonotope can be solved with
an optimization problem. The optimization goal is to achieve the
highest similarity between the zonotope and the polytope.

Intuitively, on the premise of ensuring Z ⊆ P, the larger the
volume of the zonotope, the higher the degree of approximation.
However, to calculate the volume of the convex polyhedron, its
vertex expression must be calculated. Converting the feasible
region from half-space expression to vertex expression in the high-
dimensional space poses a large computational burden, so we can
arbitrarily construct s normal vectors αs ∈ ℝN and find the diameters
of the feasible regions Z and P in the αs direction by solving the
linear programming problem. The similarity is defined according to
its position and length relationship:

Λs = dZs /dPs ∈ [0,1] , (28)

where dZs ,dPs are the diameters of the two feasible regions in the αs

direction, respectively.
Givenαs, the linear programming problemof finding the tangent

point of a convex polyhedron and calculating the diameter can be
written as follows:

dPs = |max
p
(asp− ε) −min

p
(asp− ε)|/‖as‖2,

s.t.Ap ≤ b
, (29)

where ɛ is a constant large enough. The relationship between the
tangent point and diameter of the zonotope and αs can be written
as

dZs = 2 |αsG|βmax. (30)
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FIGURE 5
(A) Uncompleted rate of different OPU users in case 1. (B) Uncompleted rate of different OPU users in case 3.

After solving 2S linear programming problems, we obtain dP ≔
[dP1 ,…,d

P
S ] ∈ ℝ

S×N, and the main optimization problem can be
expressed as

max
c,βmax

1
S

S

∑
s=1

Λs

s.t.Ac+ |AG|βmax ≤ b
, (31)

where Ac+ |AG|βmax ≤ b is equivalent to Z ⊆ P, as proved in
Müller et al. (2015).

3.3 Aggregation of zonotopic flexibility

The M-sum of zonotopes can be computed efficiently. For the
OPU user set J, the aggregate zonotope ZJ of the individual sets
Z(G,c(j), ̄β(j)) is given explicitly by Z(J) = Z(G,c(J), ̄β(J)), which can
be expressed as

Z(J) =
{
{
{

q ∈ ℝn : q = c(J) +Gβ,

− ̄β(J) ≤ β ≤ ̄β(J)
}
}
}
,

c(J) ≔ ∑
j∈J

c(j),

̄β(J) ≔ ∑
j∈J

̄β(j)

. (32)

The structure of 32 is particularly convenient for aggregators.
First, Z(J) is a zonotope because zonotopes are closed under
Minkowski addition. Second, if systems are added to or removed
from the population, or if individual feasible sets change, the
aggregate feasible set can be adjusted efficiently by updating the
arithmetic sums c(J) and ̄β(J) accordingly.

3.4 OPU with the aggregation of resources

In this section, we illustrate how to integrate zonotope
feasible regions into the optimization problem described in
Section 2.1. In the zonotope described in Section 3.3, the
variables are the scaling factor β, in contrast to those in
the OPU model pi,t. Therefore, variable transformation is
necessary.

Each dimension of the zonotope is defined to correspond to each
interval in OPU. Therefore, each point q in zonotope Z corresponds
to a power plan in OPU, which is expressed as:

[[[[[[[

[

p1

p2

⋮

pT

]]]]]]]

]

=

[[[[[[[

[

c1
c2
⋮

cT

]]]]]]]

]

+
h

∑
i=1

{{{{{{{
{{{{{{{
{

[[[[[[[

[

g1i
g2i
⋮

gTi

]]]]]]]

]

βi

}}}}}}}
}}}}}}}
}

, (33)
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FIGURE 6
Optimization result of case 2.

where h denotes the total number of generators.
Therefore, the FC-VI-OPU model can be expressed as

f =min
N

max
i=1
{[(Qr

i +Q
p
i −Q

c
i)/Q

c
i] × 100%} ,

s.t. (5) − (15) , (33)
. (34)

4 Results and discussion

In this section, we present the results of case studies based
on the IEEE 14 node networks. Section 4.1 explains the details of
the experimental setup. Section 4.2 illustrates the effectiveness of
the zonotope, and comparative cases of the FC-VI-OPU model are
designed and discussed in Section 4.3.

4.1 Experimental setup

We tested the performance of our proposed approach on
simulated versions of the IEEE 14-bus. The topology of the system
is shown in Supplementary Figure S1 where detailed information
can be found. The simulation model was established with MATLAB
r2018 software, by using CPLEX for optimization, on a computer

TABLE 1 Contract completion of case 1 and case 2 for day 1.

Contract completion Case 1 Case 2

User 1/mWh 14.81 24.19

User 2/mWh 4.08 23.90

User 3/mWh 34.54 7.02

containing an Intel i5-7500 processor, with a main frequency of
3.40 GHz and memory of 8 GB.

The three OPU users sign a contract with a DSO for orderly
power consumption every month. The DSO performs load and
power generation forecasting several days in advance, and the OPU
users upload the feasible area. The DSO optimizes the OPU plan
for the next day according to the aforementioned information
and sends the instructions to the three OPU users for execution.
Supplementary Table S1 provides detailed information regarding
the three OPU users.

In this case, there are 14 days left in this month, and
Supplementary Figure S2 provides the forecast information of
power generation Pmax and load in the remaining 14 days of the
month. A short-term power supply shortage exists during the
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FIGURE 7
Optimization result of case 3.

TABLE 2 Performance of the three cases.

Case 1 2 3

f1 −0.61 −0.67 −0.66

f2 −0.61 −0.67 −0.66

f3 −0.61 −0.67 −0.66

f −0.61 −0.67 −0.66

Computing time/s 20.3 124.7 23

daily load peak. The simulation dataset includes the load and
wind power data taken from the Pecan Street data port (Street,
2015). The dataset contains smart meter kWh measurements taken
each hour from approximately 100 residential customers and 20
wind farms throughout the course of 1 year. For each node of
the test network, we aggregated the power consumption from 10
randomly selected customers as the nodal real power injections. All
nodal power injections were adjusted on the basis of the standard
load data of the network to create a realistic network loading
level.

4.2 Superiority of the FC-VI-OPU algorithm

In this section, we analyze the effectiveness of the FC-VT-OPU
model in three comparative cases. In each case, OPU resources are
aggregated according to the zonotope.

Case 1: OPU model: Case 1 focuses only on short-term
scheduling day ahead, and the optimized time scale includes only
the next 24 h (Yi et al., 2021). According to the predicted load/power
generation and the current contract completion, the DSO optimizes
the OPU plan of the three load aggregators in the next day. At
the end of the next day, the DSO updates the contract completion
information of each OPU user and repeats optimization until the
end of the month. The results of case 1 are shown in Figure 4.
All electricity shortage problems are solved in the next 14 days. In
addition, user 3 has large reduction in the first day because its current
contract completion is the lowest. The load is reduced for user 3
together with users 1 and 2 in the next few days.

Figure 5A shows the contract uncompleted rate of the threeOPU
users. It shows that the three rates always remain the same since the
OPU model focuses only on the next day and will obtain a local
optimal solution in each optimization.

Case 2: FC-OPU model: Case 2 focuses on long-term
resource allocation, and the optimized time scale includes the full
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TABLE 3 Setting of the prediction error.

Prediction error d = 1 (%) d = 2–3 (%) d = 4–8 (%) d = 9–14 (%) Worst result

Scenario 1 0 0 5 10 −0.66

Scenario 2 0 5 10 15 −0.65

Scenario 3 0 5 15 25 −0.63

Scenario 4 0 0 0 0 −0.67

FIGURE 8
(A) Feasible region of R1. (B) Inner approximation of the feasible region based on three methods: (a) box approximation; (b) TRAD zonotope
(Müller et al., 2019); (c) zonotope proposed.

FIGURE 9
Aggregation result of four OPU resources with different time horizons.
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TABLE 4 Performance of the three aggregationmethods for three cases.

Case OPU FC-OPU FC-VI-OPU

Box −0.49 — —

TRAD Zone −0.54 −0.63 −0.61

Proposed −0.61 −0.67 −0.66

month (Wang et al., 2021). According to the predicted load/power
generation and the current contract completion, the DSO optimizes
the OPU plan for the three OPU users during the next 14 days.
Figure 6 shows the result of case 2. Because the contract completion
volume of user 3 is low, the load of user 3 is theoretically decreased
to the greatest extent possible. However, when d = 7–8, the
load of nodes 8, 9, and 10, where user 3 is located, increases
because of the extremely hot weather, thus resulting in low-voltage
problems.

The load of user 3 is cut first since it will cause smaller network
loss than other OPU users. Therefore, the load reduction of user 3 is
large at d = 7–8. Therefore, the load reduction of D = 1 is dominated
by users 1 and 2. Table 1 shows the contract completion of case 1 and
case 2 for day 1.

A comparison of case 1 and case 2 indicates that the entire cycle
optimization can help the DSO determine the future power balance
pressure and consider this information to determine the OPU plan
for the next day. On the basis of the final optimization, the FC-OPU
optimization model yields fairer results.

Case 3: FC-VI-OPU model: In this section, the optimization
period is the entire month. The entire cycle is divided into
several cycles according to the principles in Section 2.2.5. The DSO
optimizes theOPUplan in thewholemonth, and only the plan in day
1 is adopted. At the end of the next day, DSO updates the contract
completion information of each OPU user and repeats optimization
until the end of themonth. Figure 7 shows the results of case 3, which
is similar to the result of case 2. In addition, Figure 5B shows the
uncompleted rate of differentOPUusers in case 3 during the 14 days.
We can see that the resource of user 3 is mainly dispatched in days 7
and 8, which is different from that in case 1.

Table 2 shows the optimization results and solution times for the
three cases. From the perspective of optimization quality, the result
of case 2 is the best, while that of case 1 is the worst. In addition,
a suboptimal solution is obtained in case 3. From the perspective
of solution time, case 1 needs the shortest solution time (20.3 s)
because it only optimizes the plan of the next day. Case 2 is a full cycle
optimization, so the solution time is greatly increased. However, the
solution time of case 3 is greatly reduced due to the variable intervals
processing while obtaining a satisfactory result.

4.3 Sensitivity analysis of the prediction
error

In the previous analysis, we did not consider the prediction error
of wind power/load. In this section, we analyze the effectiveness
of this model under different prediction errors. The farther the
load/generation is predicted, the greater the prediction error.

TABLE 5 Performance of the threemodels for three cases.

Case Users Time left/day Model Obj. value

4.1 10 20 Box —

TRAD Zono −0.37

Proposed −0.48

4.2 10 20 OPU −0.44

FC-OPU −0.52

FC-VI-OPU −0.48

4.3 20 40 OPU −0.21

FC-OPU −0.43

FC-VI-OPU −0.38

As illustrated in Section 2.2.5, the next 14 days are divided into
four parts. Thus, we propose four scenarios, each with a different
prediction error. Table 3 provides the detailed information about the
setting of the predicted error.

As shown in Table 3, the values indicate the maximum
prediction error. For example, in scenario 1, when d = 4–8, the
prediction value can be in the range of [0.95p, 1.05p]. To test the
performance of the proposed model, 100 sets of load and power
generation curves are generated in each scenario. We optimize the
load shedding plan through the proposed FC-VT-OPU algorithm
for each set of the curve, and the poorest result is shown in Table 3.
The result in Table 3 shows that with increased prediction accuracy,
the optimization result is closer to the optimal value −0.67 in
scenario 4. In addition, when a large prediction error exists, the
performance of the proposed FC-VI-OPU algorithm remains better
than that of the OPU model (−0.63 < −0.61).

4.4 Aggregation of OPU resources

4.4.1 Feasible region for single equipment
To help readers understand the proposed approximation

method for the feasible regions of OPU resources in Section 3, a
simple example is presented for the single equipment case. The
equipment can be modeled by the formulation in Section 3.1. The
time horizon T is set to 2. Thus, the feasible region of the OPU
resource is a two-dimensional polygon, and the decision variable
includes the active power in two time intervals. The parameters are
given by R1 in Supplementary Table S2.

The feasible region of the basic polytope (R1) is shown in
Figure 8A, in which the operation constraints in (16)–(18) are
also presented. For the polytope marked in gray, three methods
are used for the inner approximation: the box approximation
(Chen et al., 2020), the zonotope using the generator in a prior study
(Müller et al., 2019), and the zonotope using the generator proposed
herein.

Figure 8B shows the results of the three approximationmethods.
In Figures 8A a), because box approximation can extend only along
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FIGURE 10
Calculation time for different models in three cases.

the horizontal and vertical axes, the maximum inscribed rectangle
is shown by the yellow region. In Figures 8B b), limited by the
previously described generator (Müller et al., 2019), the zonotope
can extend in the direction of 135°, as indicated by the orange
region. In contrast, for the blue region in Figures 8B c), because
our generator was obtained on the basis of the real constraint,
the zonotope can extend in the direction of the constraint and
cover a larger region. In addition, the three methods cover 78.6 %,
91.4.2%, and 96.8% of the polytope, respectively, thus indicating the
effectiveness of the proposed method.

4.4.2 Multiple OPU resources with different time
horizons

To further illustrate the scalability of the proposed aggregation
approach, the aggregation results of four OPU resources (R1–R4
in Supplementary Table S2) with different time horizons are
shown in Figure 9. Because the high-dimensional feasible region
is not visible, the volume is used to reflect the aggregation
performance.

As shown in Figure 9, with a longer time horizon, the
performance of all methods decreases and eventually reaches a limit
value. In addition, the proposed zonotope aggregation method can
always obtain the largest volume percentage with different time
horizons over 90 %. The zonotope method in Müller et al. (2019)
has poorer performance on the basis of the limited generator, and the
curve of the boxmethod drops sharplywith increasing time horizon.
Therefore, the proposed method enables convenient aggregation
with a minimal loss of flexibility of OPU resources.

We further optimize the OPU problem in Section 4.2 based on
the different aggregationmethods, as shown inTable 4. It can be seen
that the method proposed in this paper has the best performance
regardless of the case. In addition, themethod inMüller et al. (2019)

exhibits a slightly worse performance. However, it is worth noting
that in FC-OPU and FC-VI-OPU models, the box method results in
a great loss of flexibility, which makes it unable to realize effective
load reduction in some periods of time when power shortage
happens.

4.5 Comparison of algorithm efficiency in a
421-bus system

The 421 system is also used to further validate the effectiveness
of the proposed FC-VI-OPU algorithm, which is composed of
three IEEE 141-bus systems (Capitanescu et al., 2014). Similar to
the 14-bus system, there are 20 OPU users at different buses, and
each user represents a flexible load cluster. The adjustable time of
the OPU resources is set according to the actual data of an OPU
project in a province of China this year. Moreover, this system also
includes 10 WTs with the total capacity of 2.0 MW, and the peak
load is 10 MW. The contract period is 3 months. To investigate
the computational efficiency improvement by using the proposed
method, the scheduling time is set at different points in the contract
period.With an increasing number of time intervals in optimization,
the complexity of the model is increasing.

Three cases are set to compare the performance of the three
models in Section 4.2 under different calculation scales. In case 4.1,
10 users are considered inOPUoptimization and the contract has 20
days left. Three aggregation methods are adopted based on the FC-
VI-OPU optimizationmodel. In case 4.2, three optimizationmodels
are adopted based on the proposed aggregationmethod. In addition,
in case 4.3, more users are considered than case 4.2, as shown in
Table 5. The values of the objective functions in three cases are also
listed in Table 5. Figure 10 shows the computation time.
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Table 5 and Figure 10 show that in case 4.1, the proposed
aggregation method obtains the best objective value with slightly
increased calculation time. In case 4.2, the FC-VI-OPU method
reports the similar objective functions to the FC-OPU method,
while in case 4.3, the performance of the OPU method is
unsatisfactory and gets worse as the OPU users and contract time
increase. The reason is that the OPU method cannot consider
the prediction information and, finally, obtains an unfair OPU
solution in large-scale systems. Meanwhile, even though the FC-
OPU method can always obtain the best objective value in cases 4.2
and 4.3, it has shown terrible performances in terms of calculation
time, as shown in Figure 10. In case 4.3, the calculation time of the
FC-OPU method gets even more than 20 min. This is because more
contract time introduces more time intervals into the problem and
increases the complexity of optimization. In general, the proposed
FC-VI-OPUmethod can achieve a good performance whether from
the perspective of ensuring OEJ principles or calculation time.

5 Conclusion

This study has undertaken the formulation of the OPU
conundrum, accompanied by the establishment of an optimization
framework aimed at fostering equitability among OPU participants.
The optimization schema operates on a day-ahead basis,
encompassing the entirety of the contractual timeline, and
incorporates adaptive intervals. To facilitate the amalgamation
of OPU resources within this framework, we introduce a
zonotope-based algorithm, wherein the foundational construct
of the generator is presented in its general formulation. Three
approximation methods were used to implement distribution-level
power aggregation. Several illustrative instances were delineated
for comparative analysis, illuminating the facets of the FC-VI-OPU
framework. The empirical efficacy of the proposed approach finds
corroboration through numerical assessments conducted across two
distinct systems.

However, the proposed framework still has limitations that it
does not consider the cost of the flexible resources, which is a huge
challenge yet. Futurework aims to consider the scheduling costwhile
aggregating the feasible regions of large-scale distributed resources
and set the cost as a part of the objective function. In addition,
another future work aims to consider the regional electricity trading
under the weather impact and will focus on the uncertainty of
renewable energy generation.
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Nomenclature

Acronym

ES Energy storage

M-sum Minkowski sum

OEJ Openness, equity, and justness

OPU Orderly power utilization

Indices and functions

dP
s Diameters of P in a given direction

dZ
s Diameters of Z in a given direction

F Unit normal vector

L Projection length

Parameters

α, η Charging/discharging rate

α, η Energy dissipation rate

β̄ Bound of the scaling factor

et , ̄et Lower/upper bound of energy

rt , ̄rt Lower/upper bound of ramping

bij Susceptance of line i− j

beta Scaling factor of the zonotope

C Center of the zonotope

gij Conductance of line i− j

N Number of time intervals

N1 Number of the OPU user

N2 Number of the generator

Qc
i Whole contract

Qr
i Completed contract

Vmax
i Upper bound of the voltage at node i

Vmin
i Lower bound of the voltage at node i

Sets

P(j) Set of the polytope

G Set of the generator

P Set of the polytope

T Set of time intervals

Z Set of the zonotope

Variables

θij,t Voltage phase between nodes i and j

A, b Matrices of the OPU resource constraints

et Energy at t

prdt Length of period t

Pt Generation at t

Qp
i Scheduled load shedding

Vi,t Voltage of node i at t

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1166724
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 Problem formulation
	2.1 Optimization objectives
	2.2 Constraints
	2.2.1 System balance constraint
	2.2.2 Node voltage constraint
	2.2.3 Power flow constraint
	2.2.4 Maximum load constraint
	2.2.5 OPU model with variable intervals


	3 Description of OPU resources
	3.1 Polytopic feasible sets
	3.2 Zonotopic feasible sets
	3.2.1 General form of a generator
	3.2.2 Computing the optimal zonotope

	3.3 Aggregation of zonotopic flexibility
	3.4 OPU with the aggregation of resources

	4 Results and discussion
	4.1 Experimental setup
	4.2 Superiority of the FC-VI-OPU algorithm
	4.3 Sensitivity analysis of the prediction error
	4.4 Aggregation of OPU resources
	4.4.1 Feasible region for single equipment
	4.4.2 Multiple OPU resources with different time horizons

	4.5 Comparison of algorithm efficiency in a 421-bus system

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Nomenclature

