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Artificial intelligence and machine learning are used to optimize the design
parameters of renewable energy sources, which are now regarded as vital
components in current clean energy sources. As a result, system requirements
can be reduced, and a well-designed system can improve performance. Artificial
intelligence approaches in renewable energy sources and system design would
significantly cut optimization time while maintaining high modeling accuracy
and optimum performance. This study examines machine learning in depth,
emphasizing how it can be used in developing renewable energy sources
because of the vast range of technologies it can use. This paper approximates
the hourly tilted solar irradiation using climate factors. The irradiance is estimated
using a hybrid ensemble-learning approach. This approach combines a proposed
adaptive dynamic squirrel search optimization algorithm (ADSSOA) with long
short-term memory (LSTM) methods. To the best of our knowledge, this
combination has not been used for solar radiation. The results are analyzed and
contrasted with the outcomes of several recent swarm intelligence algorithms,
such as the genetic algorithm, particle swarm optimization, and gray wolf
optimizer. The binary ADSSOA approach performed as expected, with an
average error of 0.1801 and a standard deviation of 0.0656. The ADSSOA–LSTM
model had the lowest root mean square error (0.000388) compared to
LSTM’s (0.001221). In addition, the statistical analysis uses 10 iterations of each
presented and evaluated method to provide accurate comparisons and reliable
results.

KEYWORDS

forecasting solar radiation, al-Biruni Earth radius, metaheuristic algorithm, artificial
intelligence, long short-term memory algorithm

1 Introduction

In recent years, the growing demand for energy has led to the exploration of new
energy generationmethods. One suchmethod is solar energy, which is generated using solar
radiation and is used both at home and in commercial settings (Li et al., 2016). However, the
amount of solar energy produced is affected by uncontrollable factors and cannot be easily
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predicted. This unpredictability can lead to negative consequences
and decrease the reliance on solar energy. The use of machine-
learning algorithms to analyze historical data on solar radiation
can help predict solar radiation for short-term periods, such as
5–10 min or even up to 24 h (Li et al., 2013; Voyant et al., 2017).

The ARMA and ARIMA models were utilized by Belmahdi
et al. in order to produce global predictions of solar radiation.
The findings of their research suggest that these models can
predict monthly mean daily global solar radiation time series for
several months in advance (Belmahdi et al., 2020). It is absolutely
essential to have accurate forecasting in order to maintain a steady
and reliable supply of solar energy (Ahmed et al., 2020). For the
purpose of predicting solar radiation, meteorological data can
be gathered from a variety of radiometric stations situated in
various locations, and these data can be used (Hossain et al., 2017).
In order for researchers to obtain accurate prediction results, a
variety of algorithms and adaptations of those algorithms have
been devised. When it comes to improving risk management,
probabilistic forecasting is frequently advised (Sobri et al., 2018).
Probabilistic forecasting can be generated with the help of Browell
and Gilbert’s framework, which is called ProbCast (Browell and
Gilbert, 2020). This framework makes use of predictive models,
visualization, and evaluation of forecasting outcomes. For effective
forecasting of solar radiation, machine-learning algorithms make
use of a variety of meteorological variables like wind, temperature,
latitude, and atmospheric pressure, amongst others. In order to
make accurate forecasts, it is essential to routinely gather, store,
and examine data relating to the aforementioned atmospheric
variables.

Modeling strategies such as the genetic algorithm (GA) and
the neural network (NN) have been utilized by researchers for the
purpose of forecasting solar radiation (Quaiyum et al., 2011). As
part of their investigation, a NN is given as an input parameter
of the daily mean atmospheric pressure as well as other weather-
related data from the day before. According to the available research,
NN models are capable of producing more accurate predictions of
solar radiation. The use of the GA is more suited in settings where
only the strongest individuals survive (Khosravi et al., 2018a). The
mathematical equations that make up a physical model are used to
provide a description of the physical condition and the dynamic
motion of the atmosphere (Khosravi et al., 2018b). However, GA-
based algorithms are not appropriate for these kinds of physical
models (Mishra and Palanisamy, 2018), while the NN methodology
demands a considerable quantity of input data, which can sometimes
include non-relevant characteristics (El-Kenawy et al., 2022a). In
addition, GA-based algorithms are not as accurate as NN-based
methodologies.

A methodology that operates in two stages was developed by
Narvaez et al. (2021). The first stage involves selecting the optimal
data source for improved spatio-temporal resolution, and the second
stage involves utilizing deep learning for forecasting solar radiation.
Forecasting solar radiation requires taking into account a number
of critical elements, including the geographic and climatic variables
of a particular site (Yadav and Chandel, 2014; Marzouq et al.,
2017; Praynlin and Jensona, 2017). Al-Hajj et al. came up with
a predictive model that was based on dynamic recurrent neural
networks (DRNNs) and had short-term delay units (Al-Hajj et al.,
2018). This model was intended to estimate the daily intensity of

solar radiation. In comparison to the rootmean square error (RMSE)
and mean bias error (MBE), the model’s predictions were more
accurate. Dealing with regular weather conditions, such as rain,
wind, fog, snow, thunder, humidity, and sunshine, presents another
obstacle for researchers who are trying to collect data on global
solar radiation. For such data gathering, the correct installation of
solar radiation measuring sensors, also known as pyranometers, is
essential. These sensors can be pricey, and many nations do not
have sufficient network resources to obtain these data (Cao et al.,
2020; Gupta et al., 2020; Huynh et al., 2020). Under circumstances
like this, it is best to create empirical models that are able to make
use of the meteorological data obtained by stations located in close
proximity (Feng et al., 2020; Wang et al., 2020).

Support vector regression (SVR) is a type of supervised learning
algorithm that can be used for both linear and non-linear regression
problems. It is based on the principle of support vector machines
(SVMs), which are commonly used for classification tasks. SVR aims
to find a linear or non-linear function that can best approximate
the relationship between the input variables and the output variable
(Abdelhamid et al., 2022). The algorithm constructs a boundary (or
“hyperplane”) thatmaximally separates the data points into different
classes (in case of SVM) or that has the maximum margin to the
closest data points (in case of SVR) (El-kenawy et al., 2022b). This
boundary is then used tomake predictions on new unseen data. SVR
can handle non-linear and non-continuous data, and it has been
successfully applied in various fields such as finance, bioinformatics,
and geology.

Long short-term memory (LSTM) is a form of recurrent
neural network (RNN) architecture that is able to record long-term
dependencies in sequential data. This capability allows LSTM to
be used in artificial intelligence applications. By incorporating a
memory cell, gates (input, output, and forget gates) that are able
to control the flow of information into and out of the cell, as well
as a hidden state, the vanishing gradient problem that occurs in
conventional RNNs can be circumvented using LSTM networks.
These networks are designed to accomplish this. Natural language
processing, speech recognition, and time series forecasting are just
some of the applications that could benefit from the ability of LSTMs
to selectively retain or forget information over extended periods of
time (Eid et al., 2022).

Recently, a study by Ibrahim et al. (2023) predicted the
performance of a hybrid solar desalination system using a
supervised machine-learning algorithm based on the al-Biruni
Earth radius (BER) and particle swarm optimization (PSO)
algorithms. Their proposed BER–PSO method is trained and
evaluated using experimental data, which shows its ability to identify
the nonlinear relationship between operating conditions and
process responses. The method offers better statistical performance
measures compared to other models for predicting the outlet
temperature of hot and cold fluids and pressure drop values. A
method for predicting wind speed with high accuracy based on
a weighted ensemble model optimized by an adaptive dynamic
gray wolf-dipper throated optimization (ADGWDTO) algorithm
was recently proposed by El-kenawy et al. (2023). The ADGWDTO
algorithm optimizes the hyperparameters of the MLP, KNR, and
LSTM regression models, achieving better results than state-of-
the-art wind speed forecasting algorithms. The algorithm’s stability
and robustness are confirmed by statistical analysis of several tests,
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FIGURE 1
Distribution of parameter values of the tested dataset.

such as ANOVA and Wilcoxon’s rank-sum, using the Global Energy
Forecasting Competition 2012 dataset.

The primary contribution of this study is as follows:

• Introducing an adaptive dynamic squirrel search optimization
algorithm (ADSSOA)
• Presenting a binary version of this algorithm (bADSSOA)

which can be used for feature selection
• Proposing a hybrid ensemble-learning approach that combines

the ADSSOA with the LSTM method for modeling solar
radiation
• Demonstrating the effectiveness of the proposed algorithm in

regression tasks
• Utilizing the HI-SEAS dataset, which contains information on

weather conditions from NASA’s Hackathon’s Solar Radiation
Prediction task, in this research

2 Literature review

For the purpose of evaluating solar energy resources, researchers
have shown a growing interest in hybrid learning methods, which
bring together a number of different approaches. Alrashidi et al.
(2021) proposed a framework that forecasts the values of global
solar radiation at a variety of locations in Saudi Arabia using a
combination of SVR, grasshopper optimization algorithm (GOA),
and the Boruta-based feature selection algorithm. This framework
was developed using these three distinct algorithms. According
to the findings of the research, this technique had a lower mean

absolute percentage error (MAPE) and performed better than
conventional SVRmodels by a range of 32.15%–39.69% for the areas
that were investigated.

Demircan et al. (2020) developed a new way to improve the
performance of the Angstrom–Prescott model for estimating solar
radiation by using the artificial bee colony (ABC) algorithm in the
city of Mugla, Turkey. They created both annual and semi-annual
models and found that the performance of the models improved
when using the ABC algorithm. They also discovered that models
that only used sunshine duration data were not reliable, and thus,
including the sunset–sunrise hour angle in the models improved
performance. Zhou et al. (2021) conducted a review of machine-
learning models based on previously published research articles.
They examined the input parameters, feature selectionmethods, and
model development procedures used in the studies. They defined
seven classes of machine-learning models based on pre-processing
data algorithms, output ensemble methods, and the purpose of the
models.They advised that future studies should focus on developing
novel and combined machine-learning models and that the data
used for model development should be thoroughly checked for
errors and instrument failure.

Pang et al. (2020) used deep learning to estimate Alabama
solar radiation. They investigated the accuracy and efficiency of an
artificial neural network (ANN) model with an RNN using different
sampling frequencies and moving window techniques. The RNN
was 26% more accurate than the ANN in the study. A moving
window method reduced RNN’s NMBE from 0.9± % to 0.2± %.
Bellido-Jiménez et al. (2021) constructed and compared machine-
learning algorithms to estimate solar radiation in southern Spain
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TABLE 1 Parameters used to set up compared algorithms.

Algorithm Parameter(s) Value(s)

SS Squirrels 10

Iterations 80

R1, R2, R3 [0,1]

Gc 1.9

Pdp 0.1

GWO a 2 to 0

Wolves 10

Iterations 80

PSO Acceleration constants Abdelhamid et al. (2022);Abdelhamid et al. (2022)

Inertia Wmin, Wmax [0.6, 0.9]

Particles 10

Iterations 80

WOA r [0, 1]

a 2 to 0

Whales 10

Iterations 80

FA Fireflies 10

Iterations 80

GA Cross over 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Agents 10

Iterations 80

TABLE 2 Parameters used to set up the ADSSOA.

Parameter (s) Value(s)

# Agents 10

# Iterations 80

# Runs 10

R1, R2, R3 [0,1]

Gc 1.9

Pdp 0.1

c1,c2,c3 [0,1]

Pa [0,1]

Pd [0,1]

a, r, b, p [0,1]

h1 of Fn 0.99

h2 of Fn 0.01

TABLE 3 Feature selection evaluation criteria tomeasure the effectiveness of
feature selectionmethods.

Metric Formula

Best Fitness minM
i=1S

*
i

Worst Fitness maxMi=1S
*
i

Average Error 1
M
∑Mj=1

1
N
∑Ni=1mse(V̂i −Vi)

Average Fitness 1
M
∑Mi=1S

*
i

Average fitness size 1
M
∑Mi=1size(S

*
i )

Standard deviation √ 1
M−1
∑Mi=1(S

*
i −Mean)2

and the United States. Machine-learning methods outperformed
self-calibrated empirical models when intraoral inputs were used. In
medium aridity areas, the multi-layer perceptron (MLP) algorithm
performed best. The study also revealed that SVR and RF models
were better for the most arid and humid sites.
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TABLE 4 Comparison of the proposed binary ADSSOAwith other binary optimization algorithms.

bADSSOA bSS bGWO bPSO bWOA bFA bGA

Average error 0.1801 0.2366 0.1973 0.2311 0.2309 0.2295 0.2109

Average select size 0.1329 0.4662 0.3329 0.3329 0.4963 0.3674 0.2753

Average fitness 0.2433 0.2678 0.2595 0.2579 0.2657 0.3098 0.2709

Best fitness 0.1451 0.2213 0.1798 0.2382 0.2298 0.2285 0.1742

Worst fitness 0.2436 0.3313 0.2467 0.3059 0.3059 0.3261 0.2893

Standard deviation fitness 0.0656 0.0885 0.0703 0.0697 0.0719 0.1065 0.0719

FIGURE 2
Comparing the performance of the bADSSOA method with other
optimization algorithms. The average error for each algorithm is
presented using a box plot.

In prior research, scientists either used climate variables to
estimate the solar radiation on a horizontal plane or used horizontal
solar radiation as an input variable to estimate the radiation on a tiled
surface (Bouchouicha et al., 2019; Almorox et al., 2020). Both of
these methodologies produced similar results. This study intended
to establish the hourly solar irradiation that is skewed by using
a combination of weather-related elements as the independent
variables. To estimate the irradiance, a novel approach that had
not been attempted before in solar radiation modeling was utilized.
This strategy involved the hybridization of the advanced squirrel
search optimization algorithm (ASSOA) with the LSTM algorithm.
The results were then compared to those produced from other
swarm intelligence algorithms that are often used, such as the
GA, PSO (Ibrahim et al., 2020), and gray wolf optimizer (GWO)
(Khafaga et al., 2022). These algorithms are all examples of common
swarm intelligence methods.

3 Methodology of research

The ADSSO algorithm is a new optimization technique that
is inspired by the foraging behavior of squirrels. It combines
the exploration ability of the squirrel search algorithm with the

exploitation ability of the cuckoo search algorithm to improve the
global search capability. The algorithm uses a dynamic adaptation
mechanism to balance the exploration and exploitation trade-off,
which helps to avoid getting stuck in local optima and improves
the convergence speed. The algorithm has been applied to various
optimization problems and has shown promising results in terms of
solution quality and computational efficiency.

3.1 The proposed ADSSOA

The search process for flying squirrels involves incorporating
additional movements such as horizontal, vertical, diagonal, and
exponential, which are included in the ADSSOA). Similar to the
fundamental SS algorithm, the ADSSOA approach posits that the
squirrels move between three types of trees: regular trees, oak trees,
and hickory trees. The oak and hickory trees are the only ones that
have food sources for the nuts, while the other trees do not have
any food sources. The ADSSOA assumes mathematically that the
squirrels are flying in directions to find the optimal hickory tree, as
well as the next best options, which are three oak trees, to gather
nutrient-rich food resources, Nfs, for a certain number of flying
squirrels (FS).

The agents are divided into smaller groups, and within
each group, the agents are adaptively adjusted to improve the
balance between exploration and exploitation. In total, 70% of the
population belongs to the exploration group, while 30% belongs to
the exploitation group. To increase the fitness level of the individuals
in each group, the individuals in the exploration and exploitation
groups are modified to enable a larger increase in the overall average
fitness of the individuals. Mathematically, agents in the exploration
group search for potential areas near their current position in
the search space by repeatedly seeking out the best option in
terms of fitness among the available options in the surrounding
area.

The positions and velocities of the flying squirrels are
represented by matrices as follows:

FS =

[[[[[[[[[[

[

FS1,1 FS1,2 FS1,3 … FS1,d

FS2,1 FS2,2 FS2,3 … FS2,d

FS3,1 FS3,2 FS3,3 … FS3,d

… … … … …

FSn,1 FSn,2 FSn,3 … FSn,d

]]]]]]]]]]

]

, (1)
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V =

[[[[[[[[[[

[

V1,1 V1,2 V1,3 … V1,d

V2,1 V2,2 V2,3 … V2,d

V3,1 V3,2 V3,3 … V3,d

… … … … …

Vn,1 Vn,2 Vn,3 … Vn,d

]]]]]]]]]]

]

, (2)

where the notation FSi,j represents the location of the ith flying
squirrel in the jth dimension, where i ranges from 1 to n and j
ranges from 1 to d. Similarly, Vi,j represents the velocity of the ith
flying squirrel in the jth dimension. The starting locations of FSi,j
are determined by a uniform distribution within defined lower and
upper limits. The fitness values, f = f1, f2, f3,…, fn, are calculated for
each flying squirrel, with the optimal value representing a hickory
tree. These values are then arranged in the ascending order. The top
solution is considered to be FSht on the hickory nut tree, followed
by the next three best solutions, FSat , on the acorn nut trees. The
remaining solutions are assumed to be FSnt on normal trees.

In the ADSSOA, the location of each flying squirrel is updated
based on the following cases. The specific case to be applied is
determined by a randomly generated value p. If p is greater than or
equal to 0.5, then the following cases will be implemented.

Case 1: Location of FSat and moving to the hickory nut tree:

FSt+1at =
{
{
{

FStat + dg ×Gc (FS
t
ht − FS

t
at) if R1 ≥ Pdp

Random location otherwise.
(3)

Case 2: Location of FSnt and moving to the acorn nut trees:

FSt+1nt =
{
{
{

FStnt + dg ×Gc (FS
t
at − FS

t
nt) if R2 ≥ Pdp

Random location otherwise,
(4)

Case 3: Location of FSnt and moving to the hickory nut tree:

FSt+1nt =
{
{
{

FStnt + dg ×Gc (FS
t
ht − FS

t
nt) if R3 ≥ Pdp

Random location otherwise,
(5)

where in this process, R1, R2, and R3 are random numbers chosen
from the interval between 0 and 1. The variable dg represents a
random distance for gliding, and t represents the current iteration.
The constant value of Gc is set to 1.9 in order to achieve the balance
between exploration and exploitation. Additionally, the probability
value of Pdp is set to 0.1 for all three cases.

In the case where the random value p is less than 0.5, the
algorithm will apply the following cases.

Case 4: Location of FSnt and moving diagonally:

FSt+1nt =

{{{{{{{
{{{{{{{
{

FStnt +V
t
nt+

c1r(FS
t
ht − FS

t
nt)+

c2r(FS
t
at − FS

t
nt) if Pa < a

Random FStrand ∈ FS
t
nt otherwise,

(6)

These cases involve the use of random numbers c1, c2, r, Pa,
and a that are chosen from the range of [0, 1]. If a random agent,
FStrand, is selected from the normal agents, FStnt, the fitness values
for FStrand and FSntt will be calculated to determine the direction of
movement. If Fn(FStrand) is less than Fn(FSntt), the movement will

be in the vertical direction, otherwise, it will be in the horizontal
direction.

Case 5: Location of FSnt and moving vertically or horizontally
based on the fitness value Fn(FS

t
rand):

FSt+1nt =

{{{{{{{{{{
{{{{{{{{{{
{

FStnt +V
t
nt+

c3r(FS
t
rand−

FStnt) if Fn (FS
t
rand) < Fn (FS

t
nt)

FStnt +V
t
nt+

c1r(FS
t
ht − FS

t
nt) otherwise,

(7)

where c3 is a random number ∈ [0,1]. In the final scenario, if
the criteria for horizontal and vertical movement are not met, an
additional case is applied.

Case 6: Location of FSnt and moving will be exponential:

FSt+1nt = FS
t
nt + |(FS

t
rand − FS

t
nt)|exp (bt)cos (2πt) , (8)

where b is a random number ∈ [0,1].
The ADSSOA uses a seasonal constant (Sc) and a minimum

value for the seasonal constant (Smin) to monitor the progress of
the algorithm. The value of Smin can affect the algorithm’s ability
to explore and exploit solutions during the iterations. If a certain
condition is met, the movement of the flying squirrels is modeled
by Eq. 9 which can have an impact on finding both local and global
optima.

FSnewnt = FS
t
ht + 2r((FS

t
ht − FS

t
nt)(1−(

FStht + FS
t
nt

FStnt
)

2

)). (9)

Algorithm 1 step by step explains the proposed ADSSOA.
The computational complexity of the algorithm is discussed in
Algorithm 1 as well. The time complexity is defined by considering
the number of population as n = n1 + n2 + n3 and the maximum
number of iterations as tm. The time complexity of different parts
of the ADSSOA is as follows:

• Initializing ADSSOA population and parameters: O (1)
• Calculating the fitness function for each agent: O (n)
• Sorting the agents in the ascending order: O (n)
• Finding the first best, next three best, and normal individuals:
O (n)
• Updating the positions of each agent in case 1: O (tm × n1)
• Updating the positions of each agent in case 2: O (tm × n2)
• Updating the positions of each agent in case 3: O (tm × n3)
• Updating the positions of each agent in case 4: O (tm)
• Updating the positions of each agent in case 5: O (tm)
• Updating the positions of each agent in case 6: O (tm)
• Calculating the seasonal constant: O (tm)
• Calculating the minimum value of seasonal constant: O (tm)
• Relocating the agents: O (tm)
• Incrementing the iteration number: O (tm)
• Returning the best individual: O (1)

The aforementioned analysis shows that the proposed ADSSOA
complexity of computation is O (tm × n) and in case of a problem
with d dimensions is O (tm × n× d).
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1: Initialize ADSSOA population FSi(i = 1,2,… ,n)

with size n, velocities Vi(i = 1,2,… ,n),

iterations tm, and objective function Fn,

parameters, t = 1

2: Calculate Fn for each agent FSi and Sort

squirrels locations in the ascending order

3: Find the first best FSht, next three best FSat,

the normal FSnt individuals

4: while t ≤ tmdo

5:  if (p ≥ 0.5)then

6:   for (t = 1:n1)do

7:    if (R1 ≥ Pdp)then

8:     FSt+1at = FS
t
at +dg ×Gc(FS

t
ht
−FStat)

9:    else

10:     FSt+1at = Random location

11:    end if

12:   end for

13:   for (t = 1:n2)do

14:    if (R2 ≥ Pdp)then

15:     FSt+1nt = FS
t
nt +dg ×Gc(FS

t
at −FS

t
nt)

16:    else

17:     FSt+1nt = Random location

18:    end if

19:   end for

20:   for (t = 1:n3)do

21:    if (R3 ≥ Pdp)then

22:     FSt+1nt = FS
t
nt +dg ×Gc(FS

t
ht
−FStnt)

23:    else

24:     FSt+1nt = Random location

25:    end if

26:   end for

27:  else

28:   Else-part

29:  end if

30:  Calculate the seasonal constant (Stc)

31:  Calculate the minimum value of the seasonal

 constant (Smin)

32:  if(Stc < Smin)then

33:   FSnewnt = FS
t
ht
+2r((FSt

ht
−FStnt)(1− (

FSt
ht
+FStnt

FStnt
)
2

))

34:  end if

35:  Update Smin and Set t = t+1

36: end while

37: Return optimal solution FSht

Algorithm 1. Proposed ADSSOA.

3.2 Binary optimizer

The proposed ADSSOA is adapted to handle feature selection
problems, in which the search space is limited to binary values
of 0 and 1. For this purpose, the continuous values produced by
the algorithm are converted into binary values for use in feature
selection. This conversion is achieved by applying the following

1: if (Pa < a)then

2:  FSt+1nt = FS
t
nt +V

t
nt +c1r(FS

t
ht
−FStnt) +c2r(FS

t
at −FS

t
nt)

3: else

4:  Choose a random agent FSt
rand

from normal

agents FStnt

5:  if (Pd < d) then

6:   Calculate the fitness function Fn(FS
t
rand
) for

   FSt
rand

7:   if(Fn(FS
t
rand
) < Fn(FS

t
nt)) then

8:    FSt+1nt = FS
t
nt +V

t
nt +c3r(FS

t
rand
−FStnt)

9:   else

10:    FSt+1nt = FS
t
nt +V

t
nt +c1r(FS

t
ht
−FStnt)

11:   end if

12:  else

13:   FSt+1nt = FS
t
nt + |(FS

t
rand
−FStnt)|exp(bt)cos(2πt)

14:  end if

15: end if

Algorithm 2. Else-part of the proposed ADSSOA.

equation:

FS(t+1)d =
{
{
{

1 if Sigmoid (x) ≥ 0.5

0 otherwise

Sigmoid (x) = 1
1+ exp−10(x−0.5)

, (10)

where FS(t+1)d represents the binary value of the d dimension at
iteration t. The sigmoid function is used to scale the continuous
values to either 0 or 1, and a condition of Sigmoid(x) ≥ 0.5 is
applied to filter the values to either 0 or 1. The value of x in this
equation represents the best solution found by the algorithm, which
is denoted as FSht in Algorithm 1.

A detailed description of the binary version of the ADSSOA,
referred to as bADSSOA, can be found here. The algorithm starts
by initializing its parameters and determining the fitness function
value for each agent. The best agent is then identified. The solutions
are then converted to binary values of 0 or 1. The algorithm then
enters a loop where it runs for a maximum number of iterations.
Within this loop, if a certain condition is met (RADSSOA is greater
than 0.5), the positions of the agents are updated. If the condition
is not met, the positions of the agents are updated in a different
way. After each iteration, the fitness function value is determined for
each agent, parameters are updated, and the best agent is identified.
The best agent is then set as the overall best agent, and the updated
solution is converted to binary using a specific equation. The loop
continues until the maximum number of iterations is reached, and
the algorithm returns the overall best agent.

3.3 Fitness function

The fitness function is used to determine the quality of
solutions generated by the optimizer. It takes into account both the
classification error rate and the chosen features. A good solution is
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FIGURE 3
Comparing the performance of the bADSSOA method with other optimization algorithms using the histogram of average error.

FIGURE 4
QQ and residual plots, along with a heat map, to analyze the performance of the bADSSOA and compare it with the other algorithms.
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TABLE 5 Outcomes of the ANOVA test that compared the proposed bADSSOA technique to the other examined algorithms.

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02611 6 0.004351 F (6, 63) = 147.1 P<0.0001

Residual (within columns) 0.001864 63 2.96E-05 - -

Total 0.02797 69 - - -

TABLE 6 Outcomes of theWilcoxon signed-rank test that compared the proposed bADSSOA technique to the other examined algorithms.

bADSSOA bSS bGWO bPSO bWAO bFA bGA

Theoretical median 0 0 0 0 0 0 0

Actual median 0.1801 0.1973 0.2366 0.2311 0.2309 0.2295 0.2109

Number of values 10 10 10 10 10 10 10

Wilcoxon signed-rank test

Sum of signed ranks (W) 55 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0 0

P-value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.1801 0.1973 0.2366 0.2311 0.2309 0.2295 0.2109

one that has a lower error rate and a smaller set of features. Eq. 11
can be used to evaluate the solution quality. It takes into account
the optimizer error rate Err(O), the set of features selected by the
optimizer s, the total number of features f, and the importance of the
classification error rate and the number of selected features, which
are represented by the values of h1 and h2. These values are between
0 and 1 and h2 is equal to 1 minus h1.

Fn = h1Err (O) + h2
|s|
| f|
. (11)

3.4 Dataset

The HI-SEAS dataset was collected during a four-month-long
analog mission conducted by NASA to simulate living conditions
on Mars. The dataset was obtained from sensors installed in the
habitat where six crew members lived and worked, providing a
comprehensive record of the environmental conditions during the
simulation. The dataset has been preprocessed and cleaned to
remove any missing or erroneous values, ensuring the reliability of
the data.The static analysis included in the dataset provides valuable
insights into the distribution, range, and statistical properties of
the various meteorological factors, enabling researchers to better
understand the data and its potential applications.

TABLE 7 Prediction evaluation criteria used in the regression scenario.

Metric Formula

RMSE √ 1
N
∑Nn=1(V̂n −Vn)

2

RRMSE RMSE
∑Nn=1V̂n
× 100

MAE 1
N
∑Nn=1|V̂n −Vn|

MBE 1
N
∑Nn=1(V̂n −Vn)

NSE 1− ∑
N
n=1(Vn−V̂n)

2

∑Nn=1(Vn−
̄̂Vn)

2

WI 1− ∑Nn=1|V̂n−Vn|

∑Nn=1|Vn− ̄Vn|+|V̂n−
̄̂Vn|

R2 1− ∑Nn=1(Vn−V̂n)
2

∑Nn=1( ∑
N
n=1Vn)−Vn)

2

r ∑Nn=1(V̂n−
̄̂Vn)(Vn− ̄Vn)

√(∑Nn=1(V̂n−
̄̂Vn)

2)(∑Nn=1(Vn− ̄Vn)
2)

Figure 1 presents a visualization of the distribution of values for
the different parameters included in the dataset, highlighting the
range and frequency of values for each factor. This visualization
provides a useful overview of the dataset and can help researchers
identify any patterns or anomalies that may be present in
the data. The HI-SEAS dataset from Kaggle ([Dataset], 2017)
provides a valuable resource for researchers interested in studying
environmental conditions and their impact on human life and
technology in space analog environments.
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TABLE 8 Results of the suggested optimizing ADSSOA–LSTMmodel in comparison to basic models.

RMSE MAE MBE r R2 RRMSE NSE WI

MLP 0.047336 0.035049 0.000790 0.979512 0.959443 12.716353 0.959258 0.916237

SVR 0.044850 0.033543 0.004846 0.981861 0.964052 12.048431 0.963425 0.919837

RF 0.102083 0.078753 -0.000300 0.900519 0.810935 27.423288 0.810523 0.811790

k-NN 0.018766 0.012877 -0.002244 0.996870 0.993751 5.041258 0.993597 0.969225

LSTM 0.001221 0.008854 -0.001013 0.998482 0.996967 3.487090 0.996936 0.978839

ADSSOA–LSTM 0.000388 0.002680 0.000446 0.999768 0.999535 0.840076 0.999529 0.992579

TABLE 9 Description of the proposed ADSSOA-based LSTMmodel and the results of other models from RMSE.

ADSSOA–LSTM SS–LSTM GWO–LSTM PSO–LSTM WOA–LSTM FA–LSTM GA–LSTM

Number of values 10 10 10 10 10 10 10

Minimum 0.000367 0.000493 0.000591 0.000689 0.000711 0.0007 0.000813

25% percentile 0.0003845 0.00053 0.000613 0.000692 0.000711 0.00077 0.000813

Median 0.000387 0.00053 0.000613 0.000692 0.000711 0.00077 0.000813

75% percentile 0.000387 0.00053 0.000613 0.000692 0.000721 0.00077 0.000831

Maximum 0.000387 0.000615 0.000663 0.000792 0.000781 0.0008 0.000913

Range 0.00002 0.000122 7.17E-05 0.000103 0.00007 0.0001 0.0001

Mean 0.000384 0.000535 0.000616 0.000702 0.000722 0.000766 0.00083

Std. deviation 0.000006749 3.06E-05 1.79E-05 3.17E-05 2.42E-05 2.5E-05 3.65E-05

Std. error of mean 0.000002134 9.67E-06 5.67E-06 1E-05 7.67E-06 7.92E-06 1.16E-05

Lower 95% CI of mean 0.0003792 0.000513 0.000603 0.000679 0.000705 0.000748 0.000804

Upper 95% CI of mean 0.0003888 0.000557 0.000629 0.000724 0.000739 0.000784 0.000856

Coefficient of variation 1.758% 5.716% 2.910% 4.522% 3.358% 3.268% 4.401%

Geometric mean 0.0003839 0.000534 0.000616 0.000701 0.000722 0.000766 0.000829

Geometric SD factor 1.018 1.056 1.029 1.044 1.033 1.034 1.044

Lower 95% CI of geo. mean 0.0003791 0.000514 0.000603 0.00068 0.000705 0.000747 0.000804

Upper 95% CI of geo. mean 0.0003889 0.000555 0.000628 0.000723 0.000739 0.000784 0.000855

Harmonic mean 0.0003839 0.000533 0.000615 0.000701 0.000721 0.000765 0.000829

Lower 95% CI of harm. mean 0.000379 0.000514 0.000603 0.000681 0.000705 0.000747 0.000805

Upper 95% CI of harm. mean 0.0003889 0.000554 0.000628 0.000722 0.000738 0.000785 0.000854

Lower 95% CI of quad. mean 0.0003793 0.000512 0.000603 0.000678 0.000704 0.000749 0.000803

Upper 95% CI of quad. mean 0.0003888 0.000558 0.000629 0.000726 0.00074 0.000784 0.000857

Skewness -2.277 2.173 2.172 3.158 2.136 -2.193 1.941

Kurtosis 4.765 6.903 6.901 9.979 3.837 6.95 2.526

Sum 0.00384 0.005348 0.006158 0.007017 0.00722 0.00766 0.0083

4 Experimental results

This section’s sole mission is to deliver an in-depth analysis
of the investigation’s results, and that is exactly what it does. The
investigations were conducted in a couple of different settings.
The capabilities of the proposed binary ADSSOA for feature

selection are addressed in the first scenario, and the capabilities
of the algorithm for regression are illustrated in the second
scenario. Both scenarios are applied to the dataset that is being
evaluated. Both of these possible outcomes are detailed in the
following section. Analyses and comparisons are performed on
the ADSSOA method with respect to other algorithms that are
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FIGURE 5
Box plot comparing the proposed ADSSOA-based LSTM model with
other LSTM-based models. The comparison is based on RMSE.

regarded as being at the forefront of their fields, such as the
squirrel search optimization algorithm (SS) (El-Kenawy et al., 2021),
PSO (Bello et al., 2007), GWO (Khafaga et al., 2022), GA (El-
Kenawy et al., 2020), firefly algorithm (FA) (Fister et al., 2012),
and whale optimization algorithm (WOA) (Eid et al., 2021). As
shown in Table 1, there is a presentation of the setup for the
comparison algorithms, and in Table 2, there is a presentation of
the ADSSOA configuration, which covers all of the experiment’s
applicable parameters.

4.1 Feature selection scenario

When selecting features from the dataset, the proposed binary
implementation of the ADSSOA method is used. The paper
includes a discussion of the results of feature selection using the
ADSSOA. The binary ADSSOA (bADSSOA) method is compared
and contrasted with other binary optimization methods such as
binary SS (bSS), binary WOA (bWOA), binary PSO (bPSO), binary
GWO (bGWO), binary FA (bFA), and binary GA (bGA). Using the
objective function presented in Eq 11, also known as Fn, the binary
ADSSOA method can evaluate the quality of a given solution.

If a subset of features can be provided that results in a low
classification error rate, then the approach is considered acceptable.
The K-nearest neighbor (kNN) technique is a simple classification
method that is commonly used. This method uses the K-nearest
neighbor classifier, which ensures that the selected attributes are of
high quality. The only criterion used in determining the classifiers
is the shortest distance between the query instance and the training
instances. This experiment does not utilize any models for the K-
nearest neighbors in any way.

The proposed feature selection strategy’s effectiveness is
measured according to the standards listed in Table 3.This table also
includes a column labeled “M″ that indicates the total number of

FIGURE 6
ROC curve of the proposed ADSSOA-based LSTM model compared to
the SS-based LSTM model.

iterations performed by the proposed optimizer and its competitors.
The symbol S*

j is used to represent the best solution, and the size of
the best solution vector is represented by the value size(S*

j ). The total
number of points for the test set is represented by the letter N. The
predicted values are represented by the term V̂n, while the actual
values are represented by the term Vn.

The results of the feature selection process using the proposed
and compared algorithms are displayed in Table 4. As shown in
Table 2, these results are based on 80 iterations over 10 runs for 10
agents. The bADSSOA technique had an average error of (0.1801)
and a standard deviation of (0.0656), performing as expected.
The next best performing algorithms were bGWO with a score
of (0.1973), bGA with a score of (0.2109), bFA with a score of
(0.2295), bGA with a score of (0.5694), bWOA with a score of
(0.2309), bPSO with a score of (0.2311), and bSS with a score
of (0.2366) which had the lowest minimal average error in the
feature selection process for the evaluated data. The bSS algorithm
was the weakest one among all the available algorithms for feature
selection.

Figure 2 illustrates the box plots of the average error for
the bADSSOA and other optimization algorithms including bSS,
bGWO, bPSO, bWOA, bFA, and bGA. The performance of the
bADSSOA is measured using the objective function mentioned
in Eq 11. The performance of the bADSSOA method compared
to other optimization algorithms using a box plot that shows the
histogram of average error for each algorithm is shown in Figure 3.
Figure 4 displays the QQ plots, residual plots, and heat map for
the bADSSOA and the other methods that were compared for the
analyzed data, highlighting the correlation between the data and the
quantiles and quantile differences.

The statistical analysis uses one-way ANOVA and Wilcoxon
signed-rank tests to determine the average error of the proposed
binaryADSSOA.TheWilcoxon test is used to compare the proposed
approach with other methods and determine if it outperforms them
with a p-value of less than 0.05. The ANOVA test is also performed
to determine if the proposed algorithm differs significantly from the
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FIGURE 7
QQ plots, residual plots, and heat maps of the compared models and the proposed ADSSOA-based LSTM model.

TABLE 10 Outcomes of the ANOVA test that compared the proposed ADSSOA–LSTM to other algorithms.

SS DF MS F (DFn, DFd) P-value

Treatment (between columns) 1.39E-06 6 2.315E-07 F (6, 63) = 333.6 P<0.0001

Residual (within columns) 4.37E-08 63 6.939E-10 - -

Total 1.43E-06 69 - - -

others.The results of these tests are presented in Table 5 and Table 6,
respectively. The analysis uses 10 rounds of each method to ensure
reliable comparisons.

4.2 Regression scenario

The optimal ensemble ADSSOA–LSTM model is compared to
simpler models such as MLP, SVR, RF, k-NN, and LSTM over
multiple runs and iterations with 10 agents. Additional metrics like
RMSE, RRMSE, NSE,MAE,MBE, r, R2, andWI are used to evaluate

the performance of the regressionmodels.The dataset is represented
by theN parameter, and the estimated and observed bandwidths are
represented by (V̂n) and (Vn), respectively. The arithmetic means of
the estimated and observed values are represented by ( ̄̂Vn) and (Vn),
respectively. The evaluation criteria for predictions are outlined in
Table 7.

To further elaborate on the results, it is important to note
that the ADSSOA–LSTM model outperformed not only the
basic LSTM model but also other popular machine-learning
models such as SVR, MLP, and RF based on the results presented
in Table 8. The LSTM and MLP models had RMSE values of
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TABLE 11 Outcomes of theWilcoxon signed-rank test that compared the proposed ADSSOA–LSTM to other algorithms.

ADSSOA–LSTM SS–LSTM GWO–LSTM PSO–LSTM WOA–LSTM FA–LSTM GA–LSTM

Theoretical median 0 0 0 0 0 0 0

Actual median 0.000387 0.00053 0.000613 0.000692 0.000711 0.00077 0.000813

Number of values 10 10 10 10 10 10 10

Wilcoxon signed-rank test

Sum of signed ranks (W) 55 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0 0

P-value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact

P-value summary ** ** ** ** ** ** **

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.000387 0.00053 0.000613 0.000692 0.000711 0.00077 0.000813

0.001221 and 0.047336, respectively, while the ADSSOA–LSTM
model had an RMSE of 0.000388, which was significantly
higher than that of the other models. These results demonstrate
the effectiveness of the proposed ADSSOA–LSTM model in
optimizing the design of renewable energy systems and improving
their performance. The study’s findings suggest that the hybrid
approach combining the ADSSOA with LSTM can provide
accurate predictions for renewable energy sources, which can
help reduce the cost of energy production and improve energy
efficiency.

In the study, the proposed ADSSOA-based LSTM model is
compared with several other popular swarm intelligence-based
LSTM models such as SS, GWO, PSO, WOA, FA, and GA. The
comparison is based on the RMSE of 10 individual runs for each
algorithm. The RMSE results are presented in Table 9 along with a
description of the proposed ADSSOA-based LSTMmodel.The table
includes theminimum,median,maximum, andmean average errors
for each algorithm. These results demonstrate the effectiveness
of the proposed ADSSOA-based LSTM model compared to the
other models in terms of accuracy in predicting hourly tilted solar
irradiation.

Figure 5 displays the box plot calculated using the RMSE for
the proposed ADSSOA-based LSTM model as well as the SS,
GWO, PSO, WOA, FA, and GA-based models. The quality of the
optimized ensemble ADSSOA-based model, as shown in the figure,
was determined with the help of the objective function described
in Eq 11. Figure 6 shows the ROC curve of the presented ADSSOA
versus the DTO algorithm. Figure 7 presents the QQ plots, residual
plots, and heat map for both the ADSSOA-based model that was
provided and the models that were compared for the investigated
data. Both sets of plots are based on the analyzed data. These
figures demonstrate that the given optimized ensemble ADSSOA-
based model has the potential to outperform the models that were
compared. The study’s statistical analysis was conducted using 10
individual iterations of each of the algorithms being presented and

evaluated, ensuring that the comparisons are precise and the study
results are trustworthy.

The ANOVA test and the Wilcoxon signed-rank test are
commonly used statistical methods to compare the performance
of different models. In this study, both tests were used to evaluate
the effectiveness of the proposed optimized ADSSOA–LSTM model
compared to other models. Table 10 reports the results of the
ANOVA test, which show that the proposed ADSSOA–LSTM
model performs significantly better than the compared models.
Table 11 further supports this claim by presenting the results
of the Wilcoxon signed-rank test, which confirms that the
proposed model outperforms the other models with statistical
significance. The use of these statistical tests adds credibility
to the findings of this study and highlights the superiority of
the proposed model in accurately estimating hourly tilted solar
irradiation.

5 Conclusion and future work

AI and ML techniques can improve performance and reduce
the optimization time of renewable energy systems. The proposed
hybrid ensemble-learning approach, which combines the ADSSOA
with LSTM, is an innovative and promising solution. The use
of ADSSOA, a novel swarm intelligence algorithm, enhances the
optimization performance of the model. In contrast, using LSTM
improves the predictions’ accuracy by capturing the data’s long-term
dependencies. The results of the proposed approach demonstrate
its superiority compared to other popular swarm intelligence
algorithms, such as GA, PSO, and GWO, in terms of RMSE.
The proposed model can be applied, in future, to other datasets
and tasks related to renewable energy systems, such as wind
speed prediction, power output estimation, and energy demand
forecasting. Overall, the study contributes to advancing the field of
renewable energy optimization and demonstrates the potential of
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AI and ML techniques in this domain. The proposed methodology
achieved an average error of 0.1801, a standard deviation of 0.0656,
and an RMSE of 0.000388 when compared to the other competing
methods.
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Glossary
kNN K-nearest neighbors

MLP Multi-layer perceptron

SVR Support vector regression

RF Random forest

LSTM Long short-term memory

SS Squirrel search optimization algorithm

GOA Grasshopper optimization algorithm

PSO Particle swarm optimization

WOA Whale optimization algorithm

GWO Gray wolf optimizer

GA Genetic algorithm

FA Firefly algorithm
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