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Large-scale integration of electric vehicles (EVs) into the city system for charging
will affect the operation of both traffic and distribution networks. An electric
vehicle navigation and cluster dispatch model is proposed for improving the
overall charging efficiency of EVs on the transportation network and increasing the
voltage level of the distribution network. First, a simplified model of vehicles and
traffic road network is established, and a cell transmission model (CTM) is used to
simulate the real traffic network. The traffic system takes into account charging
EVs, discharging EVs, and other vehicles, and traffic congestion is considered.
Then, a coupledmodel of the traffic–power system is built for the orderly charging
of electric vehicles upon arrival at a charging station. The model considers the
coupling of the two systems on a time scale, and the charging/discharging power
at each charging station node is controlled. The validity of themodel is verified in a
coupled system of 357 cell traffic network and modified IEEE33 nodes. The results
show that the proposed model can ensure good guarantee of the distribution
network voltage reliability and reveal the scheduling process of the traffic network.
The proposed model also provides a reference for planning of charging stations in
the distribution network.
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1 Introduction

In recent years, air pollution, global warming, and other environmental issues have
become prominent and urgently need to be addressed. By implementing low-carbon policies,
electric vehicles (EVs) are widely used in transportation. Different from traditional fuel cars,
electric vehicles have a large difference with them in terms of range capacity. At the same
time, the high current involved in the charging process of electric vehicles has a significant
impact on the reliability of the distribution network. Therefore, scholars have conducted a
series of studies on the problem of electric vehicles (Xiang et al., 2021) (Li et al., 2020).

Large-scale access of electric vehicles to the network will have a greater impact on the way
the distribution network operates. The online evolution mechanism of the EV–grid system
was proposed in Dong et al. (2021) for penetration of intermittent renewable energy and the
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time variance problem of the systemmodel. Li et al. (2023) proposed
a two-stage EV management scheme to promote sustainable
transportation. In the first stage, a toll scheduling model based
on fuzzy multi-criteria decision-making was proposed, and in the
second stage, a non-cooperative game model that incentivizes
electric vehicles to participate in supplementary frequency
regulation was proposed. Another two-stage scheme was
proposed in Yan et al. (2023) to solve the problem of privacy of
individual electric owners, the interest competition of different
charging stations, and the restriction of coupled distribution
networks. In the first stage, the total electric vehicle power
flexibility region was derived by solving the optimization
problem. In the second stage, a distributed coordination
mechanism with a clear physical interpretation was established
considering the network constraints based on AC power flow. To
simulate a real customer EV distribution scenario, Shi et al. (2022)
established a dynamic EV dispatching model considering the multi-
source data association of customers, vehicles, charging stations, and
service stations. Tao et al. (2022) proposed an improved generative
adversarial network (GAN)-based coordinated scheduling strategy
for electric vehicles with thermostatically controlled loads (TCLs).
Machine learning was integrated into a two-layer optimization
problem to determine the steady-state power dispatch and energy
storage control of the energy storage systems. Feizi et al. (2022)
presented a framework for determining feasible dispatch limits for
solar photovoltaic (PV) generation in an unbalanced distribution
network considering EV interconnection and associated
uncertainties. To ensure frequency stability while reducing load
shedding, an optimization strategy based on a two-layer confidence
interval for EV participation in ultra-high-speed transmission
systems was proposed in Liu et al. (2022a). Due to problems
such as computational complexity, these studies focused on
electric vehicles as grid participants but ignored the
characteristics of transportation participants.

On the other hand, with the development of electric vehicles in
power electronics and mechanics, related technologies such as
vehicle-to-grid (V2G) (Yue et al., 2023) (Shang et al., 2022),
vehicle-to-building (V2B) (Liu et al., 2022b), and battery
swapping (Wu, 2022) (Jia et al., 2022) are also applied in
network dispatching. Aiming at the randomness of current EV
users’ participation in V2G, an EV cluster evaluation index
model was established in Yue et al. (2023) by analyzing the
impact of various pieces of information declared by EV users on
the scheduling plan of aggregators and using the declared scheduling
power, user credit, battery loss, and user participation as evaluation
indexes. Due to the high computational complexity of large-scale
EVs and impracticality of future power data collection, Shang et al.
(2022) proposed a distributed edge computing framework to ensure
the efficiency of scheduling and flexible availability of raw data sets.
To minimize cost and maximize satisfaction, Liu et al. (2022b)
combined the building energy demand and the safety/willingness of
EVs to find and dispatch the optimal vehicle for auxiliary or support
actions. Wu (2022) reviewed the state-of-the-art literature and
business models for battery swapping stations (BSSs), which
provide rechargeable batteries for upcoming electric vehicles in
low-battery states. Yang et al. (2019) proposed a shared battery
station (SBS) model, which is a multifunctional facility with
charging, discharging, dormancy, and switching functions.

Argiolas et al. (2022) evaluated the potential business case for
battery storage systems for PV-assisted electric vehicle fast
charging stations with integrated market applications and
services. In Jia et al. (2022), a hybrid model of continuous time-
domain battery exchange charging and logistics scheduling was
proposed to optimize the joint operation of battery charging and
exchange systems. In general, leveraging these new technologies can
help solve the charging problem for EVs.

On the other hand, EVs, as transportation participants, are also
subject to the rules of the transportation network. Diaz-Cachinero
et al. (2020) proposed an enhanced operational planning model for
EV routing and charging that considers technical and economic
realistic constraints such as battery degradation, speed-dependent
power consumption, and penalties for non-performance. Liu et al.
(2019) formulated a traffic network charging navigation considering
stochasticity based on dynamic programming. A simplified charging
control algorithm was proposed to address the computational
complexity of the navigation system. To investigate the
vehicle–vehicle interaction of multiple vehicles in path planning
and charging, an EV charging path optimization method based on
an event-driven pricing strategy was proposed in Xiang et al. (2022).
To address the charging time-consuming energy efficiency problem
and the negative energy cost of regenerative braking in the road
network, Wang et al. (2013) proposed an energy-driven and
environment-aware EV route planning framework. A charging
facility planning model coupled with the transportation and
distribution system that considers traffic congestion was
proposed in Zhang et al. (2019). Morlock et al. (2020) proposed
a strategy for computing time-optimal routes for EVs. A simplified
road network was first obtained from a leading routing service.
Then, a detailed fuel consumption model was applied to solve the
multi-objective shortest path problem using the improved
Moore–Bellman–Ford algorithm. Zhang et al. (2020) used a two-
loop structure to find the route that leads to the lowest energy
consumption. In the outer loop, the path with the lowest energy
consumption was obtained by minimizing the difference between
the value function of the current round and the optimal values of the
previous rounds. In the inner loop, the energy consumption metric
of the plug-in hybrid vehicle power management under each feasible
path was trained using reinforcement learning (RL). Most of the
studies on EV distribution and path planning problems have focused
on refined modeling in the direction of energy consumption and
charging costs. However, path planning for large-scale vehicles is
lacking due to the computational complexity requirements.

In summary, existing studies focus on scheduling or navigation
unilaterally. Based on the computational complexity, traditional
methods are not convenient for carrying out path planning for
collaborative navigation of large-scale vehicles. A few studies have
dealt with the coupling of transportation–energy systems, but they
are also limited by the aforementioned scale problems and lack a
realistic portrayal of the two networks.

This paper studies the navigation and dispatching problems for
cluster EVs in order to create a highly reliable low-carbon
traffic–power system. The main contributions of this paper are as
follows:

• A charging and discharging co-navigation model is proposed.
There are charging and discharging vehicles and other vehicles
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in the traffic network. A cell transmission model (CTM) is
used to simulate the real road network. The navigation
contains the path planning for charging vehicles and
discharging vehicles. The charging vehicles reflect the
power demand, and the discharging vehicles support the
operation of the distribution network through V2G.

• A clustered electric vehicle dispatching model is proposed for
a reliable low-carbon coupled traffic–power system. A cluster
EV dispatching model is proposed for improving the overall
charging efficiency of EVs on the transportation network and
increasing the voltage level of the distribution network. After
the electric vehicles arrive at the charging station, the
distribution network acts as the control body for orderly
charging of the EVs. The charging/discharging power is
controlled by an optimization model.

The rest of the paper is organized as follows. The charging and
discharging co-navigation model for improving the overall charging
efficiency of EVs on the transportation network and increasing the
voltage level of the distribution network is presented in Section 2.
Section 3 presents the EV cluster dispatching model. The case study
is demonstrated in Section 4. Finally, conclusions are drawn in
Section 5.

2 Charging and discharging co-
navigation models

2.1 Establishment of the traffic system

A low-carbon traffic system refers to the low energy
consumption and low emission transportation mode with the
goal of reducing greenhouse gas emissions from transportation
behavior and is a way to realize low-carbon economy in the

transportation field. Among them, the popularity of electric
vehicles is the most crucial part.

In this section, there are three participating subjects in the
transportation network: electric vehicles with charging demand,
electric vehicles that can participate in V2G discharge, and other
vehicles. To simplify the vehicle models of different types, we have

Λs � ps, es, c s( ){ } (1)
Γ � Λ1,Λ2, . . .Λs, . . .Λn{ } (2)

where Λs denotes the properties of vehicles of type s, ps denotes the
maximum charge/discharge power of vehicle type s, es denotes the
energy margin of vehicle type s, c(s) is the set of terminal cells that
EVs of type s finally reach, and Γ is the set of all vehicle types.

It is worth noting that Λs represents only one property of the
vehicle type s. As shown in Figure 1, if the vehicles have the same
power demand value and driving endpoint decision, they are
considered to belong to the same type. The existence of multiple
vehicles of the same type in the traffic network is considered,
implying all these vehicles satisfy the same constraints. Assuming
that the power loss during the navigation process is ignored, the
energy margin of charging vehicles is less than 0 and finally should
arrive at the charging station. The discharged vehicle is used to
support the operation of the distribution network through V2G, so
its value is positive and eventually arrives at the charging station as
well. Other vehicles are not part of the dispatching object of this
study, so there is no charging demand. To simplify the modeling, it is
considered that the vehicles are eventually allowed to reach any
node. Then, three vehicle subjects satisfy the following relations:

ps > 0, es < 0, c s( ) ⊆ ψCS, ∀s ∈ Vchar (3)
ps > 0, es > 0, c s( ) ⊆ ψCS, ∀s ∈ Vdis (4)
ps � 0, es � 0, ∀c s( ), ∀s ∈ Velse (5)

where ψCS is the set of all cells of charging stations. Vchar is the set of
all charging vehicles.Vdis is the set of all discharging vehicles. Velse is
the set of all other vehicles. Figure 2 illustrates how the traffic
network can be converted into a cell structure.

Figure 2A shows the model transforming a section of a one-way
road into cells. Assuming that the road section has a travel time of t
without considering traffic congestion, it can be divided into
multiple cell strings with each travel period τ, satisfying the sum
of travel times equaling t.

Figure 2B shows the transformation of a simple road network
structure into a cell model. In this case, there are crossed cells that
accept path inputs from multiple cells, or outputs that point to
multiple cells, which are called parent cells and child cells, respectively.

2.2 Navigation operating strategy

Based on the establishment of the traffic network, the navigation
of the charging and discharging vehicles satisfies the CTM
constraints described in Wang et al. (2020). We have

xcell
a,t,s � xcell

a,t−1,s + ∑
c∈α a( )

ycell
ca,t−1,s − ∑

b∈β a( )
ycell
ab,t−1,s,∀a, ∀t, ∀s (6)

∑
b∈β a( )

ycell
ab,t,s ≤ xcell

a,t,s, ∀a, ∀t,∀s (7)

FIGURE 1
Classification of vehicles.
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∑
∀s

∑
b∈β a( )

ycell
ab,t,s ≤Qa

max, ∀a,∀t (8)

∑
∀s

∑
c∈α a( )

ycell
ca,t,s ≤Qa

max, ∀a,∀t (9)

∑
∀s

∑
c∈α a( )

ycell
ca,t,s ≤ ka(Na

max −∑
s

xcell
a,t,s), ∀a,∀t (10)

ycell
ab,t,s ≥ 0,∀a, ∀b ∈ β a( ), ∀t, ∀s (11)

where xcell
a,t,s denotes the number of type s vehicles in cell a at time t.

ycell
ab,t,s denotes the number of type s vehicles moving from cell a to

child cell b at time t. α(a) is the set of all parent cells of cell a. β(a) is
the set of all child cells of cell a. Qa

max is the maximum traffic flow of
cell a.Na

max is the maximum traffic amount that cell a can store. ka is
the congestion factor. Constraint (6) represents the traffic flow
balance. Constraints (7)–(11) represent the traffic capacity limit.

On the other hand, it is also necessary to consider the changes in
the energy of the transportation network. We have

ecella,t,s �ecella,t−1,s + es ∑
c∈α a( )

ycell
ca,t,s − es ∑

b∈β a( )
ycell
ab,t,s + Pcs

a,t,

∀a,∀t, ∀s ∈ Vchar

(12)

ecella,t,s ≤ ε,∀a, ∀t, ∀s ∈ Vchar (13)
ecella,end,s ≥ 0, ∀a, ∀s ∈ Vchar (14)

where ecella,t,s denotes the energy of type s vehicles that cell a could
supply at time t. es denotes the energy supply of each type s vehicle.
Pcs
a,t denotes the inject active power of cell a at time t. ε is an error

factor. Constraint (12) represents the energy flow balance.
Constraint (13) avoids the overcharging of vehicles. Constraint
(14) ensures that at the end of the entire time scale, all charging
actions must be completed. Moreover, for the initial moment, all
conditions should be given. We have

xcell
a,1,s � Xa,s, ∀a,∀s (15)

ecelli,1,s � esXa,s, ∀a,∀s (16)
where Xa,s denotes the number of type s vehicles in cell a at the
initial moment.

Finally, charging and discharging vehicles need to satisfy the
following path planning constraints:

∑
a∈c s( )

xcell
a,end,s � NV

s , ∀s ∈ VcharorVdis (17)

whereNV
s denotes the number of type s vehicles in the traffic system.

3 EV cluster dispatching model

3.1 Coupling for the traffic–grid system

When the electric vehicle arrives at the charging station node,
the distribution network acts as the control master and unifies the
charging power control. Figure 3 illustrates the coupling of the
navigation process and the dispatching process on the time scale.

Sequential charging satisfies the following constraints:

− ∑
m∈Vdis

pmx
cell
a,t,m ≤Pcs

a,t ≤ ∑
n∈Vchar

pnx
cell
a,t,n, ∀a,∀t (18)

− ∑
m∈Vdis

qmx
cell
a,t,m ≤Qcs

a,t ≤ ∑
n∈Vchar

qnx
cell
a,t,n, ∀a,∀t (19)

whereQcs
a,t denotes the inject reactive power of cell a at time t. qs denotes

the maximum reactive power for each type s vehicle. Constraints (18)
and (19) ensure that the lower limit of the node injection power is the
sum of the maximum power of the V2G and the upper limit is the sum
of the maximum charging power of all charging vehicles.

In addition, the distribution network model constraints should
be satisfied:

∑
j∈ƛ i( )

Pij,t − ∑
k∈π i( )

Pki,t � Pin
i,t − Pload

i , ∀i, ∀t (20)

∑
j∈ƛ i( )

Qij,t − ∑
k∈π i( )

Qki,t � Qin
i,t − Qload

i , ∀i, ∀t (21)

Pin
i,t � Pgen

i,t − Pcs
a,t, ∀ i, a( ) ∈ C, ∀t (22)

Qin
i,t � Qgen

i,t − Qcs
a,t, ∀ i, a( ) ∈ C, ∀t (23)

FIGURE 2
Conversion to cell structure.

FIGURE 3
Coupling of navigation and dispatching on the time scale.
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Ui,t − Uj,t � Pij,tRij + Qij,tXij, ∀ i, j( ) ∈ ΩL (24)����������
Pij,t

2 + Qij,t
2

√
≤ Sij

max, ∀ i, j( ) ∈ ΩL (25)
Ui

min ≤Ui,t ≤Ui
max (26)

where Pij,t and Qij,t denote the active/reactive power flowing
from node i to node j at time t. Pin

i,t and Qin
i,t denote the injected

power of node i at time t. Pload
i,t and Qload

i,t denote the active/reactive
load power at node i at time t. Pgen

i,t and Qgen
i,t denote the active/

reactive power from the generator of node i at time t. C is the set
of all the coupling pairs of all nodes and cells, where (i, a) ∈ C

indicates that there is a coupling between node i and cell a. Ui,t

denotes the amplitude voltage of node i at time t. Rij and Xij

denote the resistance/reactance of branch (i, j). Sij max denotes
the maximum capacity of branch (i, j). Ui

max and Ui
min denote

the upper and lower limits of voltage at node i. ƛ(i) is the set of all
the children nodes of node i. π(i) is the set of all parent nodes of
node i. ΩL denotes the set of all branches. Constraints (20)–(23)
indicate the power balance of the distribution network, where the
injected power of the cell corresponds to the outflow power of the
distribution network node. Constraint (24) indicates the voltage
drop balance. Constraint (25) indicates the line capacity limit.
Constraint (26) indicates the voltage amplitude limit.

3.2 Optimization models

For the traffic system, the shortest navigation time of total
charging EVs is guaranteed to reduce the impact of charging
vehicles on the road conditions of the traffic network. That is, all
charging electric vehicles are present at the charging station for
the longest time in the whole time scale of dispatch. Thus, we
have

maxF1 � ∑
s∈Vchar

∑
i∈ψCS

∑
∀t
xcell
i,t,s (27)

For the power system, the guaranteed voltage level is more likely
to be close to the rated value, which is used to measure the reliability
of the power system. Thus, we have

minF2 � ∑
∀t

∑
i∈ΩN

1 − Ui,t

∣∣∣∣ ∣∣∣∣ (28)

where ΩN is the set of all nodes in the distribution network. Since
constraint (28) is a non-linear equation containing an absolute value
function, a linearization transformation is applied. Let auxiliary
variables zi,t replace |1 − Ui,t|. We have

minF2 � ∑
∀t

∑
i∈ΩN

zi,t (29)

zi,t ≥ 1 − Ui,t (30)
zi,t ≥Ui,t − 1 (31)

In summary, the optimization model is established as follows:

obj � ω1 ∑
∀t

∑
i∈ΩN

zi,t − ω2 ∑
s∈Vchar

∑
i∈ψCS

∑
∀t
xcell
i,t,s (32)

The constraints include

6( ) − 26( ), 30( ) − 31( ) (33)

Constraint (25) is a second-order cone-convex function, and all
the remaining constraints are linear. Therefore, the optimization
model can be solved by directly calling the common solvers.

4 Case study

4.1 Case description

The simulation is set up with a modified road network structure
with 357 cells, coupledwithmodified IEEE33 nodes. The three charging
stations in the traffic network are located in cells corresponding to
nodes 7, 22, and 24 of the IEEE33 node power network. In this case,
70 EVs with charging demand and 10 discharged EVs with V2G
willingness are set up in the traffic network. A certain number of
other vehicles are generated by a randommodel in each cell. Set the time
scale of the whole scheduling process to 40. Each time scale corresponds
to a 3-min time interval. The maximum traffic flow Qmax

i is set at a
uniform rate of 3. The congestion factor ka is 1. The maximum number
of vehicles per cellNmax

i is set to 10. In particular, for the traffic network
end cells or charging station cells, let Nmax

i = 30. Generators of the
distribution network are set at nodes 1 and 15. Assuming that all
charging vehicles or discharging vehicles have the same charging
demand and charging station arrival end condition, three types of
vehicles were established. The maximum power of charging/
discharging is set to 40 kW, and the charging demand is 10 kWh.
The dispatch interval for each time scale is 3 min, for a total of 40 time
scales. The discharging vehicle can provide a maximum power of
10 kWh. Let ω1 � 1,ω2 � 10. A schematic diagram of the coupling
is shown in Figure 4. The road conditions and topology of the traffic
network are shown in Figure 5. The simulation platform is MATLAB
2019b and Gurobi 9.5.2.

4.2 Navigation simulation results

Figure 6 shows the partial time-scale results for the charging co-
navigation of 70 EVs. The red nodes represent electric vehicles, and
the blue nodes represent charging stations. There is only one type of
charging vehicle in this example, and it is stipulated that all charging
vehicles can eventually reach any charging station node. For visual
differentiation, the random generation method of vehicles specifies
that each vehicle is at a different cell location. Moment 0 shows the
locations of all vehicles with charging demand at the initial moment.
As collaborative navigation proceeds, the number of vehicles
traveling in the topology keeps decreasing. When 105 min is
reached, all vehicles in this round arrive at the charging station.
It can be seen that vehicles generally tend to lead to the charging
station with the shortest single time. This is the result given by the
objective function based on the shortest dispatch time at the traffic
level.

Figure 7 shows the navigation results for all V2G vehicles. It can
clearly be seen that nine EVs lead to charging Station 2, while only
one vehicle leads to charging Station 1, and no vehicle leads to
charging Station 3. In contrast to the path planning of charging EVs,
there is no clear tendency for V2G vehicles to travel on the shortest
path. Further analysis shows that it is the reliability of the
distribution network that acts on the traffic dispatch and has an
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impact on path planning. Figure 8 shows the variation in the number
of vehicles at the charging station nodes. It is worth noting that since
the arithmetic example is a one-way topological road network
structure, the number of vehicles at the charging station nodes
can reflect the variation of the congestion level of the whole road
where they are located. As the navigation process proceeds, it can be
seen that the charging station nodes gradually become congested.
Therefore, cluster scheduling will increase the traffic burden around
the charging stations.

In fact, by observing the distribution of vehicles at all time scales,
all charging vehicles almost always pass at the optimal time, and at
the intuitively optimal distance. Congestion hardly affects vehicle
path planning, but can exacerbate traffic network congestion.

4.3 Cluster dispatching results

Figure 9 illustrates the power variation curve of charging
stations. The maximum actual power of charging Station 1

reaches 1120 kW and that of charging Station 2 reaches 680 kW,
while the maximum actual charging power of charging Station 3 is
only 257 kW. Since this scheduling process incorporates an objective
function indicating voltage reliability, it is obvious that the charging
power of charging Station 3 is very flat. In contrast, charging Station
1 and Station 2 tend to proceed at maximum power for fast charging.
Further analysis shows that the staggered charging moments of
charging Station 1 and Station 2 with maximum power are carried
out. Therefore, it can be concluded that the distribution network can
accommodate more capacity at charging Station 1 and Station 2
nodes than at Station 3 nodes, when the main factor affecting the
voltage level of the distribution network is the topology of the
distribution network’s own power distribution rather than the
charging power distribution, provided there is a capacity margin.
Excessive power will aggravate the line voltage drop at charging
Station 3, which is more likely to cause a lower voltage reliability
level. As observed in Figures 9A, B, the reason for such a sharp
increase in charging power is that the node power has not yet
reached the maximum capacity of the distribution network. The

FIGURE 4
Coupling of the traffic–power system.

FIGURE 5
Specific parameters of the traffic network.
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theory of convex optimization suggests that if there is an optimal
solution to a mathematical plan, it must be on the boundary
conditions of the feasible domain.

Comparative experiments were carried out with or without
considering voltage levels. The control experiments remove the
objective function term characterizing the voltage level in Eq. 28.
Figure 10 shows the comparison of the dispatch with/without
considering voltage reliability. The voltage levels of all nodes are
selected at 3 min, 57 min, and 114 min for the entire 2-h scheduling

process. It is clear that in the case of scheduling without considering
voltage reliability, the voltage easily reaches the upper bound of
1.1 and the lower bound of 0.9, while the latter voltage level is closer
to the nominal value and never reaches the upper or lower bound.
The highest voltage is only around 1.05, while only node 16 reaches a
minimum voltage of 0.9. On the other hand, without considering
voltage reliability, the voltage level varies significantly throughout
the dispatch process, and we consider this to be a less reliable low-
carbon traffic–power system. As shown in Figure 10A, the voltage
level is relatively normal in the early stage at 3 min and 57 min, but
deteriorates in the later stage, which is because the EVs are still in the

FIGURE 6
Co-navigation process for 70 charging electric vehicles.

FIGURE 7
Co-navigation process for 10 discharging EVs.

FIGURE 8
Changes in the number of vehicles at the nodes of charging
stations.
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navigation stage in the early stage and the charging station node load
level is low. Also, when they arrive at the charging station, they are
charged in a disorderly manner, which significantly increases the
random load of the charging station.

Comparative experiments were carried out with and without
V2G vehicles. The control experiment removes the dispatch of

10 V2G vehicles from the traffic network. Figure 11 shows the
changes in power demand at the three charging station nodes
throughout the dispatch process. The charging Station 2 node is
generally a regular process where the power demand increases first
and then decreases, which is because the charging demand increases
as the EVs keep reaching this node; while on the other hand, the

FIGURE 9
Charging power variation of charging stations.

FIGURE 10
Comparison of voltage reliability.

FIGURE 11
Changes in power demand during dispatching.
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charging demand decreases at this point because of the unified
charging and discharging scheduling management after reaching
this node. It is worth noting that charging demand does not
absolutely increase first and then decrease, which is because
navigation and scheduling is a coupled process that takes place
simultaneously. The power demand variation curve of charging
Station 1 and Station 3 is more irregular, which is due to the addition
of V2G vehicles, which also relieves the pressure of power demand.

Comparing Figure 11A with Figure 11B, it is found that the
most significant change without the addition of V2G vehicles is a
significant increase in the load accommodated at charging
Station 1, with the maximum demand increasing from
200 kWh to nearly 250 kWh. There is little change at charging
Station 3 and a significant decrease in the charging load at
charging Station 2, with the maximum demand decreasing
from 150 kWh to nearly 60 kWh. Therefore, it can be
concluded that charging Station 1 is more reliable than
charging Station 2 at the power system level. Analyzing
scheduling together with navigation, it can be found that V2G
vehicles almost always flock to charging Station 3, and the
charging power is flat at charging Station 3. Therefore, it can
be considered that this is the vulnerability of the distribution
network. In the subsequent distribution network planning, a new
distributed power supply or increased line capacity near the
charging station at this location can be considered to ensure
the reliability of the large-scale access of EVs. Ultimately, a rough
conclusion can be drawn that the reliability of charging Station 1
is greater than that of charging Station 2, and the reliability of
charging Station 2 is greater than that of charging Station 3.

These analyses also provide a reference for charging station
planning. The traffic system data can be obtained by extracting
real-time traffic flow data and building a cell network. The
charging stations at different locations are further simulated to
get the optimized ordered charging and discharging power. Based
on the reliability of the traffic network as part of the objective
function, the ordered charging curve of the charging stations is
obtained, and further analysis of the power demand and charging
power can find a balance point of power and traffic, ensuring the
charging power and charging navigation of the synergy are
reasonable.

4.4 Computational time analysis

Furthermore, we choose four different cases under this model to
analyze the computational complexity. Case A is the optimization
model proposed in Section 3.2. Case B is the modifiedmodel without
considering grid reliability in Eq. 28. Case C is the modified model
without considering traffic efficiency in Eq. 27. Case D is the time
required to find the first feasible solution for the optimization model

as given in Section 3.2. The program is set up on a personal
computer with a four-core i5-8265 CPU and an 8G RAM to
further study the computational performance of the proposed
model. The optimal gap is set as 0.01%.

Table 1 shows that not considering grid reliability speeds up the
runtime, where most of the runtime is used to find the first feasible
solution. This is due to the fact that the model is a macroscopic scale
and the CTM is essentially concerned with whether and how many
cars each cell has, while path planning is achieved through traffic
flow only. Therefore, the search for the feasible domain of
preliminary convex optimization is time-consuming. In contrast,
when a feasible solution is found, collaborative path planning for
large-scale vehicles is much faster according to the boundary
conditions. Table 1 shows computational time analysis by
different cases. It is worth noting that the operation time of Case
C is longer than that of Case A, which is the result of the divergence
of the boundary conditions due to the change of the objective
function, which increases the difficulty of the boundary
convergence.

5 Conclusion

This paper presents an electric vehicle navigation and cluster
dispatch model proposed for a reliable traffic–power system. A
simplified model of the vehicle and traffic road network is
established, and a cell transmission model (CTM) is used to
simulate the real traffic network. A coupled model of the
traffic–power system is built for the orderly charging of electric
vehicles upon arrival at a charging station. The model considers the
coupling of the two systems on the time scale, and the charging and
discharging power at each charging station node is controlled. The
validity of the model is verified in a coupled system of 357 cell traffic
system and IEEE33 power system. The results show that it can
ensure a good guarantee of distribution network voltage reliability
and reveal the scheduling process of the traffic network. The model
also provides a reference for the planning of charging stations in the
distribution network. Through case study verification, the main
conclusions are summarized as follows:

• Different from traditional path planning, path navigation
based on the cell transmission model could plan a large
number of traffic subjects simultaneously, and at the same
time, the model can realistically simulate the traffic network
and imitate traffic congestion, which has high applicability and
practicality.

• The model performs unified charging scheduling for electric
vehicles, while considering the scheduling of V2G. Through
time-scale coupling, the transportation system is well-coupled
with the electric power system, solving the problem that the
existing research cannot take into account both systems at the
same time.

• The model can also reveal the weaknesses of the distribution
network. The comparison of the dispatch endpoints and
charging and discharging power of V2G vehicles can reveal
the vulnerable nodes corresponding to charging stations in the
system. This provides a reference for the subsequent
distribution network expansion planning including charging

TABLE 1 Computational time analysis by different cases.

Case A Case B Case C Case D

Optimization time
(seconds)

106.977669 62.152826 113.649501 47.258919
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station planning, line capacity increase, and line new
construction.

At the same time, there are shortcomings in this study.
Considering the computational complexity, this study does not
consider the fuel consumption of the traffic on the way, which
cannot be ignored in a large-scale traffic network. The model does
not consider the path planning constraints of other vehicles, which
can have an impact on the congestion level of the traffic network.
Further research will be conducted later to address these issues.

In the future, as electric vehicle penetration rate increases year-by-
year, the integration of traffic–power networks will gradually deepen.
Joint planning of the traffic–power system needs to be urgently carried
out, which can also combine distributed data, such as distributed
photovoltaics, to realize the integration of new energy and electrified
transportation. It is also necessary to carry out joint planning to combine
distributed generator data to realize integrated planning of new energy
and electrified transportation to help realize the dual carbon strategy.
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Nomenclature

Index and sets

ψCS Set of all cells of charging stations.

Vchar Set of all charging vehicles.

Vdis Set of all discharging vehicles.

Velse Set of all other vehicles.

ΩL Set of all branches.

β(a)/α(a) Set of all children/parent cells of cell a.
C Set of all the coupling pair of nodes and cells.

ƛ(i)/π(i) Set of all the children/parent nodes of node i.

ΩN Set of all nodes in the distribution network.

Constants

Qa
max Maximum traffic flow of cell a.

Na
max Maximum traffic amount that cell a can store.

ka Congestion factor.

es Energy margin of vehicle type s.

ε Error factor.

Xa,s Number of type s vehicles at cell a at the initial moment.

NV
s Number of type s vehicles in the traffic system.

ps/qs Maximum active/reactive power for each type s vehicle
charging/discharging.

Variables

xcell
a,t,s Number of type s vehicles in cell a at time t.

ycell
ab,t,s Number of type s vehicles moving from cell a to child cell b at

time t.

ecella,t,s Energy of all type s vehicles in cell a that could supply at time t.

Pcs
a,t/Q

cs
a,t Inject active/reactive power of cell a at time t.

Pin
i,t/Q

in
i,t Inject power of node i at time t.

Pgen
i,t /Q

gen
i,t Active/reactive power from the generator of node i at

time t.

Pij,t/Qij,t Active/reactive power flowing from node i to node j at
time t

Ui,t Amplitude voltage of node i at time t.
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