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The electric power grid is changing from a traditional power system to a modern,
smart, and integrated power system. Microgrids (MGs) play a vital role in
combining distributed renewable energy resources (RESs) with traditional
electric power systems. Intermittency, randomness, and volatility constitute the
disadvantages of distributed RESs. MGs with high penetrations of renewable
energy and random load demand cannot ignore these uncertainties, making it
difficult to operate them effectively and economically. To realize the optimal
scheduling of MGs, a real-time economic energy management strategy based on
deep reinforcement learning (DRL) is proposed in this paper. Different from
traditional model-based approaches, this strategy is learning based, and it has
no requirements for an explicit model of uncertainty. Taking into account the
uncertainties in RESs, load demand, and electricity prices, we formulate a Markov
decision process for the real-time economic energy management problem of
MGs. The objective is to minimize the daily operating cost of the system by
scheduling controllable distributed generators and energy storage systems. In this
paper, a deep deterministic policy gradient (DDPG) is introduced as a method for
resolving the Markov decision process. The DDPG is a novel policy-based DRL
approach with continuous state and action spaces. The DDPG is trained to learn
the characteristics of uncertainties of the load, RES output, and electricity price
using historical data from real power systems. The effectiveness of the proposed
approach is validated through the designed simulation experiments. In the second
experiment of our designed simulation, the proposed DRLmethod is compared to
DQN, SAC, PPO, and MPCmethods, and it is able to reduce the operating costs by
29.59%, 17.39%, 6.36%, and 9.55% on the June test set and 30.96%, 18.34%, 5.73%,
and 10.16% on the November test set, respectively. The numerical results validate
the practical value of the proposed DRL algorithm in addressing economic
operation issues in MGs, as it demonstrates the algorithm’s ability to effectively
leverage the energy storage system to reduce the operating costs across a range
of scenarios.
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1 Introduction

With the continuously increasing energy demand and the
increasing awareness of environmental protection around the
world, low-carbon and sustainable requirements have promoted a
new energy revolution. Renewable energy is seen as an important
driving force for achieving energy transition. With the increasing
penetration of renewable energy sources (RESs), power systems are
becoming more complex and dynamic. Smart grids (Farhangi, 2010;
Fang et al., 2012) are a critical technology for realizing the energy
transition, and microgrids (MGs) are an essential part and basic unit
of smart grids (Yan et al., 2022). The study of automatic control and
operation technologies for MGs helps to advance the realization of
modern intelligent power systems.

The energy management system (EMS) of MGs enables the
management of distributed generators (DGs), RESs, and energy
storage systems (ESSs) in the MG system through intelligent
scheduling and control strategies to meet the load demand
(Lasseter, 2002). Distributed RESs are highly intermittent,
stochastic, and volatile due to environmental factors, and the
uncertainty of the load makes it difficult to achieve effective
generation control strategies (Ji et al., 2019). The energy
management of an MG is traditionally presented as an
optimization problem that aims to minimize operational costs.
Depending on the type of model and solution approaches, the
existing research methods can be divided into two main
categories: model-based deterministic approaches and model-free
learning-based approaches.

Model-based approaches rely on detailed system models and
require known transfer patterns of system states. The study of energy
management problems in MGs using a model-based approach
typically involves modeling an optimization problem in which
the goal is to realize cost minimization. Li and Xu (2018) and
Silva et al. (2021) applied a mixed-integer linear programming
(MILP) model for the day-ahead scheduling of MG generation
units to reduce the operating cost of the system. In both studies,
the day-ahead load profile of the MG was known, but they did not
consider the uncertainty in RESs and the tariff. To handle such
uncertainties, Craparo et al. (2017) proposed a robust optimization
(RO) approach with weather forecasts to describe the uncertainty of
wind generation. In the work of Vergara et al. (2020), a scenario-
based stochastic optimization approach based onMonte Carlo (MC)
simulation was developed. In the work of Liu et al. (2017), an
optimization model with chance constraints was proposed to
guarantee that the operating constraints of the generator are met
probabilistically. In the work of Prodan and Zio (2014), a model
predictive control (MPC) approach was proposed to minimize the
operating cost. The uncertainties of RESs and load were taken into
consideration in this work. These works were model based and
required the estimation of uncertainty in the system to model an
accurate optimization problem and the use of a solver to obtain the
optimal scheduling strategy (Thirugnanam et al., 2018). Developing
a model-based energy management strategy for an MG requires
professional domain knowledge to model each component unit of
the system. Different model and parameter choices can produce
different dispatch results, and the accuracy of the parameters of the
model affects the reliability of the scheduling results. Improper
probability distribution models with low-accuracy parameters

prevent the traditional model-based methods from delivering
sub-optimal solutions. Furthermore, once the topology, scale, and
capacity of the MG change, the system needs to be remodeled and
the solver redesigned, which is cumbersome and time consuming (Ji
et al., 2019). Despite the abovementioned disadvantages of model-
based approaches, it is undeniable that once the system model and
parameters have been identified, model-based approaches will tend
to obtain the most optimal dispatching results after obtaining the
accurate system states.

Learning-based approaches have attracted a tremendous
amount of attention in recent years. Learning-based methods
have been successfully applied to power systems for problems
such as renewable energy output forecasting (Liang and Tang,
2020; Liu et al., 2021), load forecasting (Faraji et al., 2020; Lin
et al., 2021), frequency control (Xia et al., 2022; Yan et al., 2022), and
energy management (Levent et al., 2019; Muriithi and Chowdhury,
2021). Arwa and Folly (2020); Cao et al. (2020); Ozcanli et al. (2020);
Yang et al. (2020); and Khodayar et al. (2021) provided a more
comprehensive review of the application of learning-based methods
in power systems. As a data-driven approach, the learning-based
approach eliminates the need for a system model and allows models
or policies to be learned directly from the data. When applying a
learning-based approach to solve energy management problems in
MGs, the optimization problem is usually formulated as a Markov
decision process (MDP). Levent et al. (2019) proposed a
reinforcement learning (RL) approach to solve the MG energy
management problem with a low-dimensional state and discrete
action space. To handle the uncertainty in a MG with PV and
batteries, a Q-learning approach was developed by Muriithi and
Chowdhury (2021). In the work of Yoldas et al. (2020), a pilot
stochastic and dynamicMG on a university campus was studied, and
a Q-learning algorithm guided by multistage mixed-integer non-
linear programming (MINLP) was proposed to optimize the
operation of the MG. In the work of Yu et al. (2021), a
Q-learning algorithm based on fuzzy control was proposed to
improve the economics of the MG with an ESS. In the work of
Shang et al. (2020), an RL approach was proposed for the optimal
scheduling of an MG, and the Monte Carlo tree search method was
combined with the proposed RL approach. Although these studies
have no need for power models for RESs, knowledge of the
distribution of uncertainty is still required. Moreover, most of the
approaches employed in previous research works face the problem
of dimensional disaster when applied to complex MG systems with
high-dimensional state spaces and high-dimensional action spaces.
Traditional RL algorithms mostly use simple greedy strategies to
select actions, which are often not the optimal strategy in decision-
making problems. Moreover, the agent of traditional RL methods
needs to interact with the environment extensively and learn the
optimal policy only after obtaining sufficient sample data, leading to
low efficiency and low data utilization rate of the algorithm.

Deep reinforcement learning (DRL) utilizes the feature learning
capabilities of deep neural networks (DNNs) for end-to-end
learning, which makes it advantageous in solving complex
decision-making problems (Mnih et al., 2015; Silver et al., 2016).
The fact that real-time energy management in MGs is essentially a
sequential decision problem, coupled with the difficulty of
dimensional disasters, has led to DRL being used by researchers
to solve the real-time energy management problem in MGs.
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According to Francois et al. (2016), DRL was used to optimize the
operation of storage devices in an MG by using a convolutional
neural network (CNN) to extract knowledge from the past load and
PV generation. However, the uncertainty of electricity price was not
considered. In a real-time electricity market, the electricity price is
generally uncertain and has a strong impact on the management of
MGs (Ji et al., 2019). In the work of Zeng et al. (2019), a model-based
approximate dynamic programming (ADP) approach was proposed
to solve the energy management problem considering uncertainties
and power flow constraints. The value function is approximated via
a recurrent neural network (RNN) that learns from historical system
states to estimate the state. The DQN approach was used by Ji et al.
(2019) to study the energy management problem of an MG with the
uncertainties of renewable generation and real-time electricity price
considered. It only handled discrete actions and suffered the curse of
dimensionality. To ensure the power balance of the system, it is
necessary to perform high-dimensional discretization of the action
space, which instead reduces the efficiency of the algorithm. To solve
the dimensional disaster problem posed by the discretization of the
action space, DRL approaches that can learn policies with
continuous action spaces are promoted. A DRL approach was
proposed by Bian et al. (2020) to optimize the day-ahead MG
dispatching problem. The deterministic real-time electricity price
was used, but the uncertainties of RESs were not taken into
consideration. In the work of Hu et al. (2022), a soft actor–critic
(SAC) DRL approach was proposed to solve a hierarchical multi-
timescale scheduling problem for MGs with different storage
devices. The variation in electricity prices was not considered in
the developed MDP model. The optimal energy management
problem of MGs was solved by PPO proposed by Guo et al.
(2022). In this work, wind speed, solar radiation, and
temperature data were used to construct the renewable energy
output model, which may introduce model errors. Furthermore,
the acquisition of weather data requires monitoring devices to be
installed in the system, which increases the cost of the system and is
typically limited to larger-scale power systems. RESs in MG systems
are mostly distributed small-capacity units, which cannot be
monitored to obtain meteorological data and then calculate the
power generation data of the units.

Based on the abovementioned discussion, traditional model-
based approaches require professional domain knowledge to model
the components of the system, RL approaches do not require an
accurate model of the system but need to understand the
distribution of uncertainty in the system, and DRL approaches
are capable of feature learning, but the existing research work
does not comprehensively consider the uncertainty and
operational objectives of the system. In this paper, a model-free
DRL approach is proposed to investigate the real-time energy
management problem of MGs. The objective of the real-time
energy management problem is to achieve the economic
operation of the MG. The real-time energy management problem
is modeled as an MDP with unknown transition probability. The
state variables of the model consider the uncertainty of RESs, load,
and the tariff in the system, without the need to obtain
meteorological data and model the output of RESs or to know
the distribution of uncertainty. The reward function is designed to
reduce the operating cost of the system. The scheduling strategy is
implemented through a designed DNN, and the network is trained

offline using a policy-based deep deterministic policy gradient
(DDPG) algorithm. DDPG is a DRL method based on policy
gradients, which utilizes the learning capability of DNN to learn
complex policies and update and improve them through a gradient
ascent. It also utilizes experience replay to improve the efficiency of
the use of samples. In practice, the real-time observations of the
system are used as the input to the policy network, and the output is
a deterministic continuous scheduling result. The inputs and
outputs of the policy network are automatically adapted to the
dimensionality of the system’s state and action spaces without
human adjustment, allowing them to be used for complex
systems with high-dimensional state and action spaces without
changing the algorithm. We also present the setting of the
algorithm parameters in this work. Two different scenarios of
simulation experiments are designed, and data from real power
systems are used to validate the effectiveness of the proposed
approach. The main contributions of our work can be
summarized as follows:

1. AnMDPwith an unknown transition probability is established to
solve the real-time energy management problem of MGs. The
objective is to reduce the cumulative daily operating cost of the
MG system.

2. The model-free DDPG algorithm is introduced to solve the real-
time energy management problem of MGs. A DNN-based policy
network is designed to output continuous scheduling signals.

3. Simulation experiments are designed to validate the effectiveness
of the proposed DRL approach in different scenarios. The
performance of the DDPG algorithm is compared with other
algorithms according to the numerical results.

The rest of the paper is organized as follows. Section 2 introduces
the model of the MG system and the details of the proposed DDPG
algorithm. Case studies are carried out and results are discussed in
Section 3. Finally, Section 4 draws the conclusion.

2 Models and methods

2.1 Modeling of the MG system

As shown in Figure 1, the uncontrollable distributed RES,
controllable DGs, uncontrollable load, and ESS in the MG
system are connected to the main grid through feeders. The
central controller (CC) collects the system operation status by
means of a real-time two-way communication network and
outputs control signals to the controllable units in the system
based on the status information using the proposed real-time
scheduling strategy. The strategy is based on a designed neural
network, and the detailed structure of the network is given in
Section 2.2.3. Each component of the system is modeled for
operation considering their physical characteristics and
technical constraints. To reflect the real-time operation of the
MG system, the uncertainty of load, electricity prices, and RES
generation is considered in the system model. In the
formulation we established, the total operating time range is
divided into T time slots, where the subscript t represents the
specific time slot and Δt is the duration of a time slot.
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2.1.1 Modeling of DGs
Distributed generators are the main power supply unit in the

MG system under study. It is assumed that the system contains a
total ofDDGs and that the control variable of DG i ∈ D at time step
t is the active power output, denoted as PDG

i,t . Considering the
physical characteristics, the active power output of the i th DG is
limited to

PDG
i,min ≤P

DG
i,t ≤PDG

i,max , i ∈ D � 1, 2,/,D{ },
where PDG

i,min and PDG
i,max are the minimum and maximum output

power of the i th DG, respectively. The generation cost of the i th DG
can be calculated by using a conventional quadratic function model
(Zeng et al., 2019),

CDG
i,t � ai P

DG
i,t( )2 + biP

DG
i,t + ci[ ] · Δt,∀i ∈ D,

where ai, bi, and ci are positive generation cost coefficients, which
are determined by the physical characteristics of the DG.

2.1.2 Modeling of ESS
Energy storage systems have been widely used in recent years in

power systems containing renewable energy generation. On one
hand, ESSs can smooth out fluctuations in renewable energy
generation, and on the other hand, they can provide power for
loads when the system’s generation capacity is insufficient. The
control variable of the ESS at time step t is the charging or
discharging power, denoted by PESS

t . The positive value means
charging, and the negative value means discharging. During
operation, an ESS cannot work in both charging and discharging
states, and the operating state of an ESS is denoted by α. α � 1 means
that the ESS is charging, and α � 0means that the ESS is discharging.
The charging and discharging power constraint of an ESS at any
moment is given by

−P ESS
max ≤PESS

t ≤P ESS
max ,

where P ESS
max is the maximum charging or discharging power.

The state of charge (SOC) is used as one of the indicators that
prevent overcharging or overdischarging. The SOC of the ESS at
time slot t is denoted by SOCt. It can be modeled as (Gibilisco et al.,
2018)

SOCt � SOCt−1 + α · PESS
t · ηESSch · Δt/EESS + 1 − α( ) · PESS

t · Δt/
× EESS · ηESSdis( ),

where ηESSch and ηESSdis are the charging and discharging efficiencies of
the ESS, respectively, and EESS is the capacity of the ESS. The SOC
should be kept in a safe range according to its technical constraints
as follows:

SOC min ≤ SOCt ≤ SOC max ,

where SOCmin and SOCmax are the minimum and maximum values
of the SOC at which the ESS can operate properly, respectively.

2.1.3 Modeling of the main grid
The studied MG system is connected to the main grid through a

converter and runs in a grid-connected mode. The power purchased
from or sold to the main grid at each time slot is denoted by PG

t . It is
not possible for the MG to both buy and sell electricity from the
main grid at the same time. The interaction power should satisfy the
constraint

−P G
max ≤P

G
t ≤P G

max ,

where PG
max is the maximum power of the MG that can be

purchased from or sold to the main grid according to the
limitation of the point of common coupling (PCC), the positive
value of PG

t means purchasing electricity, and the negative value
means selling electricity.

Prices at which electricity is purchased or sold between the MG
and the main grid are derived from the real-time electricity market.
The transaction cost CG

t can be formulated as

FIGURE 1
Real-time energy management framework of microgrids (MGs).
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CG
t � Pprice

t · PG
t · Δt, PG

t ≥ 0 ,
βG · Pprice

t · PG
t · Δt, PG

t ≤ 0,
{

where Pprice
t is the real-time electricity price at time slot t and

0< βG < 1 is a discount factor that means the selling price is lower
than the purchasing price.

2.1.4 Modeling of uncertainty
In the real-time energy management problem of MGs, both the

load and the generation of RESs are subjected to real-time uncertainty.
The power output of the wind turbine and PV can be denoted as PPV

t

and PWT
t , respectively, and the load is denoted by PL

t . Due to the
randomness of these system variables, the transition between these
states variables is modeled by the transition probabilities
Pr statet+1|statet{ } and statet � PPV

t , PWT
t , PL

t{ }. However, the
explicit model of transition probability cannot be obtained because
of uncertainty. In the existing model-based research work, wind speed
and light or their errors are usually assumed to follow known
probability distributions (Liang and Tang, 2020; Khosravi et al.,
2022; Malik et al., 2022) and are used to model wind power and PV
output to obtain renewable energy output data. However, the modeling
process for these probability distribution models is complex, the
parameters are difficult to identify, and a large sample of actual
operational data is required, which is very time consuming (Jiang
et al., 2021). Furthermore, the actual system operating data do not
strictly obey these probability distribution functions, so we use the
historical data of real power systems to learn the transition probability.
Details about the used historical data are presented in Section 3.

2.1.5 Constraint of power balance
The power balance constraint should be considered when the

MGworks in both the grid-connected mode and islanded mode. The
power balance constraint of the system is described by

∑D

i
PDG
i,t + PG

t + PPV
t + PWT

t � PL
t + PESS

t , t � 1, 2,/,T,

where variables on the left side of the equal sign represent the power
suppliers and variables on the right side of the equal sign represent
the power demand side.

2.2 Problem formulation

The most significant challenge in modeling the real-time energy
management problem of MGs is the variety of uncertain variables in
the system. AnMDPmodel that takes into account the uncertainty is
formulated in this section to solve the real-time energy management
problem for MGs. The objective is to reduce the cumulative daily
operating costs of the system. TheMDP is solved using the proposed
DRL method present in Section 2.3. The MDP model is represented
by a 5-tuple (S,A, Pa

ss′, r, γ). The state variable, action variable, and
reward function of the system are reasonably designed in the model.

2.2.1 System state
The state of the system at any time step t can be expressed as (Ji

et al., 2019)

st � PL
t−23,/,PL

t ,P
WT
t−23,/,PWT

t ,PPV
t−23,/,PPV

t ,Pprice
t−23 ,/,Pprice

t , SOCt , t( ), st ∈ S.

The defined system state consists of the latest 24 h history
information, PL

t−23,/, PL
t are the latest 24 h loads,

PWT
t−23,/, PWT

t , PPV
t−23,/, PPV

t are the latest 24 h power output of
wind and photovoltaic, respectively, Pprice

t−23 ,/, Pprice
t are the latest

24 h electricity prices, and S is the set of all possible states.
The formulation of the system state considers historical

information, which can improve the reliability of the learning
method to some degree but increase the dimensionality of the
state variables and the computational complexity. The problem is
exacerbated when the composition and size of the system grow. To
reduce the computational complexity, the representation of the
system state can be simplified as

st � PL
t ,P

WT
t ,PPV

t ,Pprice
t , SOCt , t( ), st ∈ S,∀t.

2.2.2 Action
The control variables consist of the active power of the DG as

well as the charging and discharging power of the ESS. The power
interacting with the main grid can be calculated according to the
balance constraint after obtaining the power of DGs and ESSs. The
action at to be performed by the system at each time step t according
to the state st is defined as

at � PDG
1,t ,/,P

DG

D,t
,PESS

t( ), at ∈ A st( ),∀t,

where A(st) is the set of all possible actions when the system is in
state st.

According to the presentation of action, the action setA(st) can
be divided into two parts:

A st( ) � ADG st( )( )D × AESS st( ),

where (ADG(st))D is the action set of D DGs and AESS(st) is the
action set of the ESS.

In a learning-based approach, the processing of the action space
can be divided in two ways. One is to discretize the action space,
where the agent selects actions in a limited discrete action space
based on the system state, and the other is to select in a continuous
action space based on a deterministic policy or a stochastic policy.
The size of the discrete action space will affect the accuracy of action
selection, so the continuous action space is used in this work.

2.2.3 Reward and objective
The reward at each time step t is the negative operating cost of

the MG system and is defined by

rt st , at( ) � − CG
t +∑D

i
CDG

i,t + CPen
t( ),

where CPen
t � σ · VPen

t is the penalty term, σ is the penalty factor, and
VPen

t is the penalty value. During the training process, a large penalty
value is set in the reward function to guide the policy network to
learn under the constraints when the constraints of the system are
not satisfied. VPen

t is expressed in the following form:

VPen
t � max 0, SOCt − SOC max( ) +max 0, SOC min − SOCt( )

+max 0,PG
t − P G

max( ) +max 0,−P G
max − PG

t( ).
The objective of the MDP is to maximize the cumulative reward

within a limited scheduling time, which means to minimize the total
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operating cost of the system over a period of time. We define the
control strategy that can maximize the cumulative reward of the
MDP as π*, and then, the objective can be expressed as

Vπ* s0( ) � max
π∈Π

Eπ ∑T

t�0γ
t · rt+1 s0|[ ],

where Vπ* is the expected optimal maximum cumulative reward, s0
is the initial state of the MG system, Π is the set of all possible
policies, Eπ[·] denotes the expected value of the policy π, and
0< γ< 1 is a discount factor that determines the importance of
future rewards.

2.2.4 Transition probabilities
In the MDP model, the system executing the action at at state st

will move to state st+1 according to the system transition probability
model:

Pa
ss′ � Tr s′ � st+1

∣∣∣∣s � st , a � at{ }.
The transition probability model is presented in Figure 2. In

an MG system with a known transition model, the transition
probability Pa

ss′ is determined, which means that when the system
is in state st, it can be transferred to a determined state st+1 after
executing action at according to the control strategy. The
transition probability is affected by the current state and the
action chosen by the control strategy. However, the system state
variables of load, electricity price, and renewable energy
generation are all uncertain in real time, and it is not
attainable to determine the state information for the next
moment based only on the current state and decision action.
The SOC of the ESS can be state transferred according to the
model of ESS.

The transfer model of the system can be obtained through short-
term prediction or Monte Carlo simulation (Ji et al., 2019). Short-
term prediction methods suffer from prediction errors, and the MC
simulationmethod requires a large amount of sampling (Malik et al.,
2022). The approach used in our work does not require short-term
forecasting or sampling simulations but rather learning from real
power system data to simulate the interaction with the real power
system. Learning directly from historical state data of real power
systems does not require the construction of prediction models, thus
allowing prediction errors due to models and parameters to be
avoided. For renewable energy output, training uses historical power
data and does not require large amounts of meteorological data as
samples, or the construction of generation models based on
meteorological data.

2.3 Proposed deep reinforcement learning
method

The formulated MDP model has continuous and high-
dimensional actions. Due to the curse of dimensionality, it is
difficult for the traditional RL algorithms to handle such
problems. This section proposes a gradient-based policy learning
approach for solving theMDP. ADNN-based deterministic policy is
designed to approximate the optimal policy π*(at | st). The neural
network-based policy can generate deterministic continuous actions
based on the observation of the system state. To optimize the policy,
the DDPG algorithm is adopted to train the scheduling policy
network. The experience-replay technology is used to train the
network to ensure the stability and convergence of the network.

2.3.1 Reinforcement learning model
The optimization problem is reformulated into the standard

reinforcement learning framework (Sutton and Barto, 1998). The
objective in the RL framework is shown as follows:

Vπ* st( ) � max
at∈A st( )

Qπ* st , at( ),

where Qπ* is the optimal action-value function.
The action-value function Qπ(st, at) describes the expected

rewards for taking action at and then following policy π in state
st (Lillicrap et al., 2015). It is denoted by

Qπ st , at( ) � Eri> t ,si> t~Pa
ss′ ,ai> t~π

rt st , at|[ ].

The optimal action-value function Qπ* satisfies a recursive
relationship, also known as the Bellman optimality equation. The
optimal action-value function can be obtained by solving the
Bellman equation, and then, the optimal policy π* and the
optimal actions can be obtained by

Qπ* st , at( ) � Eπ* rt + γ · max
at+1∈A st( )

Qπ* st+1, at+1( )[ ],
π* st( ) � argmax

at∈A st( )
Qπ* st , at( ).

The Bellman equation will be difficult to solve when faced with
complex problems. To address this problem, value-based methods,
such as Q-learning (Watkins and Dayan, 1992) and DQN (Mnih
et al., 2015), use a look-up table or DNN to estimate the optimal
action-value function Qπ* and update it iteratively. The
approximation function is usually described in the form of a
function Q(s, a|θQ) with respect to parameter θQ, and the

FIGURE 2
Transition probability model of MDP.
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parameters are optimized with the objective of minimizing the loss
function Loss based on the temporal-difference (TD) theory.

L θQ( ) � Est~ρβ ,at~β yt − Q st , at
∣∣∣∣θQ( )( )2[ ],

where B is the batch size of the samples sampled from the replay
buffer and yt is the target value.

yt � rt st , at( ) + γ · Q st+1, μ st+1( )∣∣∣∣θQ( ).
Reinforcement learning that uses an approximation function to

estimate the value function is known as the value-based RL method.
However, it has some disadvantages in practical applications,
especially when dealing with problems with continuous action
spaces where a good scheduling strategy cannot be obtained.
Therefore, we use policy-based reinforcement learning methods
(Sutton et al., 2000), which can directly approximate the policy
and optimize the policy function through the gradient ascent
method until a convergent policy is obtained.

2.3.2 Policy-based reinforcement learning and
deep deterministic policy gradient method

The deep deterministic policy gradient (Silver et al., 2014)
algorithm is introduced to solve the complex coordinate EV
charging and voltage control problem with high-dimensional and
continuous action spaces by only using low-dimensional
observations. The DDPG algorithm is a policy-based DRL
algorithm with actor–critic architecture. Both the actor and critic
contain two neural networks, with the actor consisting of two DNNs
with parameters θμ and θμ′ and the critic consisting of twomultilayer
perceptron (MLP) with parameters θQ and θQ′, respectively. The
construction of the DDPG algorithm is shown in Figure 3. Similar to
the standard reinforcement learning, the DDPG has a learning agent
that interacts with a distribution network environment in discrete
timesteps. The input of the DDPG agent is the system state st at time

step t, and the output is action at. We assume the studied DN
environment is fully observed. To ensure the independence between
samples when using neural networks, the DDPG uses experience
replay technology to ensure independence between the samples used
for target value updating. After each interaction of the agent with the
environment, we can obtain a sample containing st, at, rt, and st+1
and store this sample in the replay buffer. The agent continues to
interact with the environment until the set condition is met, and
then, B samples are randomly sampled from the replay buffer to
minimize the loss of the critic network and to calculate the gradient
of the actor network to softly update the parameters of the critic and
actor networks.

The DDPG algorithm combines the success of the actor–critic
approach and DQN (Mnih et al., 2015) using dual networks on top
of the deterministic policy gradient (DPG) algorithm (Silver et al.,
2014). The DPG algorithm is based on the actor–critic structure,
which consists of an actor and a critic. The critic Q(s, a) is learned
using the Bellman equation as in Q-learning. According to the loss
function, the update rule for the parameters of the critic is given by
(Lillicrap et al., 2015).

L θQ( ) � 1
B
∑

i
yi − Q si, ai

∣∣∣∣θQ( )( )2.
The actor is a parameterized actor function μ(s|θμ) that specifies

the current policy by deterministically mapping states to actions.
The actor value networks are updated according to policy gradients
by using the gradient ascent method and the sampled sequence of
decisions, and the chain rule is used to the expected return J from
the start distribution to update the actor. The update rule for the
parameters of the actor is given by

∇θμ J ≈ Est~ρβ ∇θμQ s, a
∣∣∣∣θQ( )∣∣∣∣s�st ,a�μ st |θμ( )[ ],

� Est~ρβ ∇aQ s, a
∣∣∣∣θQ( )∣∣∣∣s�st ,a�μ st( )∇θμμ s|θμ( )∣∣∣∣s�st[ ],

FIGURE 3
Structure of the proposed DDPG algorithm.
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≈
1
B
∑
i

∇aQ s, a θQ
∣∣∣∣( )∣∣∣∣s�si ,a�μ si( ) · ∇θμμ s|θμ( )|si,

where J is the expected return from the start distribution, μ is the
deterministic target policy, θ is the parameter of the function
approximator, ρ is the discounted state visitation distribution for
policy, β is a different stochastic behavior policy, and si is the state of
the ith sample in the small batch of samples sampled from the replay
buffer.

The main challenge of learning in continuous action spaces is
exploration. DDPG constructs an exploration policy μ′ by adding
noise samples from a noise processN to the actor policy. The noise
process N can be chosen according to the characteristics of the
environment under study. Because the energy management problem
of the MG is not the same as traditional physical control problems
with inertia, the noise process is not used in our practical
implementation to increase the exploration of the action space.

at � μ′ st( ) � μ st |θμ( ) +N t .

2.3.3 Design of the deep neural network
Traditional RL methods use tables or polynomial functions to

provide an approximation to the optimal action-value function.
These forms are relatively simple to understand, but they cannot be
effectively learned and trained when faced with high-dimensional
complex problems. To overcome these challenges, we design a DNN
to approximate the optimal policy. The designed architecture of the
policy network is presented in Figure 4.

The status information on the system’s renewable energy output
PWT
t , PPV

t , load demand PL
t , real-time LMP price Pprice

t , and SOC of
the ESS SOCt is fed into the network, and the output is a defined
continuous action vector. To ensure the stability and convergence of
the learning process, all input state data are normalized according to
their respective maximum–minimum values. An RNN can be used

as a policy network when the state variables contain information
from the past T time periods. In the model we build, the state
variables only contain information from the current moment to
reduce the dimensionality of the state space, so we choose a DNN as
the policy network to extract the feature information of the system
state variables. To alleviate the problem of vanishing gradient or
exploding gradient, a rectified linear unit (ReLU) is used as the
activation function of each neuron in the hidden layer. The output
layer uses the tanh activation function to directly output the action
vector at of the system in the current state st. The final layer of the
network uses tanh as the activation function and outputs continuous
values in the range [−1, 1]. The inverse-transform block in the figure
behind the output layer represents the limit on the range of output
continuous actions, corresponding to the constraints on DGs and
the ESS in Section 2.

The details of the architecture of the policy network of the
proposed DDPG structure are provided in Table 1. The designed
policy network has five layers, of which the first and fifth layers are
the input and output layers, respectively, and the remaining three

FIGURE 4
Architecture of the designed policy network.

TABLE 1 Policy network structure.

Layer Output dimension

Input layer (state space) NS

Full connection layer + ReLU (units 64) 64

Full connection layer + ReLU (units 64) 64

Full connection layer + ReLU (units 64) 64

Full connection layer + tanh (action dimension) NA

Inverse-transform block NA

Output of hybrid action = NA
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layers are the hidden layers. The dimensionality of the input layer
corresponds to the dimensionality of the system state variables NS,
and the dimensionality of the output layer corresponds to the
dimensionality of the system action variables NA. As the
dimension of the input states is small, we set the depth of the
hidden layer to 3 in order to converge quickly and avoid gradient
disappearance, and if the number of dimensions of the input states
increases, the number of layers of the hidden layer can be increased
appropriately. The width of the hidden layers is related to the
dimensionality of the states and is set to 2N

S
to learn the features

of the states. However, the width of the network should be too large
to prevent overfitting when faced with higher-dimensional state
inputs.

2.3.4 Offline training and online running
The scheduling process of the MG can be summarized as the

offline training and online scheduling process presented in Figure 5.
The agent is trained in a centralized mode using historical system
data and then runs in an online mode. The parameters (weights and
biases) of the initial policy of the agent are random, and the policy
network cannot output the optimal action. Therefore, the policy
network of the agent needs to be trained in an offline mode using
historical environmental data before it can practically operate. The
parameters of the DNN are updated through an iterative interaction
with the environment and the accumulation of experience. With this
approach, the agent can gradually optimize the network parameters
to more accurately approach the optimal collaborative strategy. The
pseudocode for the training procedure of the DDPG approach is
presented in Algorithm 1. In Algorithm 1, all network parameters
(weights and biases) of the DDPG are initialized before starting
training. At the beginning of each episode, the environment is reset
to obtain the initial state of the system. Then, the policy network

under the current parameters is used to interact with the
environment for T time steps. During the interaction, the
immediate reward, the observed state at the next moment, the
current state, and the action are composed to be one sample, and
this sample is stored in the replay buffer. Then, a random batch of
samples from the replay buffer is used to update the parameters of
the actor and critic networks of the DDPG according to the
conditions.

1: Initialize weights θQ and θμ of critic network Q(s, a|θQ)
and actor network μ(s|θμ)

2: Initialize weights θQ′ ← θQ and θμ′ ← θμ of target network

Q′ and μ′
3: Initialize experience replay buffer R

4: for episode = 1, 2, . . . , M do

5: Receive initial observation state s1

6: for t = 1, 2, . . . , T do

7: Choose at � μ(st|θμ)
8: Observe reward rt and the next state st+1
9: Store transition (st, at, r1, st+1) in R

10: Sample a random minibatch of B transitions (si, ai, ri, si+1)
from R

11: Set yi � ri + γ · Q′(si+1 ,μ′(si+1|θμ′)|θQ′)
12: Update critic network parameters by minimizing the

loss: L � 1
B∑i(yi − Q(si ,ai|θQ))2

13: Update the actor policy using the sampled policy

gradient: ∇θμJ ≈ 1
B ∑

i

∇aQ(s,a | θQ)|s�si ,a�μ(si) · ∇θμ μ(s|θμ)|si

14: Softly update the target networks using the updated

critic and actor network parameters: θQ′ ← τθQ + (1 − τ)θQ
and θμ′ ← τθμ + (1 − τ)θμ

15: end for

16: end for

Algorithm 1. DDPG-based learning algorithm.

3 Results and discussion

In this section, we present the details of simulation
experiments to test the proposed method and prove the
effectiveness of the method through the analysis of the
simulation results. The simulations are trained and tested
using a personal computer with an NVIDIA RTX 3070 GPU
and one Intel (R) Core (TM) i7-10700K CPU. The code is written
in Python 3.7.8, and the reinforcement learning algorithm is
implemented using the deep learning package TensorFlow 1.14.0
(Abadi et al., 2015).

3.1 The studied MG system and parameter
setting

3.1.1 Description of the MG system
To reflect the effectiveness of the proposed DDPG algorithm

in solving complex energy management problems considering
uncertainties, an MG system with more DGs based on the
European benchmark low-voltage MG system (Papathanassiou
et al., 2005) is studied in this paper. The structure is presented in

FIGURE 5
Schematic of the framework for offline training and online
operation.
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Figure 6. The MG system works with a central controller (CC)
that can communicate with local controllers (LCs) through real-
time two-way communication.

The simulated MG system consists of four controllable DGs
(D � 4), including twomicroturbines (MTs) and two fuel cells (FCs)
(numbered DG1–DG4); two RESs, including a PV and a WT; a
battery energy storage system; and some local loads. The operational
cost function for DGs is modeled as a quadratic function in Section
2.1. The parameters of the DGs’ generation costs and the range of the
power generation are given in Table 2. The capacity of the ESS is
200 kWh, and the safe range for the SOC of the ESS is [0.15, 0.98].
The max charging or discharging power of the ESS is 40 kW, and the
charging and discharging rates of the ESS are 0.98 and 0.95,
respectively. The capacity of the WT in the system is 10 kW and
the capacity of the PV is 20 kW. The maximum power of the MG
interacting with the main grid is set at 120 kW, and when the MG
sells power to the main grid, the discount factor of the selling price is
βG � 0.9. The sale price is lower than the purchase price, which helps
the system to prioritize the use of local generators to meet local load
demand and can reduce the negative impacts of the RES on the main
grid (Zhang et al., 2015; Li et al., 2016). We divide the day into
T � 24 intervals of 1 hour each, Δt � 1 h.

3.1.2 Design of simulation experiments
Two experiments are designed to evaluate the DRL method

proposed in this paper. The first experiment is to validate the
responsiveness of the approach proposed in this paper to the ESS
in a relatively deterministic scenario. In this scenario, the initial SOC
of the ESS is set to different values; the load demand, tariff, and RES
generation in the system are known. To fully demonstrate the
applicability of the proposed approach, the convergence of the
algorithm and the operating cost of the system are compared for
different ESS parameters. The second experiment is performed to
verify the practical operational performance of the approach
proposed in this paper in coping with system uncertainties in a
fully stochastic scenario. In this scenario, data generated by the real
power system is used to simulate the state transfer process of the
central controller interacting with the MG system.

Real power system data from the California Independent System
Operator (CAISO) (OASIS California ISO, 2020) are used to train
and test the effectiveness of the proposed approach. Data for
2019 and 2020 were downloaded as the training set and the test
set, respectively. To make the range of values for the load, RES
output, and electricity prices meet the requirements of the MG
system under study, the downloaded raw data need to be processed.

FIGURE 6
Schematic of the framework for offline training and online operation.

TABLE 2 Operation parameters of the components in the MG system.

Type and number Parameters

No. Maximum power (KW) Minimum power (kW) a ($/kWh2) b ($/kWh) c ($/h)

DGs 1 30 0 0.005 8.56 4.65

2 40 0 0.006 7.04 11.011

3 40 10 0.0175 1.75 0

4 50 10 0.0625 1.00 0
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The downloaded data were first normalized and thenmultiplied by a
set range of values to satisfy the requirements of the MG system.

3.1.3 Setting of parameters
In both simulation experiments, the designed policy network

contains three hidden layers of fully connected form, each
containing 64 neurons with ReLU as the activation function.
tanh is chosen as the activation function of the output layer to
output continuous control signals. The output control signal has a
value range of [−1, 1], and we add the inverse-transform blocks after
the output layer to obtain control signals in the normal value range.
All the weights of the policy network are initialized to a Gaussian
distribution with a bias of 0.03 and a mean of 0. The critic network
contains two fully connected layers, each containing 64 neurons
with ReLU as the activation function, and a linear activation
function for the output layer of the network. All the weights of
the critic network are initialized to a Gaussian distribution with a
bias of 0.1 and a mean of 0.

The parameters considering the algorithm are given in Table 3.
The number of training episodes is set toM � 3000, which is related
to the convergence rate of the algorithm, meaning that it is related to
the learning rate of the actor and critic networks. The smaller
learning rate of the actor is to learn better strategies and ensure
the convergence of Algorithm 1. A larger learning rate for the critic
than for the actor allows for faster parameter updates to the actor
network. The use of a soft update for the parameters of the target
networks allows for smoother parameter changes and ensures the
stability of the learning process. According to the formulated MDP
model, the input dimension of the policy network is 6, and the
number of neurons in the hidden layers of the policy network is set
to 64 = 26. Setting a small number of neurons in the hidden layer can
prevent overfitting. The batch size is set to B � 48, which is smaller
than the number of neurons in the hidden layers of the network to
ensure that the network can fully learn the features from the batch
samples. The discount factor indicates the effect of future rewards on
the current action. A smaller discount factor means that the
algorithm focuses more on recent decisions. However, a smaller
discount factor will make the critic network unable to foresee future
events. A larger discount factor means that the influence of future
rewards is considered. However, a larger discount factor will make
the training of the algorithm difficult. The actions output by the
policy network take into account the rewards of the nextT � 24 time

steps, and the discount factor is set to γ � 0.95 (Sutton and Barto,
2018). The penalty factor is set to a fixed value, and the value is
chosen in relation to the magnitude of the first two terms in the
reward function. It should be remembered that the tuning of
hyperparameters of the algorithm is not independent, and the
impact of different parameters on the results and stability of the
algorithm needs to be considered. The study of tuning strategies for
algorithm parameters is important for improving the performance
of the algorithm, but the idea of tuning the parameters of an
algorithm is different when faced with different problems. How
algorithm parameters affect algorithm performance and how they
can be optimized, either artificially or automatically, will be the
subject of future research and will not be analyzed in detail in
this work.

3.2 Experiment 1: Deterministic scenario

In the experiment with a deterministic scenario, the initial SOC
of the ESS is set to different values to test the responsiveness of the
proposed approach. The initial SOC of the ESS is set to 0.3, 0.5, 0.7,
and 0.9.

Figure 7 gives the convergence curves of the cumulative rewards
of the proposed method during training for different initial values of
the SOC. As can be learned from Figure 7, the proposed approach
can learn to increase the reward when the value of the initial SOC of
the ESS is uncertain and the convergence curves at the four SOC
values can converge to the maximum cumulative reward after
2,000 episodes. This result demonstrates that the proposed
DDPG approach learns a stable policy under the deterministic
environment. As can be seen from the enlarged partial graph, the
algorithm has a small deviation from the values of the maximum
cumulative reward at different initial values of the SOC, indicating
that there is a small impact on the operating cost of the algorithm
when the initial value of the SOC of the ESS is changed.

To further illustrate the regulating contribution of the ESS in the
energy management process of the MG, we set up the ESS with

TABLE 3 Parameters of the proposed DDPG algorithm.

Symbol Parameters Numerical

M Training episode 3,000

lra Learning rate of the actor 0.00001

lrc Learning rate of the critic 0.0001

τ Soft update coefficient 0.01

R Memory capacity 25,000

B Batch size 48

γ Discount factor 0.95

σ Penalty factor 10,000

FIGURE 7
Convergence curves of the cumulative rewards of the proposed
approach with different initial values of the SOC.
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different capacities and charging powers without changing other
system parameters. In the simulation experiments, the initial SOC of
the ESS is set to 0.9. The convergence curves of the training process
of the MG system with different ESS configurations are shown in
Figure 8. Based on the convergence curves shown in Figure 8, the
following conclusions can be drawn: 1) the proposed approach can
adapt not only to the ESS with different initial SOC values but also to
the ESS with different capacities and charging power configurations;
2) the cumulative return of the system gradually decreases as the
energy storage capacity increases, indicating that the configuration
of the ESS with larger capacity helps to reduce the operating cost of
the MG system; 3) when the capacity of the ESS is the same, the
increase in the charging power also helps to reduce the operating
cost of the MG system, as shown in the two curves, E200P20 and
E200P40, in Figure 8. Larger capacities and charging powers usually
require higher investment costs, which need to be taken into account
when planning the system. However, this is not discussed in detail in
our study.

Figure 9 presents the details of scheduling results obtained by the
proposed DDPGmethod at an initial value of 0.45 for the SOC of the
ESS. The initial SOC is set to SOC1 � 0.45. According to Figure 9A,
DG3 and DG4 are the main power supply units in the system
because they have a lower cost of generation, while DG1 and
DG2 are not the main power supply units in the system because
they have a higher cost of generation. The ESS is charged and
discharged according to its power storage and change in the
electricity price. Based on the tariff curve in Figure 9A and the
charging process of the ESS in Figure 9B, it can be seen that the ESS
is able to respond to changes in tariffs. The ESS is charged at a low
tariff, the SOC is subsequently increased and discharged at a high
tariff, and the SOC is subsequently decreased. With the ESS, the MG
is also able to respond to changes in electricity prices as it interacts
with the main grid for electricity. During low-tariff hours, if the local
power supply and ESS cannot meet the load demand, the MG will
buy power from the main grid, and during high-tariff hours, if the
power of the ESS is sufficient, theMGwill sell power to themain grid
to obtain some revenue. The scheduling results in Figure 9

demonstrate that the proposed DDPG approach is effective in
learning an economic dispatch strategy.

3.3 Experiment 2: Stochastic scenario

In the experiment with a stochastic scenario, we test the
proposed algorithm using data from June and November 2020.
The tested data used in the experiment are presented in Figure 10.
To evaluate the performance of the proposed approach, several
model-based numerical computation methods and benchmark RL
solutions are used for comparison. The strategies used for
comparison include random policy, greedy policy, MPC (Shi
et al., 2019), MINLP policy, SAC (Haarnoja et al., 2018), PPO
(Guo et al., 2022), and DQN (Ji et al., 2019) policy. The MINLP
policy, in this case, represents the optimal strategy. In the MINLP
policy, the system load, electricity price, and renewable energy
output are assumed to be accurately predicted, and the real-time
energy management problem of the MG is modeled as mixed-
integer non-linear programming and solved using the commercial

FIGURE 8
Convergence of the proposed approach with different ESS
parameters.

FIGURE 9
Scheduling results of theMGobtained by the proposed approach
with an initial value of 0.45 for the SOC: (A) Generation schedules of
DGs, ESSs, and the main grid; (B) scheduled charging or discharging
power and SOC.
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solver CPLEX. The random policy randomly chooses actions from a
discrete action space with 11 levels of optional actions. The greedy
policy aims to obtain a scheduling policy with the lowest operating
cost at every timestep. The MPC policy has a sliding time window of
4 hours for the prediction time domain and 1 hour for the control

time domain. The MPC policy performs one decision action based
on the predicted state for the next 4 hours. The MPC policy
performs this process recursively to approximate real-time
control of the MG system. The DQN solution has the same
discrete action space with random policy, and the output layer
outputs 115 discrete actions. The SAC policy, PPO policy, and DQN
policy have the same policy network structure as the DDPG given in
Table 1. Their hyperparameters are set with reference to the
parameters given in the literature. The running time of training
and testing (one step) of all algorithms is listed in Table 4. To apply
the proposed method in a real power system, we perform offline
training. In our study, the proposed DDPG approach took 14.21 h to
train, and the time will be longer if the time interval is smaller. The
parameters of the trained network are loaded during online
implementation. The actual operating time during a scheduling
cycle takes only a few seconds. However, traditional model-based
methods take much more time to run to obtain the scheduling
results. As with DDPG, both SAC and PPO are DRL algorithms
based on the actor–critic structure, the difference being that SAC
and PPO have fewer hyperparameters than the DDPG. However,
SAC takes a longer training time to run in a multiprocessing
manner, and while PPO runs in 3.3% less time than DDPG, it
uses on-policy learning, which requires a large number of samples to
learn. Although the DDPG has more hyperparameters that need
more effort to tune, once the hyperparameters are tuned properly,
the DDPG can perform better than SAC and PPO.

The convergence curves of the four DRL methods are presented
in Figure 11. As can be seen from the figure, all four DRL methods
are able to converge to stable reward values. SAC, PPO, and DDPG
are policy-based DRL algorithms, and they converge faster than
DQN. Among them, PPO starts to converge in less than
500 episodes because it has fewer hyperparameters, and the
network parameters are updated faster; SAC converges slower
than DDPG because it is trained in a multiprocessing manner;
DDPG converges slower than PPO, but it obtains a higher
cumulative reward than the other three DRL methods. DQN
converges the slowest and has a higher error because it is a
value-based DRL algorithm that updates in a more time-
consuming way by selecting actions in a discrete action space.

The results of the cumulative daily operating cost of the
proposed approach and the comparison policies on the test data
are shown in Figure 12. From the results given in Figure 12, it can be
seen that the random policy has the worst performance, as it has the
highest cumulative operating cost, and the greedy policy has the
lowest cumulative operating cost, but it does not take into account
future effects. MPC has better performance than SAC and DQN, and
DQN has a higher cumulative operating cost compared to SAC,
which is related to the size of the action space. As can be seen from
the curves in Figure 12, the DDPG has better performance than the
comparison policies, obtaining lower cumulative operating costs on
both the June and November test sets.

The operating costs for several policies on the test sets are given
in Table 5. Based on the comparison of the numerical results, it can
be seen that the greedy policy achieves the lowest cumulative
running cost, but this strategy is locally optimal due to its short-
sightedness. The cumulative operating costs of random, DQN, SAC,
PPO, MINLP, MPC, DDPG, and greedy are $22.77K, $21.12K,
$18.00K, $15.88K, $14.29K, $16.44K, $14.87K, and $12.96K for

FIGURE 10
Test data used in the experiment with stochastic scenarios: (A)
Data for June in the test set; (B) data for November in the test set.
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the June test set and $19.08K, $17.41K, $14.72K, $12.75K, $11.53K,
$13.38K, $12.02K, and $9.64K for the November test set,
respectively. The percentages of cumulative operating cost savings
that can be achieved by other methods compared to the random
policy can be calculated numerically and are labeled in Figure 12.
Compared to the results for the cumulative operating cost of DQN,
SAC, PPO, and MPC on the test set in June, the DDPG can save
29.59%, 17.39%, 6.36%, and 9.55% and can save 30.96%, 18.34%,
5.73%, and 10.16% of the cumulative operating costs on the test set
in November, respectively. Compared to the results of the optimal
strategy, the cumulative operating costs of the proposed DDPG
approach are only 4.06% and 4.25% higher in June and November,
respectively. The abovementioned analysis leads to the following
conclusions: the proposed approach in this paper can operate in
stochastic scenarios to obtain an economical scheduling strategy and
has a more economical performance compared to the comparison
policies. The numerical results show that the proposed DDPG
approach is close to the optimal strategy for reducing the
operating cost of MGs. Nevertheless, it is important to note that
MPC, MINLP, and greedy policies all assume that the state
transition probability model of the system is already known,
which is often difficult to achieve in practice due to the presence
of uncertainty. Only the greedy policy considers the immediate
lowest cost without considering the future scenario. Although it
obtains the lowest operating cost, it does not achieve optimal
dispatch of the ESS.

To further illustrate the performance of the proposed DDPG
approach in reducing the operating cost of the MG system, Figure 13
presents the daily operating cost curves for the abovementioned
strategies for 30 consecutive days. It can be seen from the figure that
the daily running cost obtained by the DDPG policy (grey line with
dots) outperforms the DQN, SAC, and MPC policies on almost all
days. Compared to the PPO policy, the DDPG policy has a higher
cost on some run days (marked by red circles), but according to the
curves of cumulative operating cost presented in Figure 12, the
DDPG policy still has lower cumulative operating cost than the PPO
policy over a long period of time. The similar trend in the variation

TABLE 4 Time consumption on training and online computation (one step) by different algorithms.

Greedy Random MINLP MPC DQN SAC PPO DDPG

Training (h) - - - - 25.19 17.58 13.74 14.21

Online (s) 6 470.25 223.83 638.79 1336.44 0.0015 0.0014 0.0014 0.0014

11 439.85 188.59 587.46 1113.82 0.0014 0.0013 0.0012 0.0012

FIGURE 11
Convergence of the four DRL approaches.

FIGURE 12
Cumulative daily operating cost over 30 consecutive days
obtained by the proposed approach and the comparison methods: (A)
Cumulative daily operating cost in the test set for June; (B) cumulative
daily operating cost in the test set for November.
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of daily running costs for several DRL strategies is attributed to the
fact that we set up the same policy network structure. Furthermore,
comparison of the daily operating cost curves of the DDPG policy
and optimal strategies shows that the proposed DDPG policy is
comparable to the optimal strategy. Based on the analysis, we can
conclude that the proposed DDPG method has been proven to have
a good performance in solving the real-time energy management
problem of MGs.

Furthermore, we calculate the error in the daily operating cost of
the DRL methods and the theoretically optimal policy, and the
expressed cost error EC is

EC � CDRL
d − COpt

d( )/COpt
d × 100%,

where CDRL
d denotes the operating cost of the DRL method on day d

and COpt
d denotes the operating cost of the optimal policy (MINLP)

on day d. The results of the calculations are given in the form of a
box plot in Figure 14. The results given in Figure 14 show that the
proposed DDPG approach has the lowest daily operating cost error
but is slightly less computationally stable than PPO.

Figure 15 shows the results of the scheduling operation for three
consecutive days. The scheduling results of the controllable units in
the system are shown in Figure 15A, and the charging process of the
ESS is presented in Figure 15B. The results of scheduling of the
controllable units in the system are presented in Figure 15A, and the
scheduled results of the ESS and the change of the SOC are shown in
Figure 15B. As shown in Figure 15A, the MG will purchase a small
amount of power from the main grid to meet the load demand
during high-electricity price hours or sell power to the main grid to
make a profit. As shown in Figure 15B, the ESS is discharged
according to the power storage when the electricity price is high
and is charged when the electricity price is low. It is indicated that
the ESS can be effectively managed by the proposed approach in
stochastic scenarios, and by adjusting the charging and discharging
process of the ESS, the buffer effect of the ESS can be fully employed
to reduce the operating cost of the system.

To further demonstrate the efficacy of the proposed DRL approach
in addressing complex decision problems, we design a more intricate
MG system. We integrate a PV, a WT, and an ESS into the current
system, thereby increasing the level of uncertainty. The PV and WT

TABLE 5 Comparison of cumulative operating cost.

Greedy Random MINLP MPC DQN SAC PPO DDPG

Cost (×1K $) 6 12.96 22.77 14.29 16.44 21.12 18.00 15.88 14.87

11 9.64 19.08 11.53 13.38 17.41 14.72 12.75 12.02

FIGURE 13
Daily operating cost over 30 consecutive days obtained by the
proposed approach and the comparison methods: (A) Daily operating
cost in the test set for June; (B) daily operating cost in the test set for
November.

FIGURE 14
Daily operating cost error of the four DRL approaches with the
optimal policy.
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have capacities of 8 kW and 15 kW, respectively. The capacity of the
newly added ESS is 200 kWh, with a maximum charge and discharge
power rating of 50 kW. In light of the new system structure, the number
of state variables is increased by three dimensions and the number of
action variables by one dimension in the new system model. While the
increase in dimensionality is not significant, traditional model-based
approaches would require the development of new models for the WT
and PV and modifications to the algorithms. For DRL approaches with
discrete action spaces, the rise in the number of action dimensions
would increase the size of the action space, leading to the problem of
dimensional disaster. In contrast, our approach necessitates only the
minor adjustments, such as constructing a new state space for training
or modifying the reward function, if necessary.

The proposed DRL method is trained offline using the algorithm
parameters outlined in Section 3.1.3, and the online operation results
are presented in Figure 16. Figure 16A displays the dispatch results of all
controllable units and themain grid in the system, while Figure 16B and
Figure 16C show the charging and discharging status and SOC
variations of two ESSs, respectively. As demonstrated in Figure 16A,
with the increase in energy storage units in the system, the MG tends to
purchase more electricity from the main grid and store it in the ESS
during low electricity prices and discharge the ESS to meet the load

demand during high electricity prices, or even sell the low-cost
electricity to the main grid to generate revenue, achieving the
objective of reducing the system’s operating cost. Furthermore, as
shown in Figure 16B and Figure 16C, the algorithm is capable of
safely controlling the charging and discharging of multiple energy
storage units. Based on the abovementioned analysis, we conclude
that the proposed DRL method can be applied to more complex MG

FIGURE 15
Scheduling results of the MG over three consecutive days in the
test set: (A) Generation schedules of DGs, ESSs, and the main grid; (B)
scheduled charging or discharging power and SOC of the ESS.

FIGURE 16
Scheduling results of the complex MG over three consecutive
days in the test set: (A) Generation schedules of DGs, ESSs, and the
main grid; (B) scheduled charging or discharging power and SOC of
ESS 1; and (C) scheduled charging or discharging power and SOC
of ESS 2.
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systems without the need for model reconfiguration or parameter
adjustment, as the algorithm can effectively dispatch the controllable
units in the system to reduce the operating cost of the system.

4 Conclusion

MGs are an essential technology for integrating RESs and
promoting the development of power systems. Optimal energy
management strategies are necessary to achieve the economic
operation of MG systems. To this end, a DRL-based approach is
proposed to solve the optimal real-time energy management
problem of MG systems. The real-time energy management
problem of an MG is formulated as an MDP model considering the
uncertainties of load, RES output, and electricity prices and solved by
the DDPG approach, a policy-based DRL algorithm that does not rely
on the knowledge of the uncertainty. Compared to conventional
deterministic approaches, the proposed DRL method is data driven
and does not rely on precise models of uncertainties. In contrast to the
state-of-the-art DRL methods, the proposed DDPG method is capable
of tackling complex decision-making problems with continuous action
spaces, without requiring large storage memory for Q-value storage or
probabilistic models for action sampling. A DNN is designed for the
proposed DRL approach to learn the policy in an end-to-end manner
and directly output the real-time continuous control signals. The
performance and convergence of the proposed approach were
evaluated by interacting with the simulated MG system. The results
of simulation experiments demonstrated that the proposed approach
could respond to the uncertainties in different system scenarios. In the
second experiment of our simulation study, we compared the proposed
DRLmethodwith theDQN, SAC, PPO, andMPCmethods. The results
indicate that the DRL method is able to reduce the operating costs. The
comparison of the scheduling results shows that the proposed approach
can achieve much lower operating costs of the system than the baseline
solutions, reducing them by 29.59%, 17.39%, 6.36%, and 9.55% on the
June test set and 30.96%, 18.34%, 5.73%, and 10.16% on the November
test set, respectively. The simulation results on aMG system containing
more RES and ESS illustrate that the proposed approach can address the
economic operation of more complex and dynamicMG systems. These
findings demonstrate the superiority of the proposed DDPGmethod in
optimizing the operating costs ofMG systems and highlight its potential
for practical application in realistic power system scenarios.

In this paper, we have analyzed the influence of the system
parameters on the results, the hyperparameters of the DDPG
algorithm can also affect the results, and there is no uniform

conclusion. For future work, the impact of the algorithm’s
hyperparameters on the operating cost of the system and the
automatic rectification of hyperparameters should be considered
to improve the performance of the algorithm.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

DL, CZ, and PZ contributed to the conceptualization. DL, XW,
and SX built the model. DL and WL were responsible for the
software. DL visualized the results and wrote the original draft of
the manuscript. DL and CZ reviewed and edited the manuscript. PZ
supervised the research and managed the project. Access to funding
was provided by PZ and YL. All authors have read and agreed to the
published version of the manuscript.

Funding

This research was funded by the Liaoning Provincial Natural
Science Foundation of China (2020-KF-11-02).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Available at:
https://www.tensorflow.org/(Accesssed August 22, 2022).

Arwa, E. O., and Folly, K. A. (2020). Reinforcement learning techniques for optimal
power control in grid-connected microgrids: A comprehensive review. Ieee Access 8,
208992–209007. doi:10.1109/access.2020.3038735

Bian, H. F., Tian, X., Zhang, J., and Han, X. Y. (2020). “Deep reinforcement learning algorithm
based onoptimal energy dispatching formicrogrid,” in Proceedings of the 2020 5thAsiaConference
on Power and Electrical Engineering (ACPEE), 04-07 June 2020, Chengdu, China, 169–174.

Cao, D., Hu,W.H., Zhao, J. B., Zhang, G. Z., Zhang, B., Liu, Z., et al. (2020). Reinforcement
learning and its applications in modern power and energy systems: A review. J. Mod. Power
Syst. Clean Energy 8 (6), 1029–1042. doi:10.35833/mpce.2020.000552

Craparo, E., Karatas, M., and Singham, D. I. (2017). A robust optimization approach
to hybrid microgrid operation using ensemble weather forecasts. Appl. Energy 201,
135–147. doi:10.1016/j.apenergy.2017.05.068

Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Mag. 8 (1),
18–28. doi:10.1109/mpe.2009.934876

Faraji, J., Ketabi, A., Hashemi-Dezaki, H., Shafie-Khah, M., and Catalão, J. P. S.
(2020). Optimal day-ahead self-scheduling and operation of prosumer microgrids using
hybrid machine learning-based weather and load forecasting. IEEE ACCESS 8,
157284–157305. doi:10.1109/access.2020.3019562

Fang, X., Misra, S., Xue, G. L., and Yang, D. J. (2012). Smart grid - the new and
improved power grid: A survey. IEEE Commun. Surv. Tutorials 14 (4), 944–980. doi:10.
1109/surv.2011.101911.00087

Frontiers in Energy Research frontiersin.org17

Liu et al. 10.3389/fenrg.2023.1163053

https://www.tensorflow.org/
https://doi.org/10.1109/access.2020.3038735
https://doi.org/10.35833/mpce.2020.000552
https://doi.org/10.1016/j.apenergy.2017.05.068
https://doi.org/10.1109/mpe.2009.934876
https://doi.org/10.1109/access.2020.3019562
https://doi.org/10.1109/surv.2011.101911.00087
https://doi.org/10.1109/surv.2011.101911.00087
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1163053


Francois, V., Taralla, D., Ernst, D., and Fonteneau, R. (2016). "Deep reinforcement
learning solutions for energy microgrids management."

Guo, C. Y., Wang, X., Zheng, Y. H., and Zhang, F. (2022). Real-time optimal energy
management of microgrid with uncertainties based on deep reinforcement learning.
Energy 238, 121873. doi:10.1016/j.energy.2021.121873

Gibilisco, P., Ieva, G., Marcone, F., Porro, G., and De Tuglie, E. (2018). “Day-ahead
operation planning for microgrids embedding battery energy storage systems,” in
Proceedings of the A case study on the PrInCE Lab microgrid. 2018 AEIT
International Annual Conference, Bari, Italy, 03-05 October 2018.

Hu, C. C., Cai, Z. X., Zhang, Y. X., Yan, R. D., Cai, Y., and Cen, B. W. (2022). A soft actor-
critic deep reinforcement learning method for multi-timescale coordinated operation of
microgrids. Prot. Control Mod. Power Syst. 7 (1), 29. doi:10.1186/s41601-022-00252-z

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in Proceedings
of the 35th International Confernece on Machine Learning, Stockholm, SWEDEN, 10-
15 July 2018, 80.

Ji, Y., Wang, J. H., Xu, J. C., Fang, X. K., and Zhang, H. G. (2019). Real-time energy
management of a microgrid using deep reinforcement learning. Energies 12 (12), 2291.
doi:10.3390/en12122291

Jiang, C., Mao, Y., Chai, Y., and Yu, M. (2021). Day-ahead renewable scenario
forecasts based on generative adversarial networks. Int. J. Energy Res. 45 (5), 7572–7587.
doi:10.1002/er.6340

Khosravi, M., Afsharnia, S., and Farhangi, S. (2022). Stochastic power management
strategy for optimal day-ahead scheduling of wind-HESS considering wind power
generation and market price uncertainties. Int. J. Electr. Power and Energy Syst.
134,107429 doi:10.1016/j.ijepes.2021.107429

Khodayar, M., Liu, G. Y., Wang, J. H., and Khodayar, M. E. (2021). Deep learning in
power systems research: A review. Csee J. Power Energy Syst. 7 (2), 209–220.

Liang, J. K., and Tang, W. Y. (2020). Sequence generative adversarial networks for
wind power scenario generation. Ieee J. Sel. Areas Commun. 38 (1), 110–118. doi:10.
1109/jsac.2019.2952182

Liu, J. Z., Chen, H., Zhang, W., Yurkovich, B., and Rizzoni, G. (2017). Energy
management problems under uncertainties for grid-connected microgrids: A chance
constrained programming approach. IEEE Trans. Smart Grid 8 (6), 2585–2596. doi:10.
1109/tsg.2016.2531004

Liu, C. H., Gu, J. C., and Yang, M. T. (2021). A simplified LSTM neural networks for
one day-ahead solar power forecasting. Ieee Access 9, 17174–17195. doi:10.1109/access.
2021.3053638

Li, Z. M., and Xu, Y. (2018). Optimal coordinated energy dispatch of a multi-energy
microgrid in grid-connected and islanded modes. Appl. Energy 210, 974–986. doi:10.
1016/j.apenergy.2017.08.197

Li, Z. W., Zang, C. Z., Zeng, P., and Yu, H. B. (2016). Combined two-stage stochastic
programming and receding horizon control strategy for microgrid energy management
considering uncertainty. Energies 9 (7), 499. doi:10.3390/en9070499

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). "Continuous
control with deep reinforcement learning." arXiv e-prints: arXiv:1509.02971.

Levent, T., Preux, P., Le Pennec, E., Badosa, J., Henri, G., Bonnassieux, Y., et al. (2019).
“Energy management for microgrids: A reinforcement learning approach,” in
Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT-
Europe), Bucharest, Romania, 29 September 2019 - 02 October 2019, 1–5.

Lin, S., Wang, H., Qi, L., Feng, H., and Su, Y. (2021). Short-term load forecasting based on
conditional generative adversarial network. Automation Electr. Power Syst. 45 (11), 52–60.

Lasseter, R. H. (2002). MicroGrids. 2002. New York, NY, USA: IEEE Power
Engineering Society Winter Meeting.

Muriithi, G., and Chowdhury, S. (2021). Optimal energy management of a grid-tied
solar PV-battery microgrid: A reinforcement learning approach. Energies 14 (9), 2700.
doi:10.3390/en14092700

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518 (7540),
529–533. doi:10.1038/nature14236

Malik, P., Gehlot, A., Singh, R., Gupta, L. R., and Thakur, A. K. (2022). A review on
ANN based model for solar radiation and wind speed prediction with real-time data.
Archives Comput. Methods Eng. 29 (5), 3183–3201. doi:10.1007/s11831-021-09687-3

OASIS California ISO Open access same-time information system. 2020.

Ozcanli, A. K., Yaprakdal, F., and Baysal, M. (2020). Deep learning methods and
applications for electrical power systems: A comprehensive review. Int. J. Energy Res. 44
(9), 7136–7157. doi:10.1002/er.5331

Papathanassiou, S., Hatziargyriou, N., and Strunz, K. (2005). "A benchmark low
voltage microgrid network." CIGRE Symposium.

Prodan, I., and Zio, E. (2014). A model predictive control framework for reliable
microgrid energymanagement. Int. J. Electr. Power and Energy Syst. 61, 399–409. doi:10.
1016/j.ijepes.2014.03.017

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al.
(2016). Mastering the game of Go with deep neural networks and tree search. Nature
529 (7587), 484–489. doi:10.1038/nature16961

Silva, J. A. A., Lopez, J. C., Arias, N. B., Rider, M. J., and da Silva, L. C. P. (2021). An
optimal stochastic energy management system for resilient microgrids. Appl. Energy
300, 117435. doi:10.1016/j.apenergy.2021.117435

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
“Deterministic policy gradient algorithms,” in Proceedings of the 31st International
Conference on Machine Learning, Beijing, China, June 2014.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction.
London, England, The MIT Press,

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduction.
London, England: The MIT Press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000)., 12. Leuven, Belgium,
1057–1063.Policy gradient methods for reinforcement learning with function
approximationAdv. Neural Inf. Process. Syst.

Shi, Y., Tuan, H. D., Savkin, A. V., Duong, T. Q., and Poor, H. V. (2019). Model
predictive control for smart grids with multiple electric-vehicle charging stations. IEEE
Trans. Smart Grid 10 (2), 2127–2136. doi:10.1109/tsg.2017.2789333

Shang, Y. W., Wu, W. C., Guo, J. B., Ma, Z., Sheng, W. X., Lv, Z., et al. (2020).
Stochastic dispatch of energy storage in microgrids: An augmented reinforcement
learning approach. Appl. Energy 261, 114423. doi:10.1016/j.apenergy.2019.114423

Thirugnanam, K., Kerk, S. K., Yuen, C., Liu, N., and Zhang, M. (2018). Energy
management for renewable microgrid in reducing diesel generators usage with multiple
types of battery. IEEE Trans. Industrial Electron. 65 (8), 6772–6786. doi:10.1109/tie.
2018.2795585

Vergara, P. P., Lopez, J. C., Rider, M. J., Shaker, H. R., da Silva, L. C. P., and Jorgensen,
B. N. (2020). A stochastic programming model for the optimal operation of unbalanced
three-phase islanded microgrids. Int. J. Electr. Power and Energy Syst. 115, 105446.
doi:10.1016/j.ijepes.2019.105446

Watkins, C., and Dayan, P. (1992). Q-LEARNING. Mach. Learn. 8 (3-4), 279–292.
doi:10.1023/a:1022676722315

Xia, Y., Xu, Y., Wang, Y., Mondal, S., Dasgupta, S., Gupta, A. K., et al. (2022). A safe
policy learning-based method for decentralized and economic frequency control in
isolated networked-microgrid systems. IEEE Trans. Sustain. Energy 13 (4), 1982–1993.
doi:10.1109/tste.2022.3178415

Yan, R., Wang, Y., Xu, Y., and Dai, J. (2022). A multiagent quantum deep
reinforcement learning method for distributed frequency control of islanded
microgrids. IEEE Trans. Control Netw. Syst. 9 (4), 1622–1632. doi:10.1109/tcns.2022.
3140702

Yang, T., Zhao, L. Y., Li, W., and Zomaya, A. Y. (2020). Reinforcement learning in
sustainable energy and electric systems: A survey. Annu. Rev. Control 49, 145–163.
doi:10.1016/j.arcontrol.2020.03.001

Yu, Y. J., Qin, Y., and Gong, H. C. (2021). A fuzzy Q-learning algorithm for storage
optimization in islanding microgrid. J. Electr. Eng. Technol. 16 (5), 2343–2353. doi:10.
1007/s42835-021-00769-7

Yoldas, Y., Goren, S., and Onen, A. (2020). Optimal control of microgrids with multi-
stage mixed-integer nonlinear programming guided Q-learning algorithm. J. Mod.
Power Syst. Clean Energy 8 (6), 1151–1159. doi:10.35833/mpce.2020.000506

Zeng, P., Li, H. P., He, H. B., and Li, S. H. (2019). Dynamic energy management of a
microgrid using approximate dynamic programming and deep recurrent neural
network learning. IEEE Trans. Smart Grid 10 (4), 4435–4445. doi:10.1109/tsg.2018.
2859821

Zhang, Y., Zhang, T., Wang, R., Liu, Y. J., and Guo, B. (2015). Optimal operation of a
smart residential microgrid based on model predictive control by considering
uncertainties and storage impacts. Sol. Energy 122, 1052–1065. doi:10.1016/j.solener.
2015.10.027

Frontiers in Energy Research frontiersin.org18

Liu et al. 10.3389/fenrg.2023.1163053

https://doi.org/10.1016/j.energy.2021.121873
https://doi.org/10.1186/s41601-022-00252-z
https://doi.org/10.3390/en12122291
https://doi.org/10.1002/er.6340
https://doi.org/10.1016/j.ijepes.2021.107429
https://doi.org/10.1109/jsac.2019.2952182
https://doi.org/10.1109/jsac.2019.2952182
https://doi.org/10.1109/tsg.2016.2531004
https://doi.org/10.1109/tsg.2016.2531004
https://doi.org/10.1109/access.2021.3053638
https://doi.org/10.1109/access.2021.3053638
https://doi.org/10.1016/j.apenergy.2017.08.197
https://doi.org/10.1016/j.apenergy.2017.08.197
https://doi.org/10.3390/en9070499
https://doi.org/10.3390/en14092700
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/s11831-021-09687-3
https://doi.org/10.1002/er.5331
https://doi.org/10.1016/j.ijepes.2014.03.017
https://doi.org/10.1016/j.ijepes.2014.03.017
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.apenergy.2021.117435
https://doi.org/10.1109/tsg.2017.2789333
https://doi.org/10.1016/j.apenergy.2019.114423
https://doi.org/10.1109/tie.2018.2795585
https://doi.org/10.1109/tie.2018.2795585
https://doi.org/10.1016/j.ijepes.2019.105446
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1109/tste.2022.3178415
https://doi.org/10.1109/tcns.2022.3140702
https://doi.org/10.1109/tcns.2022.3140702
https://doi.org/10.1016/j.arcontrol.2020.03.001
https://doi.org/10.1007/s42835-021-00769-7
https://doi.org/10.1007/s42835-021-00769-7
https://doi.org/10.35833/mpce.2020.000506
https://doi.org/10.1109/tsg.2018.2859821
https://doi.org/10.1109/tsg.2018.2859821
https://doi.org/10.1016/j.solener.2015.10.027
https://doi.org/10.1016/j.solener.2015.10.027
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1163053

	Deep reinforcement learning for real-time economic energy management of microgrid system considering uncertainties
	1 Introduction
	2 Models and methods
	2.1 Modeling of the MG system
	2.1.1 Modeling of DGs
	2.1.2 Modeling of ESS
	2.1.3 Modeling of the main grid
	2.1.4 Modeling of uncertainty
	2.1.5 Constraint of power balance

	2.2 Problem formulation
	2.2.1 System state
	2.2.2 Action
	2.2.3 Reward and objective
	2.2.4 Transition probabilities

	2.3 Proposed deep reinforcement learning method
	2.3.1 Reinforcement learning model
	2.3.2 Policy-based reinforcement learning and deep deterministic policy gradient method
	2.3.3 Design of the deep neural network
	2.3.4 Offline training and online running


	3 Results and discussion
	3.1 The studied MG system and parameter setting
	3.1.1 Description of the MG system
	3.1.2 Design of simulation experiments
	3.1.3 Setting of parameters

	3.2 Experiment 1: Deterministic scenario
	3.3 Experiment 2: Stochastic scenario

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


