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1 Introduction

Power grid infrastructure planning schemes are usually affected by various investment
risks in the construction duration, such as financial risks (Ammar and Eling, 2015; Zhao
et al., 2022), power demand changes (Li et al., 2022; Yang et al., 2022), and extreme climates
(Cao et al., 2022). Due to these investment risks, the actual completion date of power grid
infrastructure projects may be delayed, and thus the electricity demand for load growth and
renewable energy integration cannot be well satisfied (Dang et al., 2019). A few investigations
have been reported in the literatures (Pan et al., 2022; Wu et al., 2022) to accurately predict
the infrastructure project durations. For example, various prediction models with neural
networks and multiple linear regression methods based on historical infrastructure planning
data were presented for project duration forecasting (Pan et al., 2022). However, the
investment risks affecting the planned infrastructure projects are neglected, and these
risks are important factors for the construction duration prediction problem. Therefore,
this paper aims to offer insightful opinions and discussions on the power grid infrastructure
planning and project duration prediction problems with investment risks.

The main contributions of this paper are twofold as listed: 1) a multi-factor risk
evaluation model was formulated based on program evaluation and review technique
(PERT) for power grid infrastructure planning under financial risk, extreme climates,
and electricity demand changes. Various curve features are extracted from historical
infrastructure project schedules using Tsfresh tool, and vital risk features are identified
based on a feature filtering method; 2) a project duration prediction method is proposed
based on Bayesian neural network (BNN) considering multi-factor investment risks to
formulate the occurrence probability of infrastructure project delay, and hence the deferred
duration of different infrastructure projects can be quantified for smart grid planning.

2 Risk factors affecting power grid infrastructure
planning

In the implementation process of power grid infrastructure planning, there are various
internal and external risk factors such as financial risks, electricity demand variations, and
extreme weather events (Ammar and Eling, 2015). First, power grid infrastructure planning
is greatly affected by financial risks, such as the movement of interest rates, exchange rates,
and cash flows. Second, due to the grid integration of massive electric vehicles with charging
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behavior uncertainties, electricity demand variations are inevitable
(Castillo et al., 2022). Third, there are various weather risks such as
hurricanes, cold snaps, rainstorms, heat waves, and thunderstorms
battered power grid infrastructure planning (Cao et al., 2022). The
occurrence of significant infrastructure project delay may lead to
severe financial losses even if the infrastructure project itself does not
sustain physical damage. As a result, based on the PERT, to quantify
investment risk factors, the impact of each risk factor can be
determined through Monte Carlo simulation (Quah and Quek,
2007; Cheng et al., 2021). In summary, the triangular distribution
can be given for a multi-factor risk evaluation model to formulate
the occurrence probability of financial risks, electricity demand
variations, and extreme climates in this paper.

3 Feature extraction of infrastructure
project schedules

Infrastructure project schedules can be characterized by
investment and construction completion rate curves. Hence,
Tsfresh and feature filtering methods are used to identify vital
sequential features affecting power grid infrastructure planning
from investment and construction completion rate curves (Ehya
et al., 2022). Based on hypothesis testing, the feature filtering
method is applied to evaluate the correlation between the project
duration T and the sequential feature x extracted using the
Tsfresh method. First, at the significance level α of 0.05, the
null hypothesis indicates that the sequential feature x is not
relevant to the project duration T and should not be retained.
Second, each sequential feature x is scored by formula (1). The
closer scores are to 1, the higher the occurrence probability of
infrastructure project delay will be (Chen et al., 2022). Finally, the
threshold Qα can be obtained based on the significance level and
the number of infrastructure projects. If Q≥Qα, the null
hypothesis is rejected, and the sequential feature x is retained.
Otherwise, the null hypothesis is accepted, and the sequential
feature x is removed. The correlation degree between project
duration T and sequential feature x is calculated as follows:

Q x, T( ) �
max F1,n T( ) − F0,n x( )∣∣∣∣ ∣∣∣∣, if x is a Boolean type variable

2 N1 x, T( ) −N2 x, T( )[ ]
n n − 1( ) , if x is a continuous − valued type variable,

⎧⎪⎪⎨⎪⎪⎩
(1)

where F0,n(x) and F1,n(T) are two cumulative distributions of the
extracted curve feature and infrastructure project duration; n is the
number of extracted curve features; N1(x, T) and N2(x, T) are the
number of positively correlated element pairs and the number of
negatively correlated element pairs, respectively.

Hence, more than 200 vital sequential features consisting of
dynamic time-warping (DTW) distance, linear least-squares
regression, time lagged cross correlation (TLCC), Spearman
correlation coefficient, and enclosed area between investment
and construction completion rate curves can be identified based
on the feature filtering method for the project duration prediction
method. Furthermore, in order to investigate the coordination
degree of investment and construction completion schedules, the
curve coordination degree of sequential features is proposed as
follows:

K � λ1 · xDTW + λ2 · xTLCC + λ3 · xρ + λ4 · xAR, (2)
where xDTW denotes DTW distance between investment and
construction completion rate curves; xTLCC represents the degree
of the construction completion rate curve lagging behind the
investment completion rate curves; xρ denotes the Spearman
correlation coefficient; xAR denotes the enclosed area between
investment and construction completion rate curves; and λ1–λ4
denote corresponding weights which can be obtained by the
coefficient of the variation method. In this article, their values are
27.4%, 25.9%, 18.7%, and 28.1%, respectively.

Meanwhile, it can be found that infrastructure projects with
critical features, including higher voltage levels, larger planning
capacities, location in backcountry areas, and hysteretic
investment, tend to result in higher delay risks.

4 Deep learning-driven project
duration prediction with investment
risks

Due to various investment risk factors affecting the power grid
infrastructure planning, the project duration prediction problem can
be transformed into a probabilistic forecasting model. Consequently,
a deep learning-driven Bayesian method (Jia et al., 2021) is proposed
to formulate the occurrence probability distribution of
infrastructure project delay and quantify the deferred duration of
different projects under diverse investment risks. The BNN
algorithm can learn from the historical data of project duration
and respond to changes in future variables with credibility. With
conducting deep learning model training, the internal relationship
between risk factors and infrastructure duration from historical data
can be found efficiently.

The BNN structure is made up of input layer, hidden layer,
and output layer. The hidden layer is a probability layer, while the
weight ω in the probability layer obeys Gaussian distribution with
mean μ and variance δ (Thiagarajan et al., 2022). The BNN-
driven power grid infrastructure project duration prediction
process with investment risks can be divided into the
following steps:

• implementing the tri-layer BNN structure to formulate a deep
learning-driven project duration prediction model with
identified sequential features and investment risk factors as
input data.

• training the BNN prediction model for exploring the non-
linear relationship between sequential feature input data and
project duration to determine the posterior distribution of
weights.

• using historical project delay data of power grid infrastructure
planning to verify the validity of the proposed model and
obtain the duration delay probability distribution results.

With the proposed project duration prediction model, the power
grid infrastructure projects data D � (X,T) are given to train the
project duration prediction model. X is the input data consisting of
project labels, investment risk factors, curve coordination degree,
and sequential features extracted from investment and construction
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completion rate curves. Project labels include project location,
planning capacity, and theoretical duration. While T denotes the
duration of power grid infrastructure projects. The triangular
distribution parameters of financial risks, extreme climates and
electricity demand variations are (0, 0.3, 1), (0, 0.2, 1), and (0,
0.4, 1), respectively.

Variational inference is introduced into network training to
obtain the posterior distribution P(ω |D) of BNN weights suitable
for duration prediction under different investment risks (Zhang
et al., 2019). An existing simple distribution q(ω|θ) is introduced to
approximate the weight posterior distribution P(ω |D) by
minimizing the difference between the two distributions. The
weight distribution can be optimized by minimizing KL
divergence, as follows:

L � argmin
θ

KL q ω θ) P‖| ω|D( )([ ]
� argmin

θ
Eq ω|θ( ) log

q ω|θ( )
P(D ω)P ω( )|[ ][ ], (3)

where θ � (μ, σ) and each weight ωi obeys a standard normal
distribution (μi, σ i); P(ω) is the prior distribution of the weight
under different investment risks.

In this paper, historical power grid infrastructure projects in
Hunan, China, are presented to validate the effectiveness of the
proposed project duration prediction method with multi-factor
investment risks. The posterior distribution of weights in the
BNN-based duration prediction model varies with the
probability of risk occurrence. Then, the occurrence
probability distributions of project duration delay under
different investment risks can be extracted from a large
amount of sampling data from Monte Carlo analysis, and the
resulting project delay probability distributions are shown in
Figure 1.

In Figure 1, it can be found that number of delay months is
increased with the growing investment risk. On the other hand,
the delay months of infrastructure projects under financial risk
usually have a small standard deviation, and the project delay
probability under extreme climate is the highest. The results
show that the number of delay months can reach 10 months, and
this is because electricity demand changes will lead to variation in
design processes and technologies.

5 Discussion and conclusion

Based on the statistical analysis of practical infrastructure
projects data in Hunan, China, the following are the key findings
of this study: 1) the project delay is more likely to occur in
backcountry, and the delay rate can be up to 43%; 2) risk of
infrastructure project delay rises as the voltage level increases.
The delay rates with voltage levels 35 kV, 110 kV and 220 kV are
26%, 29%, and 35%, respectively; 3) timely investment will
accelerate the construction rate of infrastructure projects,
thereby reducing the probability of delay; 4) the larger the
planning capacity is, the lower the degree of timely
investment will be. Risk of infrastructure project delay
decreases as the curve coordination degree increases; and 5)
further research will focus on the diversity of investment risk
factors and combined effects of multiple risk factors on power
grid infrastructure planning.
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FIGURE 1
Occurrence probability distributions of infrastructure project delay under different risk factors.
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