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Aiming at the unreliability of historical data for short-term load forecasting caused
by the sudden change of power grid load under emergencies, a short-term load
prediction method adopting transfer learning is studied. The proposed transfer
learning method combines the attention mechanism (AM) with the long short-
term memory network coupled with input and forgetting gates (CIF-LSTM) to
construct the AM-CIF-LSTM short-term load prediction model. First, the
variational modal decomposition (VMD) method is used to extract the trend
component and certain periodic high-frequency components of the load
datasets of the scene to be predicted and similar scenes. Subsequently, the
AM-encoder/decoder learning model is established based on the trend
component, and the AM learnable parameters are trained and transferred to
the AM-CIF-LSTM model. Furthermore, inspired by the idea of classified
forecasting, the load trend component and periodic high-frequency
components under the required prediction scene are predicted by AM-CIF-
LSTM and deep recursive neural network (DRNN), respectively. Finally, the load
forecasting results are superimposed to obtain the load forecasting value. The
experimental results demonstrate that the proposed method outperformed the
existing methods in multiple accuracy indicators and could predict the rapid
change trend of load in the case of insufficient data accurately and stably.
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1 Introduction

Short-term load forecasting aims to calculate the electric load demand from hours to
days in the future, which plays a very important role in the safe operation and optimal
dispatching of modern power systems. In natural disasters, failures and other emergencies,
the sudden change of power grid load will lead to unreliable historical load data, which
greatly increases the difficulty of short-term load forecasting. Therefore, it is very important
to design an accurate short-term load forecasting method to mitigate the impact of
emergencies, which is a critical guarantee for power grid restoration and reconstruction
and dispatching decision-making after the event.

The load in the modern power system has strong non-linearity and certain regularity.
Various machine learning-based methods have been applied to load forecasting for their
powerful non-linear processing capabilities by many scholars. These include support vector
machines (Ma et al., 2019; Yang et al., 2019; Barman, Choudhury; Barman and Dev
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Choudhury, 2020), fuzzy logic (Rejc and Pantos, 2011), and artificial
neural networks (Chen et al., 2010; Cecati et al., 2015). However, it is
difficult for the traditional shallow machine learning models to fully
capture the time series characteristics of load data, which affects the
prediction accuracy. In recent years, deep learning methods have
developed rapidly and gradually become the mainstreammethod for
short-term load forecasting. Cai et al. (2019) used deep learning and
conventional time-series techniques to compare the day-ahead load
forecasting at the architectural level, and the results showed that the
direct multi-step CNN model had the best prediction effect. Yang
et al. (2020) employed probabilistic load prediction using Bayesian
deep learning. Recurrent neural network (RNN) and its variants,
such as deep recursive neural network (DRNN) (Chitalia et al.,
2020), long short-term memory (LSTM) networks (Memarzadeh
and Keynia, 2021; Peng et al., 2022), and gated recurrent units
(Meng et al., 2022), have been widely used because they can deeply
mine the time series characteristics of data and have high prediction
accuracy.

However, the general deep learning method cannot accurately
predict the rapid change trend of load after emergencies. On the one
hand, emergencies greatly increase the non-stationary nature of load
series. Although the deep learning models attributing to RNN have
considered both the temporal and non-linear relationship of data, it
is unable to make effective choices on a large number of temporal
characteristics (Rodrigues and Pereira, 2020). On the other hand,
deep learning models demand a large number of historical data, and
sudden changes in power load caused by emergencies will lead to a
decline in the reliability of historical load data, which will lead to the
problem of overfitting. Migration learning can effectively solve the
problem of insufficient training samples.

Transfer learning is a branch of the deep learning method
(Tamaazousti et al., 2020). Its idea is to solve the task in the
target domain by using the model trained in the source domain.
It has been applied in medical, ecological, and other fields (Huynh
et al., 2016; Li et al., 2017). In recent years, the results of transfer
learning have also been gradually applied to power load forecasting
(Cai et al., 2020; Gao et al., 2020; Zhou et al., 2020), which is a fresh
idea to solve the lack of reliable historical data for short-term load
forecasting.

Aiming at the mentioned difficulties of short-term load
forecasting after encountering emergencies, the idea of transfer
learning is introduced to establish the AM-CIF-LSTM model for
short-term load forecasting in this paper. For the non-stationarity of
load sequences, the variational mode decomposition (VMD)
method is used to decompose it into a trend item and several
periodic components. A transfer learning method based on the
attention mechanism (AM) is established to solve the problem of
unreliable historical data by training the learnable parameters in the
attention model using the trend item of historical load data in
similar scenes. To improve the computational efficiency, the long
short-termmemory network coupled with input and forgetting gates
(CIF-LSTM) is constructed and the trained learnable parameters are
transferred into it, which reduces the complexity of the traditional
LSTM model and relieves the huge computational burden brought
by transfer learning. CIF-LSTM and DRNN are employed to predict
trend items and high-frequency periodic components respectively,
and the final prediction result is obtained by superposing the above
two parts of predicted values. Finally, the case study is implemented

to verify the accuracy of the proposed method in forecasting rapidly
changing loads, the effectiveness to solve historical data lack
problem.

2 Transfer learning method based
on AM

In the proposed AM-based transfer learning method, the inputs
and outputs of the training model are the load trend items
decomposed by the VMD, and the migration object is the
learnable parameter in AM and encoder-decoder structure.

2.1 VMD

The power load can be divided into two parts. One is a low-
frequency basic load, corresponding to the fixed basic load in
production and life. The other is several high-frequency floating loads
with different cycles, which are relatively stable and may correspond to
different forms of human life and production electricity (Zhang et al.,
2021). It can be considered that the changing trend of the lowest
frequency sequence obtained from the power load decomposition can
represent significant changes in the system.

To avoid over-decomposition andmodemixing, VMD is used to
decompose the load sequence. VMD is a completely non-recursive
signal decomposition method (Dragomiretskiy and Zosso, 2014),
which assumes that any signal is composed of a finite number of
bandwidth intrinsic mode functions (BIMFs) with a specific center
frequency and limited bandwidth (Junsheng et al., 2006). Given
modal number K and penalty factor α, the original signal L(t) can be
adaptively decomposed into K BIMFs by constraining that the total
bandwidth of the center frequencies of each modal component is
minimum and the sum of all modal components are equal to the
original signal. The basic steps of decomposition are as follows.

(1) For the i-th modal componentmi(t), perform Hilbert transform
to obtain its analytical signal and unilateral spectrum, and
modulate the spectrum of the analytical signal to the
fundamental frequency band corresponding to the estimated
central frequency by adding the exponential term e−jωit:

δ t( ) + j

πt
( )*mi t( )[ ]e−jωi t (1)

where δ(t) is Dirac distribution; * represents convolution operation;
j is an imaginary number; t is the sampling time.

(2) Calculate the estimated bandwidth of each modal signal by the
L2 norm of the demodulated signal gradient. The corresponding
constrained variational model is as follows

min
mi{ }, ωi{ }

∑N
i�1

zt δ t( ) + j

πt
( )*mi t( )[ ]e−jωi t

������� �������22⎧⎨⎩ ⎫⎬⎭
s.t.∑N

i�1
mi t( ) � L t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (2)

where mi{ } � m1, m2, . . . , mN{ } is the modal component; ωi{ } �
ω1,ω2, . . . ,ωN{ } is the frequency center of each component.
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(3) By introducing Lagrange Multiplier λ(t) and penalty factor α,
transformed the constrained variational problem into the
following unconstrained variational model:

 mi,ωi, λ( ) � α∑N
i�1

zt δ t( ) + j

πt
( )*mi t( )[ ]e−jωi t

������� �������22
+ L t( ) −∑N

i�1
mi t( )

��������� ���������2
2

+〈λ t( ), L t( ) −∑N
i�1
mi t( )〉

(3)

(4) Solve the above equation using the Alternating Direction
Method of Multipliers. The update formula of {mi} and {ωi}
as follows:

m̂k+1
i ω( ) �

L̂ ω( ) − ∑N
p ≠ i

m̂k
p ω( ) + λ̂

k
ω( )
2

1 + 2α ω − ωk
i( )2

ωk+1
i �

∫∞

0
ω m̂k+1

i ω( )∣∣∣∣ ∣∣∣∣2dω∫∞

0
m̂k+1

i ω( )∣∣∣∣ ∣∣∣∣2dω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where m̂k+1
i (ω), L̂(ω), and λ̂

k(ω) are respectively the Fourier
transforms of mk+1

i (t), L(t), and λk(t); k is the number of
iterations. When Eq. 5 is established, the iteration stops and the
final modal component is obtained.

∑N
i�1

mk+1
i −mk

i

���� ����22
mk

i

���� ����22 < η (5)

2.2 AM

As a resource allocation scheme, the AM uses limited computing
resources to process more important information, which is the main
means to address information overload. The AM was mostly used in
natural language processing (Bahdanau et al., 2016), and it has been
favored in several forecasting problems (Qin et al., 2017; Chen et al.,
2018).

Since transfer learning requires a large amount of source data for
learnable parameters training, and information at different times has
different influence on the load at the predicted time, AM is
introduced to improve the information processing ability of the
neural networks, so as to reduce the computational burden.

The basic structure of AM is shown in Figure 1. Information is
filtered through the following two steps: 1) Calculating the attention
distribution on all input information; 2) Calculating the weighted
average of the input information according to the attention
distribution.

To select information related to a specific task from M input
vectors, E � (e (1), e (2), . . . , e (M) ), we should introduce a task-
related representation, called a query vector, and calculate the
correlation between each input vector and query vector through
a scoring function. Given a task-related query vector q, the query
vector q can be dynamically generated or a learnable parameter. In
this study, we use q as a learnable parameter to implement transfer
learning.

The attention variable is used to represent the index position of
the selected information. First, we calculate the probability αi of
selecting the i-th input vector under given q and E:

αi � softmax (s(ei, q)
� exp s ei, q( )( )∑M

i�1exp s ei, q( )( ) (6)

where αi is the attention distribution and can be interpreted as the
degree of attention to the i-th input vector when the task-related
query q is given, and s(e,q) is the attention scoring function, whose
dot product form is:

s e, q( ) � eTq (7)
Then, the output vector of AM is obtained by weighting the

input vectors using αi, which is calculated as follows:

att E, q( ) � ∑M
i�1
αiei (8)

where att(E,q) is the information obtained according to the attention
distribution and denotes the expectation of all input vectors
(e1, e2, . . . , eM) under the attention distribution.

The attention mechanism can be used independently, but more
often, it is used as a component of the neural network. In this study,
we used it as a tool for transfer learning and connected it to the
encoder−decoder and CIF-LSTM network. The implementation

FIGURE 1
Basic structure of AM.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2023.1162040

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1162040


steps can be summarized as: 1) extract the trend items of the source
load sequence using VMD, 2) divide this trend term into several
sequences in time order, with the preceding sequences as the
Encoder inputs and the subsequent sequence as the Decoder
input, to train the learnable parameters in the AM, and 3) embed
the trained learnable parameters into the AM of the new prediction
model, and take the output of AM as the input of CIF-LSTM.

3 AM-CIF-LSTM forecasting model
based on transfer learning

3.1 CIF-LSTM network

The introduction of transfer learning and classified forecasting
can theoretically improve the short-term load forecasting accuracy
after emergencies, but it also brings a large source data set and the
amount of computation that increases exponentially with the
number of load decompositions. LSTM is a variant of RNN. It
not only solves the gradient disappearance problem of RNN
(Hochreiter and Schmidhuber, 1997) but also reduces the
dependence on information length. LSTM has great advantages
in processing sequence data but a large amount of computation.
Therefore, it is necessary to use a simplified LSTM recurrent unit to
minimize the computation while maintaining its performance.

3.1.1 LSTM network
In the LSTM network, a new internal state ct is introduced for

linear circular information transmission, and the information is
non-linearly output to the external state ht of the hidden layer. The
internal state ct is calculated as:

ct � ft ⊙ ct−1 + it ⊙ ~ct (9)
ht � ot ⊙ tanh ct( ) (10)

where ⊙ represents the product of vector elements; ct-1 is the internal
memory state of the previous moment; ~ct � tanh(Wcxt + Ucht−1 +
bc) is the state to be output; it is the input gate, which controls the
state to be output at the current time and the information to be saved
for each input; ft is the forgetting gate, which controls the
information that should be forgotten in the last internal memory
state ct-1; ot is the output gate, which controls the internal memory
state ct that must be output to the external state ht of the hidden
layer.

The calculation method for the three gates is as follows.

it � σ Wixt + Uiht−1 + bi( ) (11)
ft � σ Wfxt + Ufht−1 + bf( ) (12)
ot � σ Woxt + Uoht−1 + bo( ) (13)

where σ is the logistic function with the output interval of (0,1); xt is
the input information of the t-th iteration; ht-1 is the external state of
the t-1-th iteration.

3.1.2 CIF-LSTM network
Jozefowicz et al. (2015) evaluated more than 10,000 RNN

architectures and found that adding bias term one to the
forgetting gate of LSTM improves its performance. Greff et al.
(2017) tested Several variants of LSTM and, it was concluded

that simplifying certain structures of LSTM can effectively
improve the computational efficiency without affecting the
performance.

To improve the calculation efficiency, this study draws on the
conclusions of the former two and adopts CIF-LSTM. The basic unit
structure of the network is shown in Figure 2. The improved
forgetting gate is calculated as:

ft � 1 − it (14)
As shown in Figure 2, the characteristic of this variant cell is the

replacement of the forgetting gate with the negative value of the

FIGURE 2
Basic unit structure diagram of CIF-LSTM network.

FIGURE 3
Framework of the proposed load forecasting model.
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input gate plus a bias term 1. That greatly reduces the operation of
the forgetting gate by replacing the previous logic function
containing exponential operations and multiplication and
division operations with simple addition and subtraction
operations, thus alleviating the computational burden caused by
migration learning.

3.2 Framework of the proposed forecasting
model

The AM-CIF-LSTM load forecasting model based on transfer
learning proposed in this paper consists of transfer learning and load
forecasting. The model framework is shown in Figure 3.

In the part of migration learning, VMD is used to decompose
dataset I under similar scenarios and obtain its trend component.
Then, based on the encoder-decoder structure, the learnable
parameters of the AM are trained through the trend items. Then,
the learnable parameters are embedded into the AM-CIF-LSTM
network of the load forecasting part to realize transfer learning.

In the part of load forecasting, the network needs to be trained
on the training set firstly. The model hyperparameters are
determined by the verification set. When forecasting on the test
set, the historical load sequences of the area to be predicted is
decomposed into a trend item and several high-frequency periodic
components by VMD. For the trend item, the AM with learnable
parameters is used to weight the load segment, and then the trained
CIF-LSTMnetwork is used to predict it. For high-frequency periodic
components, the trained DRNN is used for prediction. Finally, the
predicted value of the load can be obtained by superposition of the
results.

3.3 Solution of the forecasting model

3.3.1 Measurement method of data set similarity
To achieve accurate load prediction under different scenarios, it

is necessary to extract load sequences similar to the scenarios of the
load to be predicted from the source data set for transfer learning.
Therefore, after obtaining the load trend item sequences using
VMD, it is necessary to measure its similarity with the load
sequence of the source dataset. In fact, the regularity of the
historical load sequences after the emergency is strong, but the
regularity of the external factor data causing the load sudden change,
such as meteorological data and fault data, is poor (Liu et al., 2014).

Therefore, considering the data distribution and the
morphological fluctuation characteristics of the load trend items,
the dynamic time warping (DTW) distance is employed to measure
the similarity of the load sequences. According to the similarity, the
data set is divided into different scenes using the interquartile range
judgment criterion to realize the scene classification of different
historical load curves. The implementation steps are as follows.

(1) Calculate the DTW distance between the load sequences of
the source dataset and the load sequences to be predicted.

DTW obtains the optimal curve path by adjusting the
relationship between the corresponding elements at different time
points in the time series and measures their similarity by the optimal
path distance.

For two given time series X � (x1, x2, . . . , xn) and
R � (r1, r2, . . . , rm), an n×m distance matrix Dn×m is constructed,
whose element D(i,j) is the Euclidean distance between xi and rj and
calculated as

D i, j( ) � ��������
xi − rj( )2√

(15)

The set of each group of adjacent elements in the matrix D is
called a curved path, and it needs to meet the constraints of
boundary, continuity and monotonicity, denoted as p = {p1, p2,
. . ., ps, . . ., pk}, Where k is the total number of elements in the path,
and the element ps is the coordinate of the s-th point on the path,
that is, ps = (i, j).

The optimal curve path distance between X and Y, namely DTW
distance, is calculated as

DTW X,Y( ) � L i, j( )
� D i, j( ) +min L i − 1, j − 1( ), L i, j − 1( ), L i − 1, j( ){ }

(16)
(2) Based on the calculated DTW distance, the quartile distance

criterion is used to eliminate the load sequences with low similarity,
to select the historical load dataset in the same scenario.

3.3.2 Hyperparameter optimization
The AM-CIF-LSTM prediction framework based on transfer

learning proposed in this paper is a very large multi-prediction
model. A large number of hyperparameters need to be configured
for prediction processes. Therefore, the hyperparameters should be
optimized to reduce the computational burden.

Since the current optimization methods of neural networks
generally adopt stochastic gradient descent, we can use the
learning curve of a set of hyperparameters to estimate whether
this set of hyperparameter configurations is hopeful of obtaining
better results. If the learning curve of a set of hyperparameter
configurations does not converge or the convergence is poor, an
early-stopping strategy can be applied to terminate the current
training, so as to leave resources to other hyperparameter
configurations.

To effectively find the optimal hyperparameters of each prediction
model, improve the final prediction accuracy, and ensure the feasibility
of the model, the successive halving method is applied for dynamic
resource allocation. This method regards the hyperparameter
optimization as a non-random optimal arm problem. Assuming that
N sets of hyperparameter configurations are to be tried, the total available
resource budget is B, the optimal hyperparameter configuration group
can be selected through T =log2(N)-1 round of halving calculation. The
algorithm is shown in Table 1.

3.3.3 Solution steps
The solution process of the proposed short-term load

forecasting model is shown in Figure 4.
The basic steps are summarized as follows:

Step 1: Data partitioning and preprocessing. The original data are
collect and divided into source data set (data set O) for migration
learning and data set II for load forecasting, and deal with missing
and invalid values.
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Step 2: Load decomposition. VMD is used to extract the trend
items and high-frequency periodic components of the source dataset
and dataset I.

Step 3: Data set similarity measurement. Based on Eq. 20, the
source dataset is classified by the trend items, and the historical load
with the highest similarity to the trend items of data set II is selected
as data set I, which is used as the migration learning training data of
data set II;

Step 4: Transfer learning. The learning model based on AM
encoder/decoder is established, and the learnable parameters of
the model are trained using the load trend items of dataset I;

Step 5: Load forecasting. The learnable parameters are migrated to
the AM-CIF-LSTM model to predict the trend items of dataset II,
and the other periodic high-frequency components of dataset II are
predicted using DRNN.

Step 6: Add the predicted results in step 5 to obtain the final
predicted value.

4 Case study

4.1 Example system

In this study, we selected the historical load of a region from
2013 to 2015 as the original data, which is divided into the source
data set used for migration learning (70%) and the data set II used
for load forecasting (30%). 50% of the data in dataset II was divided
into training sets for training neural networks. The remaining data
are equally divided into verification set and test set, which are
respectively used to determine the super parameters and test the
prediction effect. The sampling interval of each load data section is
1 h, and there are 350-time sampling points in total.

Simulations were implemented in a MATLAB environment on
an Intel Core i5-4590 CPUwith a 3.30-GHz, 12.0-GB RAM personal
computer.

4.2 Data preprocessing

After data collection, themissing or invalid values of the original data
were processed firstly. To address the data loss or bad data caused by
certain objective factors, the linear interpolationmethod is used to fill the
corresponding data, as shown in the following formula.

TABLE 1 Successive halving algorithm.

Algorithm: a dynamic resource allocation method of halving successively

Input: resource budget B, N hyperparameter configuration{Xn}

T ← �log2(N)� − 1

Random initialization S0 � Xn{ }Nn�1
for t ← 1 to T do

rt ← � B
|St | × T�

Assign rt resources to each group configuration in St

Run all configurations of St, and the evaluation result is yt

select the optimal configuration of the St/2 group

St ← arg max(St, yt, |St|/2)

end

Output: Optimal configuration SK

FIGURE 4
Flow chart of solving steps for the proposed load forecasting
model.
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xt′ � xt+s − xt−s
2

(17)

where xt′ is the interpolation value of missing data, and its order in
all sample data sets is t; s is the distance between the reference data
and the missing data, which is the distance between the data to be
filled and the nearest available data.

4.3 Evaluation metrics

To measure the performance of the load forecasting method,
four indicators were adopted in this study, including mean absolute
error (MAE), root mean square error (RMSE), means absolute
percentage error (MAPE) and forecasting accuracy (FA).

The smaller the value of MAE, RMSE and MAPE, and the larger
the value of FA, the closer the predicted value is to the observed
value, namely, the better the performance of the prediction method.
The above indicators are calculated by Eqs 18–21 respectively:

MAE � 1
N

∑n
j�1

yj − y′
j

∣∣∣∣∣ ∣∣∣∣∣ (18)

RMSE �
�������������
1
N

∑n
j�1

yj − y′
j( )2√√

(19)

MAPE � 1
N

∑n
j�1

yj − y′
j

∣∣∣∣∣ ∣∣∣∣∣
yj

*100 (20)

FA � 1
N

∑n
j�1

1 − yj − y′
j

∣∣∣∣∣ ∣∣∣∣∣
yj

⎛⎝ ⎞⎠*100% (21)

where: yj is the true load value of the j-th sampling point; y′
j is the

load forecast value of the j-th sampling point; �y is the mean value of
the true load value; y′ is the mean value of the load forecast value; N
is the number of elements in the dataset.

4.4 VMD results

The modal decomposition number and the penalty factor value
are important factors affecting the VMD decomposition
performance. To avoid the subjectivity of empirical selection
methods, the energy difference principle (Junsheng et al., 2006) is
introduced to determine its parameters. According to the calculation
results, K is set to 6, penalty factor is set to 1999, Tolerance is set to
10-6. Figure 5 shows the six rapidly changing load sections in the
training set and their VMD decomposition results.

As can be seen from Figure 5, the original load sequences are
decomposed into five high-frequency periodic components,
BIMF1~BIMF5, and a trend item, res. The frequencies of these
periodic components are relatively concentrated and non-aliased,
which reflect periodic factors that affect the load changes. So that the
periodic components can be regarded as stationary sequences.
Considering their efficiency and performance, these components
are suitable for prediction using DRNNs (Meng et al., 2022). After
separately forecasting and superimposing the components, the high-
frequency part of the load forecast result is obtained.

The figure also shows that, after removing the high-frequency
components from the load curve, a relatively flat load trend curve is
obtained. It reflects the changes in the baseline value of the load, and
it physically corresponds to the emergency scene considered for this
study.

It can be seen from the above analysis that the seemingly chaotic
conventional load sequence can be decomposed into several high-
frequency components with different periods and a trend item.
Extracting the load trend item for forecasting can weaken the
interference of high-frequency components and effectively
identify the impact of emergencies on load.

4.5 Load forecast results

From the test set, the load series of the rapidly changing
reduction section and recovery section were extracted to show
the prediction effect. To analyze the accuracy of the short-term
load forecasting method proposed in this paper, three forecasting
methods are set for comparison, and the data sets used to train the
models are the same for all methods.

Method 1: DRNN.
Method 2: Deep LSTM network (DLSTMN).
Method 3: The proposed method (PM), namely AM-CIF-LSTM

based on transfer learning.

FIGURE 5
VMD results.
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Figures 6A,B show the forecasting results of the load reduction
section and the load recovery section under different methods
respectively.

It can be seen from Figure 6A that the load is in a downward
trend between the 100th and 125th sampling times. From Figure 6B,
it can be observed that the load trend is on the rise between the 200th
and 325th sampling times. The non-stationary of the load sequence
increased significantly during the reduction or recovery period.

By comparing the predicted load curves of DRNN and DLSTM
during load changes in Figures 6A,B, respectively, it can be found
that when the load sequences is relatively regular, the predicting
performance of DRNN and DLSTM is similar. However, when load
trend change rapidly, the forecasting accuracy of DLSTM is higher,
and the forecasting accuracy of DRNN is reduced significantly. That
indicates that DRNN can achieve accurate prediction with a simple
structure for more regular load sequences, and DLSTM has the
advantages in processing long time sequences by better use
historical data.

Comparing the predicted load curve obtained by the three
methods in Figures 6A,B with the observed load, it can be
observed that the predicted load curve obtained by PM is closer
to the observed load curve than that obtained by DRNN and
DLSTM, no matter in the process of rapid load change or before
and after the change. This indicates that employing the AM-CIF-
LSTM based on migration learning to predict the trend items can

improve the prediction accuracy when the load trend changes
significantly, which solves the problem of insufficient historical
load data under emergencies. Using DRNN to predict high-
frequency components can ensure the prediction accuracy of
relatively stable periodic components while reducing the
computational burden.

To quantitatively analyze and comprehensively compare the
load forecasting performance of DRNN, DLSTMN, and PM, four
evaluation indicators of load forecasting results under the three
methods are calculated respectively, as shown in Table 2.

As shown in Table 2, compared with DRNN and DLSTMN, the
MAE of PM decreases by 69.05% and 42.03% respectively; RMSE
decreases by 66.64% and 37.43% respectively; MAPE decreases by
68.46% and 42.52% respectively; FA increased by 6.73% and 2.19%
respectively. That indicates that the overall prediction error of PM is
smaller and the prediction accuracy is higher.

FIGURE 6
Comparison of load prediction results. (A) Load forecasting results in the load recovery section. (B) Load forecast results in the load recovery section.

TABLE 2 Comparison of indicators of different methods.

Methods MAE/kW RMSE/kW MAPE/% FA/%

DRNN 171.801 193.517 8.949 91.05

DLSTMN 91.713 103.176 4.905 95.09

PM 53.171 64.557 2.820 97.18
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According to the above analysis, in the case of sudden load
changes, the proposed method can solve the problem of limited
reliable historical load data by introducing migration learning and
classification prediction. Compared with other methods, the
prediction accuracy has been greatly improved.

5 Conclusion

To accurately predict the load trend under emergencies, an AM-
CIF-LSTM short-term load forecasting method based on transfer
learning is proposed in this paper, and its effectiveness is verified by
the case study. The characteristics of the proposed method are
concluded as follows:

1) Aiming at the shortage of reliable historical load data and the
consequent overfitting problem, a transfer learning method
based on AM is proposed. The learning and utilization of
similar historical data are realized just by the encoder-decoder
structure and attention model, which solves the invalidity of
traditional methods in such applications.

2) To improve the forecasting accuracy under the circumstances
that the load suddenly changes, the idea of classified forecasting
is introduced. The load is decomposed into a trend item and
several high-frequency periodic components using VMD. The
AM training by the transfer learning training is combined with
CIF-LSTM to predict the trend items, and DRNN is utilized to
predict the high-frequency periodic components, which
effectively improves the prediction accuracy by reducing the
non-stationary load sequences.

3) To improve the calculation efficiency of load forecasting, a CIF-
LSTM network is proposed by coupling the input gate and
forgetting gate of the traditional LSTM basic unit. The
computational complexity is reduced by simplifying the
network structure, and the computational efficiency is
improved without affecting the accuracy.

The short-term load forecasting method proposed in this
study is developed based on point prediction. If load forecasting
is conducted by interval forecasting and even probability
forecasting, the obtained prediction results would contain
more information, which is conducive for decision-makers to

make more reasonable planning and scheduling plans for power
systems.
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