
TYPE Original Research
PUBLISHED 06 June 2023
DOI 10.3389/fenrg.2023.1161861

OPEN ACCESS

EDITED BY

Turgay Korkut,
Sinop University, Türkiye

REVIEWED BY

Bo Wang,
Harbin Engineering University, China
Jiankai Yu,
Massachusetts Institute of Technology,
United States

*CORRESPONDENCE

Shanfang Huang,
sfhuang@tsinghua.edu.cn

RECEIVED 08 February 2023
ACCEPTED 17 May 2023
PUBLISHED 06 June 2023

CITATION

Li K, An N, Luo H, Huang S and Wang K
(2023), A better hash method for
high-fidelity Monte Carlo simulations on
nuclear reactors.
Front. Energy Res. 11:1161861.
doi: 10.3389/fenrg.2023.1161861

COPYRIGHT

© 2023 Li, An, Luo, Huang and Wang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

A better hash method for
high-fidelity Monte Carlo
simulations on nuclear reactors

Kaiwen Li, Nan An, Hao Luo, Shanfang Huang* and Kan Wang

Reactor Engineering Analysis Laboratory (REAL), Department of Engineering Physics, Tsinghua
University, Beijing, China

With the increasing demand for high-fidelity nuclear reactor simulations, the
acceleration of Monte Carlo particle transport codes is becoming a core
problem. One of the bottlenecks is locating millions or even billions of cells
and fetching their associated parameters in the repeated geometry structure.
Typically, Monte Carlo codes utilize a hash function to accelerate the cell locating
and parameter indexing process. Specifically, they use the “cell vector→ hash→
parameter” method to accelerate the direct “cell vector → parameter” method.
In this work, we propose a better hash method based on the Cyclic Redundancy
Check (CRC) mechanism, which has been mathematically proven to be efficient
and produce fewer hash collisions. Experimentally, this new hash method has
been compared with some other hash functions and showed its superiority in
terms of the calculation speed and collision probabilities. This hash method has
been integrated into the Reactor Monte Carlo code RMC and worked well in
practical applications.

KEYWORDS

nuclear reactors, hash functions, Monte Carlo, CRC, acceleration, fewer collisions

1 Introduction

High-fidelity nuclear reactor simulations have become realistic with the rapid
development of high performance computing in recent years. One of the high-fidelity
simulation methods is the Monte Carlo method, which has been widely used as a baseline
method for commercial reactor simulations and regarded as a primary method for novel
reactor designs.

To describe the geometry of the models, there are generally two groups of methods:
the constructive solid geometry (CSG) method and the boundary representation (B-
rep) method. CSG describes complex objects by combining primitive ones with Boolean
operations, that is, combining rectangles, spheres, cylinders, etc., by union, intersection
or subtraction. B-rep represents 3D models by defining the limits of their volumes, that
is, defining boundary surfaces for 3D objects, defining boundary curves for surfaces and
defining ending points for curves.

CSG is widely utilized by almost all Monte Carlo codes, including MCNP (Briesmeister,
1993), Serpent (Leppänen, 2013), OpenMC (Romano and Forget, 2013), SCALE 6.2/KENO
(Rearden et al., 2014), MC21 (Sutton et al., 2007), JMCT (Deng et al., 2015), SuperMC
(Wu et al., 2015) and RMC (Wang et al., 2015). The boundary representation method is
widely used in CAD software such as SolidWorks and Pro/E. Recently, the boundary
representation method has also been integrated into some Monte Carlo codes, such as
MCNP6 (Wilson et al., 2010), OpenMC (Shriwise et al., 2020) and RMC (Shen et al., 2022),
mainly used to handle shielding problems with sophisticated geometry. Typically in reactor

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1161861
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1161861&domain=pdf&date_stamp=2023-06-01
mailto:sfhuang@tsinghua.edu.cn
mailto:sfhuang@tsinghua.edu.cn
https://doi.org/10.3389/fenrg.2023.1161861
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1161861/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1161861/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1161861/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

simulations, the Monte Carlo particle transport in CSG is much
faster than that in B-rep geometry (Shriwise, 2018).

A typical characteristic in reactor geometry is that there are
many repeated structures, including assemblies and fuel rods.
Those repeated objects have the same geometric structures and
initial fuel loadings. However, their temperatures and materials
may vary during the simulation, especially for burnup and
coupling simulations. For high-fidelity multi-physics simulations,
the repeated objects can be of tens of millions or even more;
therefore, a memory-economy method is required to maximize
sharing of the common information and distinguish the differences.

Repeated structure geometry (RSG) is supported in both CSG
and B-repmethods, but in different ways. Typically, there are limited
hierarchical structures in B-rep methods (Pratt et al., 2001), and
repeated objects are marked with different indices and boundaries.
This may simplify the indexing of the objects but require more
resources to store and process the common parts. It is unaffordable
in large-scale high-fidelity simulations due to its O(n) space
complexity, where n is the number of objects. On the contrary,
the implementations of CSG in most Monte Carlo codes adopt a
hierarchical structure, and the repeated objects are defined in a
separated level. In this way, the repeated object can be indexed by
a list of indices along the hierarchical tree, and similar assemblies
or fuel pins at different positions can be described only once during
modeling and can be distinguished by the cell vectors when needed.
That is one of the reasons why the CSG method is preferred for
reactor simulations, and we may focus on CSG in this paper.

However, simply indexing the repeated cells with cell vectors
may take too much time, especially when the model is too
complicated and there are too many hierarchical levels. If there
are n cell vectors in total, we may take O(n) time to sequentially
find and index a repeated cell. Consequently, many solutions
have been proposed to efficiently index repeated objects. Some
dropped the repeated structure andmodeled all the objects explicitly
(Fensin et al., 2012; Vazquez et al., 2012), whichmay cause the same
memory problem encountered by the B-rep method. Others use an
additional indexing for repeated cells: Lax (2015) used the cell offsets
to locate the repeated cells, and Yu et al. (2019) adopted a specifically
designed indexing system for neutronics/thermal-hydraulics/fuel-
performance coupling. The later is proven to be more flexible and
memory efficient, which suggests that assigning each RSG cell an
identification (the offsets in Lax’s work) for quicker indexing and
locating would be helpful. That is, the identification (ID) is inserted
into the original “cell vector→ parameters”mapping scheme to form
the “cell vector → ID → parameters” paradigm. The IDs can be
regarded as the hash values of the cell vectors, and thus the first arrow
is the hash function on the cell vectors.

The use of the hash mapping method in the Monte Carlo code
RMC (Wang et al., 2015) have been studied for many years.The first
generation of hash functions is a base-p hash function (She et al.,
2013), and then the successor is the shift hash function (Guo et al.,
2021). However, the rapidly increasing demands for more precise
simulations have led to crash in those two methods due to hash
collisions. Therefore, in this work, we propose a better hash method
for Monte Carlo simulations, which has been theoretically and
practically proven to be efficient and produce fewer collisions.

In this paper, we will first introduce and analyze several hash
functions in Section 2, and then introduce our proposed Cyclic

redundancy check (CRC) hash mapping method in Section 3.
Section 4 presents the validation of the newhashmethod performed
in both virtual experiments and practical applications, where the
CRC hash mapping method will be compared with other hash
mapping methods in speed and collision probabilities. Finally,
Section 5 presents the conclusions.

2 Analysis of hash methods for Monte
Carlo codes

2.1 Definition of the cell vectors

Figure 1 demonstrates the hierarchical structure and repeated
geometry of a reactor core. There are actually 121, 157, 177 or 193
assemblies in a typical commercial reactor, but to illustrate the core
indices in the limited figure size, we use the 21-assembly reactor in
theNEAPhase II-C Burn-upCredit Criticality Benchmark (Neuber,
2008) in this figure.

In Figure 1, Level 1 demonstrates the simplified outline of the
whole core, which consists of two cells, one for the assemblies
(cell 1) and the other (cell 2) for the baffle, water reflector, core
barrel, pressure vessel, etc. The 21 assemblies are built with a 5-by-5
repeated structure, and the four corners are excluded. Assembly 8
is expanded as Level 2 in the figure, which includes the coolant in
between the assemblies (cell 3) and the repeated lattice (cell 4). The
repeated lattice has 264 fuel rods, 24 control rods (or guide tubes),
and 1 instrument tube (or guide tube). The fuel rod with index 98
is expanded as Level 3, which has 4 cells, the coolant (cell 5), the
cladding (cell 6), the helium gap (cell 7) and the fuel pellet (cell 8).

For a typical fresh reactor core, the cells in Level 3 are usually
modeled the same in all of the fuel rods, guide tubes, control
rods, and instrument tubes specifically, as they have common
geometrical structures and material compositions. Therefore, in the
RSG representation, they can be modeled as one cell rather than
thousands or even millions of cells, thus reducing the memory
footprint. However, for problems with burnup, thermal-hydraulic
feedbacks, etc., the material or the temperature of those cells can
be different from others, which leads to the requirement to identify
each cell. A straightforward idea is to trace all the cells along the
hierarchical tree (Figure 2) levels, record all the cell indices from the
root to the cell, and form a cell vector. For example, cell 8 in Figure 1
can be tracked from the root in Figure 2 as the green circles and
represented as “1 > 8 > 4 > 98 > 8”. The “>” is the delimiter between
different levels, indicating that the left values are from higher levels.
The integers in the cell vectors are the cell indices or the repeated
lattice indices. Note that the two “8”s in the cell vector have different
meanings—the first one is the index of the assembly in the core
lattice, and the second one is the cell index of the fuel pellet.

2.2 Definition of the hash function of the
cell vectors

With the cell vectors, we may identify each cell in the RSG and
thus build a map between the cell vectors and the cell parameters
such as the material composition and temperature. As shown in
Figure 3, a straightforward method is to build a cell vector list and

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 1
Hierarchical repeated geometry structure of the reactor core in the NEA Phase II-C Burn-up credit criticality benchmark.

FIGURE 2
Tree view of the hierarchical repeated geometry structure of the reactor core in the NEA Phase II-C burn-up credit criticality benchmark.

a parameter list. Then, when we need to obtain the parameter for
a certain cell vector, we may sequentially walk through the first list
to find the target cell vector and then use the index to obtain the
parameter from the second list. However, the time complexity of
the averaged sequential search is O(n), which may take an excessive
amount of time on millions of cell vectors.

Therefore, as shown in Figure 4, modern Monte Carlo particle
transport codes may map the cell vectors to the indices directly with
a function.The function is called the hash function, and the method
is called the hash mapping method. The hash function on the cell

vectors can be defined as follows:

hash (⃗c) = f (⃗c) = f (c1,c2,…,ck) (1)

where ⃗c is the cell vector, k is the length of the cell vector and ci is the
i-th cell or lattice index. The hash value hash(⃗c) is an integer that is
used as the key to fetch the corresponding parameter from the key-
value map. Actually, the key-value relationship (K-V mapping) in
Figure 4 is also a hash function, which is internally implemented in
many programming languages. The hash function is not dependent
on the total number of cell vectors n, and the time complexity of the

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 3
Sequential matching method for locating the target cell vector and fetching the corresponding coolant density. The values are only for demonstration.

hash mapping method is typically O (1). However, hash functions
cannot guarantee that the hash values for all the cell vectors are
unique. When t different cell vectors yield the same hash values,
the algorithm may drop to O(t) complexity to sequentially check
each cell vector, and this phenomenon is called hash collisions.
An effective hash function f(⃗c) should be simple but have fewer
collisions. The simplicity promises that the calculation of the hash
function does not take too much time, and the fewer collisions
guarantee that the averaged time complexity is still O (1).

Note that, in fact, the time complexity should be related to the
length of the cell vector k, that is, O(f(⃗c)). However, as k is typically
very small when compared with n, and the hash function ought to
be very simple, the calculation time for the hash function should
be bounded by a small value, and thus, the time complexity of hash
functions can be represented as O (1).

2.3 Typical hash functions for cell vectors
in reactor monte carlo simulations

There are innumerable hash functions to choose, and in this
section, we introduce some typical ones that are commonly used in
Reactor Monte Carlo simulations.

2.3.1 The base-p hash function
She et al. (2013) applied the base-p hash function in Monte

Carlo simulations, which is a common hash function for vectors that
has been mathematically proven effective. The base-p hash function
can be illustrated as Eq. 2 below:

hash (⃗c) = fbase−p (⃗c) =
k

∑
i=1

cip
i−1 (2)

where p is a predefined constant integer. This hash function is very
simple, and there are only (k+ 1)k/2–1 operations. In practice, this
function can be further optimized with Horner’s scheme (Jiushao
Qin’s scheme in China) to a total of 2(k− 1) operations in Eq. 3,
which has been proven optimal by Cajori (1911):

fbase−p (⃗c) =
k

∑
i=1

cip
i−1

= c1 + p(c2 + p(c3 +⋯+ p(ck−1 + pck)⋯)) (3)

In actual calculations on computers, a modular calculation
should be added to Eq. 2 due to storage limits for integers:

fbase−p (⃗c) =
k

∑
i=1

cip
i−1modM (4)

where M is the module caused by the overflow from large p or k
values, andM depends on the hash value type and the storage limits

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 4
Hash mapping method for locating the target cell vector and fetching the corresponding coolant density. The values are only for demonstration.

of the machine. Typically, M equals the maximum of the possible
unsigned integer in the computer plus one, that is, M = Lmax + 1,
where Lmax is the upper limit of the possible unsigned integer on
the machine. For example, if we use the “unsigned long long” type
to save and calculate the hash value on a 64-bitmachine,Lmax should
be 264 − 1, and the moduleM equals 264.

If we change M in Eq. 4 from a machine-defined value
to a manually predefined coefficient, we may obtain a more
general hash function. In this function, M is usually defined
as a large prime to flatten the probability distribution for all
possible hash values, which is mathematically proven to be
able to reduce the collision probabilities (Carter and Wegman,
1979). Practically, however, powers of 2 are widely used,
such as 264 above, to reduce the calculation complexity on
computers.

The core problem for this hash method is the selection of p and
M. Generally,M should be set larger to broaden the domain of the
possible hash values, but in regard to choosing a proper value for p,
things become somewhat tricky. Below are some considerations on
the selection of p:

• Ideal Situation: When all the indices in the cell vectors are
less than p, and the results of Eq. 2 are all no more than the
maximum integer Lmax on the machine, there will be no hash
collisions. Therefore, a large value of pmay be better.
• Smaller p Issue: When there are some indices larger than p,
hash collisions may occur regardless of what modular M is.
For example, cell vector “1 > (p+ 1) > 3” may share the same
hash value with “1 > 1 > 4”. It is common to have similar cell
vectors like those two in reactor simulations, where the second
level can be the RSG lattice of the assembly and the third level
refers to the cells in the fuel pins. Additionally, such cases may
also occur occasionally in non-RSG parts when the model is
very complicated and has too many cell vectors. Smaller p Issue
may become vital in complicated models, as there may be too
many cells and thus the cell indices may be large.
• Larger p Issue (Overflow Issue): When p is defined too
large, overflows will become increasingly common in Eq. 2.
Consequently, cell vectors with large indices may have chance
to collide with those with small indices. Moreover, in most
scenarios, overflows should be avoided in hash function designs

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

because the processing of overflows can be different on different
hardware architectures, which may lead to unpredictable
calculation results.
• p-M Interactions: In Eq. 4 where M is manually defined,
additional calculations have to be conducted to avoid overflows,
that is, modular operations have to be performed not only
once at the end but possibly once after only one or a few
multiplication and addition operations. Specifically, when using
Horner’s scheme in Eq. 4, modular operations should be
performed no less than k− 1 times, that is, once for a bracket.
Additionally, to guarantee that the multiplications by p close
to the brackets in Eq. 3 will not cause overflows, pM ≤ Lmax
should be satisfied.

In summary, p should not be too small or too large, and
when M is manually set, it should be a large prime but
fulfill pM ≤ Lmax. Chances of hash collisions always exist when
Eq. 5 below cannot be guaranteed true for all the cell vectors.
Therefore, in practical use, the parameters must be optimized with
testing.

max
1≤i≤k

ci ≤ p (5)

2.3.2 The shift hash function
The shift hash function was proposed and implemented by

Guo et al. (2021). The basic idea of the shift hash function is
to fully utilize the memory space of the integer value type and
substitutemultiplication and addition operationswith bit operations
to accelerate the calculations.

Assuming that there are totally n cell vectors in the model, we
can represent the i-th cell vector with Eq. 6 below:

⃗ci = (ci1,ci2,…,ciki) (6)

where ki is the length of the i-th cell vector and cij is the j-th
component of the cell vector. The shift hash method merges the
binary representations of the indices and adds some zeros to align
each level, as the following steps demonstrate and shown inFigure 5:

i. Find the maximums of each level.

mj =max
1≤i≤n

cij (7)

If some of the cell vectors are shorter than others, the
corresponding indices cij in Eq. 7 can be substituted by zeros.

ii. Calculate the shifting bits

Calculate the binary bit numbers of the maximums in Step 1 by
logarithmic operations. Those values are the fewest bits to contain
all the indices at certain levels.

bj = floor(lnmj) + 1 (8)

where bj is the bit number of the j-th level’s maximummj and “floor”
is a function to round down float values. For instance, when mj is
203, its binary representation would be 0b11001011 with 8 bits, so bj

equals 8.Then, the bit numbers are accumulated to obtain the actual
shifting bits.

s1 = 0, sj =
j−1

∑
t=1

bt (9)

where sj is the bit number at the right side of the j-th level.

iii. Calculate the hash values

hash (⃗c) = fshift (⃗c) =
k

∑
j=1

cj2
sj (10)

In practical calculations, we can use bit left shift by sj bits to
perform the multiplications by 2sj and then use bit-or operation to
sum all the terms. When the final result exceeds the upper limit of
the machine Lmax, the hash function should be:

fshift (⃗c) =
k

∑
j=1

cj2
sjmod(Lmax + 1) (11)

Comparing Eqs 4, 11, we may find that the two equations are
similar. The shifting hash method can be regarded as a special form
of the base-p hash method, where p equals 2 and some indices in
Eq. 4 are 0.

As the bi values are carefully assigned to confirm that 2bi is larger
than all the indices on Level i, the shift hash method succeeds in
avoiding the hash collisions caused by the Smaller p Issuementioned
in Section 2.3.1, and realizes bijection between the cell vectors
and the hash values. Practical uses of the two hash methods have
proven that the shift hash method has fewer collisions, and more
experiments can be found in Section 4.2.

However, the shift hashmethod cannot solve the Overflow Issue
in Section 2.3.1. Even worse, collisions will become very common
when overflows occur, because the module Lmax + 1 is also a power
of 2, and consequently, the overflowed left shifting bits are simply
erased.

For example, assuming that we are using an 8-bit machine where
an integer occupies 8 bits and we have a total of 45 cell vectors
2 > (1:5) > (1:9) > 1, where the second and third levels are RSG
lattices that represents the core lattice and the assembly lattice. “1:5”
means the possible values are from 1 to 5. Then, we may follow the
steps to calculatemj and bj as below:

{m4,m3,m2,m1} = {1,9,5,2}

{b4,b3,b2,b1} = {1,4,3,2}
(12)

therefore, the hash values of the cell vectors “2 > 5 > 1 > 1”
and “2 > 5 > 9 > 1” can be calculated with the steps above as
0b1000110110 and 0b1100110110. The detailed calculation process
for “2 > 5 > 1 > 1” is represented in Figure 5. Because it is an 8-bit
machine where Lmax should be 0b11111111, the final hash values
of the 2 cell vectors from Eq. 11 are both 0b110110, that is, 54.
Moreover, this collision is not related to the first, second and fourth
indices, which means that “a > b > 1 > c” will always collide with
“a > b > 9 > c”, that is, cells in fuel rodswith index 1 and 9 of different
assemblies may always share the same hash values, indicating an
enormous number of collisions. To handle that issue, overflows have
to be avoided, and thus larger problems may require longer storage
types to contain the hash values. Specifically, if the 32-bit shift hash
method with the “unsigned int” type may overflow for large reactor
simulations, wemay change the integer type to 64-bit “unsigned long
long” or even 128-bit “__int128”.

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 5
Working process of the shift hash mapping method.

3 CRC hash method

Cyclic redundancy check (CRC) is commonly used in error-
detecting scenarios to discover accidental changes to digital data
during network or storage transmission (Peterson andBrown, 1961).

The CRC algorithm accepts blocks of data and calculates a short
check value based on the remainder of a polynomial division. The
check value will then be transmitted together with the original data
and compared with the result from the recalculation on the received
data for error detection.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

3.1 The applicability of the CRC algorithm
in reactor Monte Carlo simulations

As the check value from CRC has a fixed length, the CRC
algorithm can be used as a hash function. Furthermore, the cell
vectors in reactors have a special feature in that there may be
many vectors with only one or two different indices such as
“2 > (1:5) > (1:9) > 1” above, mainly from the RSG lattices. If we
regard those slight differences as errors in signal transmission, then
CRC is quite suitable to detect and distinguish different cell vectors.

It has been mathematically proven that n-bit CRC can detect
any single error burst no longer than n bits, and longer error bursts
can be detected with (12−n) probability (Koopman, 2002). When n
equals 32, the undetected fraction 2−n is approximately 2.3× 10−10,
and when n is 64, it is only around 5.4× 10−20, which indicates
that the collision probability of the CRC hash mapping method
is extremely low. In the high-fidelity Monte Carlo simulations for
large commercial reactors, there can be up to 108 cells in total; thus,
the probability of no collisions with the 64-bit CRC hash mapping
method should be:

P (no collisions) ≈ (1− p)
N(N−1)

2 = 1−
N (N− 1)

2
p+O(N4p2)

≈ 99.973%+O(10−8) (13)

where N is the number of cell vectors (108) and p is the collision
probability of any two cell vectors (5.4× 10−20). Note that there may
be some bias in the distribution of the cell vectors and there is an
assumption in Eq. 13 that collision incidents are independent, so
the actual probability of no collisions may differ from the value
of 99.973{%}. However, this analysis may guarantee that the 64-bit
CRC hash mapping method is sufficient to minimize the collision
probability and thus works well for high-fidelity reactor simulations.

3.2 Calculations in the CRC algorithm

The commonly used CRC algorithm can be formed as a
polynomial division on the Galois field GF (2). The two elements
in GF (2) are typically 0 and 1, and the addition operator on GF
(2) is XOR (exclusive disjunction). In the polynomial division, the
original data forms the input polynomial, a predefined polynomial
serves as the divisor, and the remainder polynomial gives the final
check value. An n-bit CRC algorithm has an n-order polynomial as
the divisor. The selection of the polynomial is the core problem in
CRC algorithm implementation, as a proper divisor may minimize
the overall collision probabilities.

Take a 3-bit CRC with a divisor polynomial x3 + x+ 1 as an
example. The cell vector “1 > 1 > 5 > 2” on a 4-bit machine can be
converted into a sequence of binary data “0010,0101,0001,0001”,
where the order is reversed to put indices on bottom levels prior to
the upper ones. Then, the merged binary value should be padded
with n zeros; thus, we obtain “0010010100010001000”, which can be
represented as 216 + 213 + 211 + 27 + 23. If we substitute 2 with x, we
may obtain the input polynomial x16 + x13 + x11 + x7 + x3. Afterward,
we may have

x16 + x13 + x11 + x7 + x3 = (x3 + x+ 1)(x13 + x11 + x9 + x7

+x6 + x5 + x4 + x+ 1) ⊕ (x2 + 1) (14)

that is,

x2 + 1 = (x16 + x13 + x11 + x7 + x3)mod(x3 + x+ 1) (15)

where the addition operator on GF (2) is actually the XOR operator
⊕.The remainder polynomial x2 + 1 indicates that the final 3-bit CRC
check value is 0b101.

Because the quotient polynomial has no use in the process,
the algorithm can be simplified to only calculate the remainder, as
shown in Figure 6. We may first align the divisor to the left most
“1” and perform the XOR operation on the input binary sequence.
Then, the divisor is moved to the left most “1” of the result and
XOR operations are recursively performed until the divisor arrives
at the end. The remaining values represent the remainder of the
polynomial division, that is, the CRC check value.

3.3 Acceleration of the CRC algorithm

3.3.1 Precalculated CRCTable
In practical implementations of the CRC algorithm, there will

be a precalculated table to store the results from calculations on
several bits. For example, the 32-bit CRC algorithm implemented
and introduced by Corporation (2019) has a CRCTable of 256 8-bit
constants, where each value is the CRC calculation on the possible 8-
bit integers from 0 to 255. In this way, themovement of the divisor in
③ of Figure 6 can be increased to 8 bits—the looked-up table value
is simply fetched as the result of the repeated XOR operations on the
8 bits and then concatenated with the remaining bits.

3.3.2 Batch processing
In addition to the precalculated CRCTable, several 8-bit blocks

can be batched together for processing, and then the results are
merged to obtain the final value. This strategy may optimize the use
of the cache and registries in the machines and thus accelerate the
calculation.

3.3.3 Other accelerations
As the CRC algorithm is significant in many modern

applications with data check requirements, chip manufacturers
have implemented it in hardware. For example, CRC32 has been
implemented in SSE 4.2 as “crc32” instruction for Intel CPUs
(Gopal et al., 2011).

For earlier CPUs that do not support SSE 4.2, there are also some
open-source asm codes that are faster than C/C++ implementations,
such as the ISA-L library1 by Intel Corporation (Intel Cooperation,
2023). ISA-L library has also provided some acceleration solutions
for the 64-bit CRC algorithm and many other CRC variants.

3.4 Implementation in RMC code

The Reactor Monte Carlo code RMC is a particle transport
code developed by the Reactor Engineering Analysis Lab (REAL)
at Tsinghua University, Beijing, China, as a software kit for reactor

1 GitHub link: https://github.com/intel/isa-l

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://github.com/intel/isa-l
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 6
The simplified calculation process of a 3-bit CRC algorithm on the example data flow “0,010, 0,101, 0,001, 0,001” from the cell vector “1 > 1 > 5 > 2”.①:
Calculation starts from the first non-zero bit;②: Remainder is from the XOR operation between the input and the divisor;③: Move the divisor to the
next non-zero bit and recursively apply XOR operations.

analyses on high-performance computing systems (Wang et al.,
2015). Many features have been developed in RMC to meet
the requirements of reactor simulations, including criticality,
shielding, burnup, transient, and multi-physics simulations. The
high-fidelity simulation capability of RMC has been validated in

the multi-physics simulation of the BEAVRS two-cycle benchmark
(Horelik et al., 2013) in Wang et al. (2017) and the VERA core
physics benchmarks (Godfrey, 2014) in Luo et al. (2017), Luo et al.
(2020) and Ma et al. (2019), and transient simulations of the C5G7-
TD benchmarks (Hou et al., 2017) in Guo et al. (2020).

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

Algorithm1. The pseudo codes for CRC64hashmappingmethod implemented
in RMC code.

Different hash mapping methods have been introduced in
RMC, including the base-p hash method (She et al., 2013) and
the shift hash mapping method (Guo et al., 2021). However,
with the increasing need for higher fidelity simulations of large
commercial reactors, the shortcomings of the two hash methods
have become crucial because probabilities of hash collisions
are rising. Therefore, we have implemented the CRC64 hash
mapping method in RMC and accelerated it with ISA-L’s asm
implementations (Intel Cooperation, 2023).

The pseudo code of the CRC hash mapping method
implemented in RMC is presented in Algorithm 1 below. The
precalculated CRCTable is applied to process 8 bits in each
loop to accelerate the calculations. In practice, the initialization
and the while loop in Algorithm 1 can be substituted by the
calling of the “crc64_ecma_refl” function in the ISA-L library. The
“crc64_ecma_refl” function is implemented and optimized using
assembly language by Intel Cooperation, and thus may be used to
further accelerate the calculations of the CRC hash values.

From the analysis in Section 3.1, the probability of possible
collisions for a large reactor simulation problemwith 108 cell vectors
is as small as 0.027%, which is sufficient for reactor simulations
currently and in the near future. For the far future, a 128-bit CRC
hash mapping method can be easily implemented to support up to
1016 cell vectors.

4 Validations for the CRC hash
method

In this section, we will examine the CRC hash method and
compare it with other hash methods both in virtual applications for
collision and speed tests, and in practical simulations for integrated
tests.

4.1 Collision test in virtual applications

To test the collision probabilities of different hash methods, we
generate a large number of cell vectors and calculate their hash values

with different hash functions.The collision number is defined as the
total number of cell vectorsminus the number of unique hash values.

We designed two random cell vector generators: a uniform
generator and a bias-imitating random generator. The former
generator is simply generating indices at each level from a uniform
distribution, and the latter may try to imitate the distribution of the
cell vectors in practical commercial reactors.

4.1.1 Experiment with the uniform generator
To generate a cell vector, we may first define the length of the

vector and then sequentially generate each index. Therefore, we
define 4 coefficients in the uniform cell vector generator:

• Ll the lower bound of the vector lengths
• Lu the upper bound of the vector lengths
• Il the lower bound of the cell or lattice indices
• Iu the upper bound of the cell or lattice indices

For each cell vector, we may first generate the vector length L
uniformly from [Ll,Lu] and then repeatedly generate the cell or
lattice index uniformly from [Il, Iu] for L times. Additionally, there
are two non-generator parameters:

• N the number of cell vectors to be generated
• R the number of repetitions on hash calculations

R is defined to imitate the actual scenario where the hash function
may be called several times on the same cell vector at different times.
In this way, the estimations of calculation speeds may become more
realistic and reliable.

Typically, there are nomore than 10 levels and 108 cell vectors in
a reactor core simulation problem.Therefore, we set the four bounds
as [Ll,Lu] = [8,12] and [Il, Iu] = [1,99999999], and the total number
as N = 108 and N = 109 in two experiments for the current and even
more complicatedmodels. To keep the total calculation tasksNR the
same in the two experiments, we set R as 100 and 10 specifically.

There are six hash methods or their variants engaged in the
experiments: the base-p hash method where p is 499 or 49,999
(both are primes), the shift hash method using a 64-bit integer type
or 128-bit integer type, the original CRC64 hash, and the CRC64
method accelerated by ISA-L. The results of the experiments are
demonstrated in Table 1 (N = 108); Table 2 (N = 109). To reduce the
noise from random generation, all the experiments are performed 5
times, and then the averages and their standard deviations are listed
in the two tables.

In each experiment, we may first generate the cell vectors
randomly, duringwhich time a unique test is performed to guarantee
that there are no duplicates in the N cell vectors. Then, the
participating hash methods are examined sequentially. The hash
methods are all split into three stages: initialization, collision test,
and repetition speed test:

1. Initialization: Shift hash methods need to calculate the
maximums and moving bits for each level during their
initialization, and thus, we record the time cost for the
initialization stage in our experiments. Hash methods with no
initialization are marked as “-” in the corresponding column of
the two tables.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

TABLE 1 Collision and speed test for different hashmethods on 108 uniformly sampled cell vectors with 100 repetitions. The experiments are performed 5 times
to obtain the average values and their deviations.

Method Initialization (s) Collision freq (10−9) Calculation rate (M/s)

base-499 — 0.000 ± 0.000 9.074 ± 0.209

base-49999 — 0.000 ± 0.000 9.313 ± 0.177

shift—64 bit 9.455 ± 0.096 0.000 ± 0.000 8.084 ± 0.079

shift—128 bit 9.461 ± 0.081 0.000 ± 0.000 7.758 ± 0.160

CRC64 — 0.000 ± 0.000 4.762 ± 0.051

CRC64—acc — 0.000 ± 0.000 10.037 ± 0.329

TABLE 2 Collision and speed test for different hashmethods on 109 uniformly sampled cell vectors with 10 repetitions. The experiments are performed 5 times
to obtain the average values and their deviations.

Method Initialization (s) Collision freq (10−9) Calculation rate (M/s)

base-499 — 0.000 ± 0.000 9.116 ± 0.239

base-49999 — 0.000 ± 0.000 9.377 ± 0.227

shift—64 bit 93.514 ± 0.671 10.600 ± 1.342 8.129 ± 0.127

shift—128 bit 92.937 ± 0.423 10.600 ± 1.342 7.749 ± 0.218

CRC64 — 0.000 ± 0.000 4.861 ± 0.063

CRC64—acc — 0.000 ± 0.000 10.017 ± 0.384

2. Collision Test: As it is meaningless to repeat in collision tests,
we iterate over the whole set of cell vectors only once to find the
hash collisions.The collision frequencies in the two tables are the
collision numbers divided by the numbers of hash function calls.

3. Repetition Speed Test: To obtain a better estimated calculation
speed, the cell vectors are fed into the hash function for R times.
Note that the R repetitions are calculated on the same set of cell
vectors, while the 5 runs mentioned in the tables are carried out
on different sets of randomly generated cell vectors. Additionally,
the unit “M/s” in the two tables refers to million cell vectors
processed per second.

From the comparisons in Tables 1, 2, we may notice the
following:

1. Initialization: The shift hash methods are the only ones that
require initializations among the involved hash methods. The
time cost for initialization is around 92 s for 109 cell vectors, that
is, 10.81 M/s, which is approximately the cost of 1 repetition.That
is affordable for such a large model with so many cells.

2. Collision Test: The shift hash methods are the only ones where
hash collisions occur. This phenomenon agrees with the analysis
in Section 2.3.2 that the overflow issue in the shift hash methods
may lead to more collisions. As the distribution of actual cell
vectors may differ from the uniform distribution in this section,
the collision probabilities of those hash methods in practical
Monte Carlo simulations may vary from the values in Tables 1,
2.

3. Speed Test: Shift hash methods are slightly slower than base-p
hash methods, which may result from more operations in shift
hashmethods and automatic optimization of CPUmultiplication

operations in base-p hash methods. The CRC64 hash method
is the slowest, which is reasonable, as the calculation process is
the most complicated. However, as CRC is a common algorithm
to be applied in many applications, research on the acceleration
of CRC is continuously pushed forward. In our experiment, the
CRC hash mapping method accelerated by ISA-L is the fastest
hash method among the 6 methods involved.

4. Others: The speed test results from experiments on 108 and
109 cell vectors are similar, which indicates that the values and
patterns can be applied to other scales.

Generally, in this uniform generator scenario, the accelerated
CRC64 hash method outperforms the others in all aspects.

4.1.2 Experiment with the bias-imitating random
generator

As the distribution of cell vectors in reactors may be biased from
uniform sampling, the collision probabilities in Section 4.1.1 may
differ from the actual performance in reactor simulations.Therefore,
in this section, we create a set of cell vectors that imitates the actual
distribution to correct this bias.

As shown in Figure 2, the actual CSG geometry is defined as
a tree, where tree nodes are universes or cells filled with universes,
leaf nodes are simple cells, and cell vectors are the paths from the
root to the leaves. Each level of the tree may refer to the core, the
assemblies or the pins. Typically, the indices for each level tend to
be set as continuous integers, and indices between different levels
may differ greatly. Accordingly, we designed simple Python scripts to
imitate and generate the geometry tree and then traverse the tree to
obtain the cell vectors.The Python scripts and the README.md file

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

TABLE 3 Collision and speed test for different hashmethods on
bias-imitating samples, 10 repetitions. Parameters: 26.028million cell
vectors, 1,000 as the interval, single filling.

Method Initialization
(s)

Collision freq
(%)

Calculation rate
(M/s)

base-500 — 99.31 11.246

base-499 — 0.00 10.753

base-49999 — 0.00 11.322

shift—64 bit 1.386 33.27 9.779

shift—128 bit 1.469 33.27 9.690

CRC64 — 0.00 5.395

CRC64—acc — 0.00 10.803

TABLE 4 Collision and speed test for different hashmethods on
bias-imitating samples, 10 repetitions. Parameters: 78.030million cell
vectors, 1,000 as the interval, multiple filling.

Method Initialization
(s)

Collision freq
(%)

Calculation rate
(M/s)

base-500 — 99.31 11.211

base-499 — 32.21 11.039

base-49999 — 0.00 11.441

shift—64 bit 4.132 99.91 10.573

shift—128 bit 4.126 99.91 9.919

CRC64 — 0.00 6.519

CRC64—acc — 0.00 11.010

are attached in the Supplemental Materials. Readersmay reproduce
the datasets of cell vectors used in our experiments.

The overall experimental settings are similar to those in
Section 4.1.1, except that the generator is substituted by the bias-
imitating generator. The experimental results are presented in
Tables 3, 4, 5. As the cell vectors are pre-generated and then kept
fixed during each experiment, there are no random errors; thus no
repetitions are performed and consequently there are no deviation
values in the tables. Additionally, we add a base-500 hash mapping
method in the comparison to check whether prime numbers work
better.

The three experiments are distinct from each other in the
“interval” value and single/multiple filling. The “interval” value is
used to generate the cell indices in the model, which is specifically
the interval of the cell indices between neighboring universes.
For example, if the interval is 1,000 and the first cell of the first
Universe has an index of 1,001, then the index of the first cell of
the second Universe should be 2001. Single or multiple filling is
used to define whether there may be only a single cell or multiple
cells that are filled with the same RSG lattice. Multiple filling
models are widely used in burnup simulations. Readers may obtain
more insights into those hyperparameters from the reproduced
datasets.

From the tables, wemay find that, among the three experiments,
theCRChashmethods are the only ones that have no hash collisions.
Other hash methods may have no collisions for some cases but

TABLE 5 Collision and speed test for different hashmethods on
bias-imitating samples, 10 repetitions. Parameters: 78.030million cell
vectors, 10,000 as the interval, multiple filling.

Method Initialization
(s)

Collision freq
(%)

Calculation rate
(M/s)

base-500 — 97.15 11.256

base-499 — 0.00 10.820

base-49999 — 58.07 11.499

shift—64 bit 4.134 99.82 10.294

shift—128 bit 4.134 99.82 10.088

CRC64 — 0.00 5.662

CRC64—acc — 0.00 11.150

show high collision probabilities for others, which may cause severe
problems in certain practical applications.

The base-500 hash mapping method results in high collision
probabilities in all the three cases, mainly because the interval 1,000
and 10,000 can be exactly divided by the base 500, causing carriages
in the hash function calculations like the example “1 > (p+ 1) > 3”
and “1 > 1 > 4” in Section 2.3.1.

The base-499 and base-49999 hash mapping method have no
collision in the first case because this case is the simplest. However,
when handling the last two complicated cases, collisions may occur
because the cell indexes can be larger than the base values. As 499
and 49,999 are primes, the collisions caused by carriages may occur
for one method but not occur for the other, which leads to the large
differences of collision probabilities.

The shift hash mapping method using 64-bit integers or 128-bit
integers results in around 33% hash collision probabilities in the first
case andmore than 99% in the last two cases.That is because the last
two cases have larger cell indexes, which may cause more overflows
in the shift hash mapping method and thus higher hash collision
probabilities.

Collisionsmay become a critical problem for shift hashmethods
as they collide in all the three experiments. For base-p hashmethods,
prime values 499 and 49,999 work better than 500 in collision
probabilities and have similar calculation speeds, but they still
cannot handle all the cases, which agrees with the theoretical
analyses in Section 2.3.1.

Conclusions drawn from the initialization and calculation speed
columns are similar to those in Section 4.1.1: the initialization costs
from shift hash methods are acceptable and the accelerated CRC
hash method is comparably fast as the base-p hash methods and
shift hash methods. The accelerated CRC hash method did not
outperform the base-p hash methods in calculating speed, mainly
because the cell vectors are set to be no longer than 7, which is
shorter than those in Section 4.1, and thus the acceleration effect
is minor.

Overall, the experiments in this section reveal that bias of
the cell vectors in practical applications may lead to a severe
hash collision problem, especially in complicated full core burnup
problems. The accelerated CRC hash method outperforms others
with its comparable calculation speed and lowest probabilities of
hash collisions, whichmaymake it a better choice for ReactorMonte
Carlo simulations.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

FIGURE 7
Radial and axial profiles of the VERA Problem #5 reactor core (Godfrey,
2014), drawn by the RMC code. (A): radial profile; (B): axial profile.

4.2 Practical validation for the hash
methods

Practical validation and comparison for the CRC hash method
is performed on the VERA Problem #5 (Godfrey, 2014), a full core
problem.Theaxial and radial profiles of the reactor core are shown in
Figure 7. As RSG cell identificationwill not be triggered in criticality
simulations, we add a burnup step to the core to examine the
performance of the hash methods. 500,000 particles are simulated
in each cycle, and 200 cycles are calculated in a burnup step. The
calculations are all carried out on a machine with the AMD Ryzen
3,990X processor and 252 GB memory. Note that as hash collisions
are difficult to handle in practical implementations for Reactor
Monte Carlo simulations, we carefully modeled the reactor core to
guarantee that therewere no collisions in any involved hashmapping
method.

As shown in Table 6, the eigenvalue keff values calculated from
different hash methods agree with each other very well - all of them
are within twice the standard deviation. Due to the use of OpenMP,
some differences may exist in the particle histories and the total
number of hash function calls, thus causing the eigenvalues to be
different. As the total hash function calls are also different, we may
focus on the calculation speed rather than the total time.

In the actual simulation processes, a single call of the hash
method may take less than 1 microsecond, and the hash function
calls are not continuously performed. Therefore, it is difficult to
precisely record the time consumption of all the hash function calls,
and the uncertainties of the time-related values may be large and
difficult to be quantified. Consequently, only large differences in
Table 6may reveal some conclusions.

As indicated from the calculation speeds shown in Table 6, the
accelerated CRC method has greatly improved the original CRC,
and outperforms the 128-bit shift hash method. The two base-p
methods and the 64-bit shift hash method performs a little better
in this case. However, this model is carefully modeled to avoid any
collisions, and when applied on more complicated models, those
three methods may crash, as analyzed in Section 4.1. Moreover, the
calculation speeds here are much faster than those in Section 4.1.
That is because the cell vectors here are no longer than 5, which are
shorter than those in the virtual experiments.The shorter cell vectors
may also limit the acceleration capability of the optimized CRC64
hash mapping method.

TABLE 6 Burnup simulation results for theVERA Problem #5 core.

Method keff± std (before burnup) keff± std (after burnup) Hash time (s) Speed (M/s)

base-p, p = 499 0.991657 ± 0.000104 0.992630 ± 0.000075 1724.68 34.518

base-p, p = 49,999 0.991657 ± 0.000104 0.992629 ± 0.000079 1,694.85 35.125

shift—64 bit 0.991657 ± 0.000104 0.992629 ± 0.000079 1802.04 33.036

shift—128 bit 0.991657 ± 0.000104 0.992648 ± 0.000076 2,143.86 27.769

CRC64 0.991657 ± 0.000104 0.992737 ± 0.000077 3,244.18 18.351

CRC64—acc 0.991657 ± 0.000104 0.992604 ± 0.000078 2079.23 28.631

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

Combined with the results from Section 4.1, accelerated 64-bit
CRC hash mapping method outperforms all the other methods in
collision probabilities, and achieves a comparable calculation speed.
Therefore, it should be a better choice for complicated high-fidelity
reactor simulations.

5 Conclusion

The cyclic redundancy check (CRC) algorithm is analyzed and
used to construct a new hash method in reactor simulations. This
hash mapping method achieves an O (1) time complexity to handle
the cell identification problem in RSG models. We first analyze the
characteristics of the cell vectors in the RSG models and find that
the burst error detection capability of the CRC algorithm makes
it an ideal hash mapping method for reactor simulations. Then,
we implemented and optimized the CRC hash mapping method
in the RMC code and compared it with other hash methods in
both virtual and practical scenarios. The experiments show that
the CRC hash mapping method has a comparable calculation
speed and much lower collision probability, which demonstrates
that the CRC hash method is a more suitable hash method to
be applied in RSG models, especially for complicated problems.
The collision probabilities in the experiments can be reduced
from more than 99% with other hash methods to 0% with the
proposed CRC hash method, while the calculating speed is still
comparable.

In this work, the CRC hash mapping method was implemented
in all the features of RMC that are related to cell identification
and distributed parameter indexing. As CRC is a common
and well-known algorithm researched around the world, further
improvements in CRC will continuously benefit our applications in
Reactor Monte Carlo simulations.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

KL: conceptualization, methodology, investigation, software,
validation, formal analysis, writing-original draft NA: resources,
methodology, software HL: conceptualization, validations SH:
writing-review and editing, supervisionKW: project administration,
funding acquisition, supervision. All authors contributed to the
article and approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (Grant Nos 11775126 and 11775127).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fenrg.2023.1161861/full#supplementary-material

References

Briesmeister, J. F. (1993) LA-12625. NewMexico, United States: Los Alamos National
Laboratory.Mcnp-a general Monte Carlo n-particle transport code.

Cajori, F. (1911). Horner’s method of approximation anticipated by ruffini. Bull. Am.
Math. Soc. 17, 409–414.

Carter, L., andWegman,M. N. (1979). Universal classes of hash functions. J. Comput.
Syst. Sci. 18, 143–154.

Corporation, M. (2019). 32-Bit CRC algorithm. Redmond, Washington, United
States: Microsoft Corporation.

Deng, L., Ye, T., Li, G., Zhang, B., and Shangguan, D. “3-d Monte Carlo neutron-
photon transport code jmct and its algorithms,” in Proceedings of the international
conference on physics of reactors (PHYSOR2014), Kyoto, Japan, September 2015.

Fensin, M. L., James, M. R., Hendricks, J. S., and Goorley, J. T. “The new mcnp6
depletion capability,” in Proceedings of the International Congress on the Advances in
Nuclear Power Plants, Chicago, Illinois, United States, June 2012, 24–28.

Godfrey, A. T. (2014). VERA core physics benchmark progression problem
specifications, Revision 4. Oak, North Carolina, United States: Physics Integration Oak
Ridge National Laboratory.

Gopal, V., Guilford, J., Ozturk, E., Wolrich, G., Feghali, W., Dixon, M., et al. (2011).
Fast CRC computation for iSCSI polynomial using CRC32 instruction. Santa Clara,
California, United States: Intel Corporation.

Guo, X., Shang, X., Song, J., Shi, G., Huang, S., andWang, K. (2020). Kinetic methods
in Monte Carlo code rmc and its implementation to c5g7-td benchmark. Ann. Nucl.
Energy 151, 107864. doi:10.1016/j.anucene.2020.107864

Guo, X., Shen, P., Li, K., Huang, S., Liang, J., and Wang, K. (2021). A hash mapping
method using cell vectors in Monte Carlo code rmc. Ann. Nucl. Energy 160, 108395.
doi:10.1016/j.anucene.2021.108395

Horelik, N., Herman, B., Forget, B., and Smith, K. (2013). Benchmark for evaluation
and validation of reactor simulations (BEAVRS), v1.0.1. Massachusetts, MA, USA: MIT
Computational Reactor Physics Group.

Hou, J. J., Ivanov, K. N., Boyarinov, V. F., and Fomichenko, P. A. (2017).
Oecd/nea benchmark for time-dependent neutron transport calculations without
spatial homogenization. Nucl. Eng. Des. 317, 177–189.

Intel Cooperation, (2023). Intel R© intelligent storage acceleration library. Santa Clara,
California, United States: Intel Corporation.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1161861/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1161861/full#supplementary-material
https://doi.org/10.1016/j.anucene.2020.107864
https://doi.org/10.1016/j.anucene.2021.108395
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Li et al. 10.3389/fenrg.2023.1161861

Koopman, P. “32-bit cyclic redundancy codes for internet applications,” in
Proceedings International Conference on Dependable Systems and Networks (IEEE),
Washington, DC, USA, June 2002, 459–468. doi:10.1109/DSN.2002.1028931

Lax, D. M. (2015) Ph.D. thesis. Massachusetts, MA, USA: Massachusetts Institute of
Technology.Memory efficient indexing algorithm for physical properties in OpenMC.

Leppänen, J. (2013). Serpent–a continuous-energyMonte Carlo reactor physics burnup
calculation code. Espoo, Finland: VTT Technical Research Centre of Finland.

Luo, Z., Guo, J., Yu, G., Wang, K., and Liu, S. (2017). Solutions to vera core physics
benckmark progression problems 1 to 6 based on rmc. Trans. Am. Nucl. Soc. 143,
1235–1238.

Luo, Z., Li, H., Yu, G., Ma, Y., Li, K., Guo, X., et al. (2020). Rmc/ctf
multiphysics solutions to vera core physics benchmark problem.Ann. Nucl. Energy 143.
doi:10.1016/j.anucene.2020.107466

Ma, Y., Liu, S., Luo, Z., Huang, S., Li, K., Wang, K., et al. (2019). Rmc/ctf multiphysics
solutions to vera core physics benchmark problem 9. Ann. Nucl. Energy 133, 837–852.
doi:10.1016/J.ANUCENE.2019.07.033

Neuber, J. C. (2008). Burn-up Credit criticality benchmark: Phase II-C: Impact of the
asymmetry of PWRaxial burn-up profiles on the end effect. Paris, France: Nuclear Energy
Agency.

Peterson, W. W., and Brown, D. T. (1961). Cyclic codes for error detection. Proc. IRE
49, 228–235.

Pratt, M. J. (2001). Introduction to iso 10303—The step standard for product data
exchange. J. Comput. Inf. Sci. Eng. 1, 102–103.

Rearden, B. T., Petrie, L., Peplow,D. E., Bekar, K. B.,Wiarda,D., Celik, C., et al. “Monte
Carlo capabilities of the scale code system,” in Proceedings of the SNA+MC 2013-Joint
International Conference on Supercomputing in Nuclear Applications+ Monte Carlo
(EDP Sciences), Paris, France, October 2014.

Romano, P. K., and Forget, B. (2013). The openmc Monte Carlo particle transport
code. Ann. Nucl. Energy 51, 274–281.

She, D., Liu, Y.,Wang, K., Yu, G., Forget, B., Romano, P. K., et al. (2013). Development
of burnup methods and capabilities in Monte Carlo code rmc. Ann. Nucl. Energy 51,
289–294.

Shen, P., Liang, J., Liu, S., and Wang, K. “Implementation and verification
of the dagmc module in Monte Carlo code rmc,” in Proceedings of the 30th
International Conference onNuclear Engineering (ICONE 30), Virtual, Online, August
2022.

Shriwise, P. C. (2018) Ph.D. thesis. Madison, WI, United States: The University
of Wisconsin-Madison.Geometry query optimizations in CAD-based tessellations for
Monte Carlo radiation transport.

Shriwise, P., Zhang, X., and Davis, A. (2020). Dag-openmc: Cad-based geometry in
openmc. Proc. Amer. Nucl. Soc. Winter Meet. 122, 395–398.

Sutton, T., Donovan, T., Trumbull, T., Dobreff, P., Caro, E., Griesheimer, D.,
et al. “The mc21 Monte Carlo transport code,” in Proceedings of the Joint
international topical meeting on mathematics and computation and supercomputing
in nuclear applications (M&C + SNA 2007), Monterey, California, United States, April
2007.

Vazquez, M., Tsige-Tamirat, H., Ammirabile, L., and Martin-Fuertes, F. (2012).
Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel
codes. Nucl. Eng. Des. 250, 403–411.

Wang, K., Li, Z., She, D., Liang, J., Xu, Q., Qiu, Y., et al. (2015). Rmc –
A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129.
doi:10.1016/J.ANUCENE.2014.08.048

Wang, K., Liu, S., Li, Z., Wang, G., Liang, J., Yang, F., et al. (2017). Analysis of beavrs
two-cycle benchmark using rmc based on full core detailed model. Prog. Nucl. Energy
98, 301–312.

Wilson, P. P., Tautges, T. J., Kraftcheck, J. A., Smith, B. M., and Henderson,
D. L. (2010). Acceleration techniques for the direct use of cad-based
geometry in fusion neutronics analysis. Fusion Eng. Des. 85, 1759–1765.
doi:10.1016/j.fusengdes.2010.05.030

Wu, Y., Song, J., Zheng, H., Sun, G., Hao, L., Long, P., et al. (2015). Cad-based Monte
Carlo program for integrated simulation of nuclear system supermc. Ann. Nucl. Energy
82, 161–168.

Yu, J., Lee, H., Lemaire, M., Kim, H., Zhang, P., and Lee, D. (2019). Mcs
based neutronics/thermal-hydraulics/fuel-performance coupling with ctf and frapcon.
Comput. Phys. Commun. 238, 1–18.

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1161861
https://doi.org/10.1109/DSN.2002.1028931
https://doi.org/10.1016/j.anucene.2020.107466
https://doi.org/10.1016/J.ANUCENE.2019.07.033
https://doi.org/10.1016/J.ANUCENE.2014.08.048
https://doi.org/10.1016/j.fusengdes.2010.05.030
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

