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The bias and uncertainty of calculated decay heat from spent nuclear fuel (SNF) are
essential for code validation. Also, predicting these quantities is crucial for deriving
decay heat safetymargins, influencing the design and safety of facilities at the back
end of the nuclear fuel cycle. This paper aims to analyze the calculated spent
nuclear fuel decay heat biases, uncertainties, and correlations. The calculations
are based on the Polaris and ORIGEN codes of the SCALE code system.
Stochastically propagated uncertainties of inputs and nuclear data into
calculated decay heats are compared. Uncertainty propagation using the
former code is straightforward. In contrast, the counterpart of ORIGEN
necessitated the pre-generation of perturbed nuclear cross-section libraries
using TRITON, followed by coincident perturbations in the ORIGEN
calculations. The decay heat uncertainties and correlations have shown that
the observed validation biases are insignificant for both Polaris and ORIGEN.
Also, similarities are noted between the calculated decay heat uncertainties and
correlations of both codes. The fuel assembly burnup and cooling time
significantly influence uncertainties and correlations, equivalently expressed in
both Polaris and ORIGEN models. The analyzed decay heat data are highly
correlated, particularly the fuel assemblies having either similar burnup or
similar cooling time. The correlations were used in predicting the validation
bias using machine learning models (ML). The predictive performance was
analyzed for machine learning models weighting highly correlated benchmarks.
The application of random forest models has resulted in promising variance
reductions and predicted biases significantly similar to the validation ones. The
machine learning results were verified using the MOCABA algorithm (a general
Monte Carlo-Bayes procedure). The bias predictive performance of the Bayesian
approach is examined on the same validation data. The study highlights the
potential of neighborhood-based models, using correlations, in predicting the
bias of spent nuclear fuel decay heat calculations and identifying influential and
highly similar benchmarks.
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1 Introduction

Spent nuclear fuel (SNF) is one of the most hazardous
radioactive wastes generated from the nuclear power industry,
containing most of the radiotoxicity and long-lived radioactive
nuclides. SNF is a high-level waste generating decay power, or
decay heat, impacting the design, operation, and safety of
systems and facilities at the backend of the nuclear fuel cycle,
such as interim and long-term storage and disposal facilities
(Nagra, 2016; Posiva & SKB, 2017). Safety and optimization of
both the design and operational aspects of these facilities necessitate
an accurate and precise evaluation of the SNF characteristics.

Characteristics of the SNF, such as decay heat, are typically
obtained through calculations based on available data (fuel design,
irradiation, and nuclear data). The reliance on calculations for the
characterization of the SNF is motivated by their significantly large
number, leading to the impracticality of individual measurements.
Consequently, before using calculated SNF characteristics in
subsequent analyses, it is required to establish confidence in such
calculations. Validation and uncertainty analyses are performed to
assess how far these characteristics are from true values or
measurements. The former is a comparison between calculations
and measurements of the SNF characteristics, such as the SNF decay
heat (Gauld et al., 2010; Ilas et al., 2014). It allows obtaining the bias
(B) between calculations (C) and measurements (E), such that
B � C − E. The latter is an evaluation of uncertainties in both C and
E, accounting for all possible (recognized) sources.

Both safety and optimization benefit from accurate and precise
decay heat calculations. Biases and uncertainties can be used to
justify safety margins to be placed upon calculated SNF
characteristics essential for the safety of downstream applications.
For instance, the bias of calculated concentrations of isotopes from
depletion calculations can be used to derive correction factors on the
depleted fuel isotopic content used in downstream criticality safety
calculations crediting the fuel burnup (Burnup Credit) (Radulescu
et al., 2009; Gauld and Mertyurek, 2018). Besides safety and
considering decay heat, the optimization of tightly packed SNF
disposal canisters shows that differences in decay heats (e.g., from
different calculational accuracies) correspond approximately to
similar differences in the number of required canisters—a
significant cost component in SNF disposal.

The current study aims to analyze the bias and uncertainty in
SNF decay heat calculations of commonly used codes, firstly
assessing their significance and then their predictability. The first
objective is attempted by validating codes and calculating
uncertainties. The objective is to demostrate how accurate
calcaulations of SNF decay heat correspond to measurements.
The second objective is attempted by applying machine learning
algorithms on the validation and uncertainty data. The objective is to
demonstrate that the bias in these calculations can be predicted in
applications from the validation data, potentially allowing deriving
safety margins on the calculations.

Recent research activities have motivated the current study, such
as Subgroup 12 of the Working Party on Nuclear Criticality Safety
(WPNCS), aiming to analyze SNF decay heat and the confidence
level in experimental and computational estimations. Also, studies
of validation data within the European Horizon 2020 project have
resulted in recommendations that code predictions are estimated

not to be better than 5% frommeasurements (Rochman et al., 2023).
The former recommendation is in line with the outcomes of the
Vattenfall/SKB-organized blind benchmark on decay heat
predictions for five PWRs (Jansson et al., 2022). In this
benchmark, Several organizations noted significant differences
between decay heat calculations and measurements, more
prominent than expected from previous studies on SNF decay
heat validation.

1.1 Needs for validation

Typically, validation of SNF decay heat calculations relied upon
open literature calorimetric measurements at Clab in Sweden (SKB,
2006), GE-Morris (Wiles et al., 1986), and HEDL facilities in the
United States (Schmittroth, 1984). Recent measurements at Clab on
five fuel assemblies (FA) were released (Jansson et al., 2022), and
additional ones are also expected to be released (EPRI, 2020). The
measurement campaigns at GE-Morris and HEDL have large
experimental uncertainties, limiting their usefulness in supporting
validation studies. Currently, the calorimeter at Clab is the only
operational SNF integral decay heat measuring device worldwide. In
summary, limitations of the available SNF decay heat validation data
include the following:

1. The validation data are scarce. Such measurements are expensive,
and the publicly available ones (a few hundred) represent a small
fraction of the worldwide SNF produced in civil applications
(over a million). Knowledge about how accurate and precise the
decay heat is characterized in these few measurements is used to
provide understanding about how accurate and precise they are
on all SNF.

2. The measured SNF, the validation data, cover a limited range of
properties, e.g., a range of material compositions, burnup, and
other quantities. The relevant characteristics of the benchmarks
define what is referred to as the area-of-applicability (AOA).
However, the applications’ properties, which are routine
calculations that do not have reference measurements, are not
necessarily identical to those of the benchmarks used for
validation. Additionally, it is not always straightforward to
know which particular SNF properties are relevant in defining
the AOA and informing about the similarities to available
benchmarks.

Predictive modeling of the bias and understanding its potential
origin can be employed herein. Predicted biases and uncertainties
can be inferred in applications once both the validation and the
uncertainty quantification are performed. The first objective is to
estimate the bias of the numerous applications from the few
validation data (i.e., addressing the first limitation). The second
objective is to obtain relevant properties of the validation data in the
bias-predictive paradigm and to define how distant the applications
exist from the AOA (i.e., addressing the second limitation). The
properties of the applications not covered by the AOA of the
validation data may then be identified, providing directions for
future measurements aiming at closing gaps in the validation data.

Bias prediction methods and definitions of the AOA are at
different stages of development in different areas of SNF analyses. In
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the case of criticality safety analysis (CSA), techniques of predicting
the bias in an application from neutronically similar benchmarks are
well established (Lichtenwalter et al., 1997). The predicted biases are
used to justify the necessary margins of sub-criticality in the
intended applications. Standards, such as the ANSI/ANS-8.24
(ANS, 2017), allow bias and bias uncertainty to be predicted
from validation benchmarks, e.g., using linear or power models.
The models rely on variables such as the hydrogen-to-fissile atom
ratio (H/X) or similarity index (cx). However, there is no consensus
on which variable can be used for the bias prediction. The common
approach is to aggregate predictions of different models using
different features, preferably those showing trends with the bias
(Dean and Tayloe, 2001; Broadhead et al., 2004). Bias prediction
methods on other SNF characteristics are not as developed.

The bias is thought to be intrinsically complex such that it is
challenging to derive functions mapping variables in the calculations
and the measurements into their difference. In such cases, data-
driven methods can be employed to approximate the target function
and select the informative features. Features are inputs of the bias
prediction model, such as the H/X and cx being used in the
validation of CSA. Statistical models were previously used by
conducting the validation on a large number of benchmarks and
calculating statistics such as averages and standard deviations,
applied in previous studies on decay heat, depletion, and
criticality calculations (Gauld et al., 2010; Radulescu et al., 2014;
Gauld and Mertyurek, 2018). More advanced data-driven methods
are also increasingly being used in literature. Machine learning (ML)
models were used to infer the bias using validation and uncertainty
data of the SNF decay heat and the Pu-239 concentration in post-
irradiation-examination samples (PIE) (Shama, 2022). Bayesian
models, along with validation and uncertainty data, were used to
infer the bias of radionuclide concentrations in PIE samples
(Siefman, 2019). Bayesian, statistical, and ML methods are being
assessed by the Subgroup 11 of theWPNCS for prediction of the bias
and its uncertainty in criticality calculations using simulated
correlation data (OCED NEA, 2023). Recently, random forest
(RF) was used to predict the bias in the neutron multiplication
factor keff from its sensitivity to nuclide-wise reactions (Grechanuk
et al., 2018). Also, RF models were used to understand the
contributions of nuclear data to biases of criticality calculations,
using also keff sensitivity to nuclide-wise reactions (Neudecker
et al., 2020).

1.2 Bias-uncertainty tradeoff

Reduction of conservatism, reducing errors of random and
systematic nature, necessitates concurrent analyses of both the
bias and the uncertainty. Uncertainties of systematic or random
nature in either the calculations or the measurements could explain
significant biases. In other words, biases could be shown to be
insignificant, given uncertainties in both calculations and
measurements. However, explaining the bias with uncertainty
could be beneficial for code validation, demonstrating that
calculations reproduce reality, but it does not help with
calculating safety margins penalizing calculated quantities. Both
the predicted bias and uncertainty shall be accounted for in
estimating safety margins, requiring concurrent analysis of both.

Small biases and uncertainties mean that less conservative
assumptions or safety margins are needed to penalize the
calculated characteristics. They can be achieved by using low
uncertainty measurements for validation, high-fidelity
calculational sequences, detailed modeling, and accurate and
precise data (nuclear data, fuel design, operation data, etc.).
However, residual biases and uncertainties are expected to
persist, and their significance depends on the application.

1.3 Scopes of the present study

For the reasons mentioned in Section 1.2, the current study aims
to concurrently analyze both the bias and uncertainty in SNF decay
heat calculations. The first scope is to assess the significance of the
SNF decay heat validation bias using uncertainties and correlations
in the calculations and measurements. Such scope mainly supports
code validation, approached by testing the following hypothesis:

B ~ N 0, σ( ) (1)
The null hypothesis is that the bias follows a normal distribution

parameterized by the combined uncertainty of the calculations and
measurements (σ). Results of validation, uncertainty analyses, and
significance assessment are successively discussed in Sections
5.1–5.4.

The second scope is to assess the bias-predictive performance of
ML models using the validation and correlation data. Such scope
mainly supports deriving safety margins on calculated SNF decay
heats. ML models predicting the bias using similar or correlated
benchmarks are analyzed. The bias is modeled using the correlation
(ρ) such that:

B � f ρ( ) + ϵ (2)
Where (ϵ) is the error term, evaluated in the current study using

nested cross-validations, and (f) is an RF model. The RF model
weights the bias predictions from highly correlated benchmarks,
i.e., neighboring or highly similar benchmarks are informative in
predicting the bias. Results of the bias predictive performance,
including detection of outliers, analyses of the models and data,
and verification against a Bayesian approach are successively
discussed in Sections 5.5–5.9.

The calculations use Polaris and ORIGEN codes of the SCALE
code system (Bearden and Jessee, 2018) for concurrent verification.
Also, ORIGEN is commonly used for decay heat calculations (Gauld
et al., 2010; Ilas et al., 2014; Yamamoto and Iwahashi, 2016).
Nevertheless, uncertainties of ORIGEN calculations are rarely
available in the literature. The present study also presents
uncertainty analyses based on ORIGEN calculations, compared to
the more straightforward case of Polaris.

2 Case studies

Decay heat (DH) measurements on SNF were selected from
open literature. The benchmarks were selected to have relatively low
measurement uncertainties, reducing random effects and their
potential impact on the predictive modeling. The benchmarks
include measurements conducted by SKB at the Clab facility on
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PWR and BWR FAs (SKB, 2006) and measurements performed by
GE at the GE-Morris facility on PWR FAs (Wiles et al., 1986; Gauld
et al., 2010). Namely, spent fuel assemblies (SFA) of the following
reactors were analyzed:

1. Barsebäck (Clab)
2. Forsmark (Clab)
3. Oskarshamn (Clab)
4. Ringhals (Clab)
5. Point Beach (GE-Morris)
6. San Onofre (GE-Morris)

The selected SFAs were previously used in a validation study
using Polaris, ORIGEN, and CASMO5 codes (Shama et al., 2022).
Improvements to the validation results include analyses of an
additional FA of the Barsebäck-1 reactor (FA ID 2118), such that
the analyses include all FAs measured at Clab (SKB, 2006). Also,
more detailed geometry representations of 4 FAs from the Ringhals-
1 and Barsebäck-1 and 2 reactors are implemented. For the ORIGEN
calculations, models of the FAs of the Ringhals-1, Barsebäck-1, and
Oskarshamn-2 reactors are updated. The changes include detailed
modeling of the lattice geometry and different treatment for cross-
section data processing of the FAs fuel rods at the corners and edges
having smaller diameters. The observed differences are insignificant;
however, they correspond to models having more detailed
representation and usage of all available fuel design data.

The FAs design and irradiation specifications are not necessarily
at the same level of resolution in all benchmarks. Few FAs measured
in Clab are available with more detailed specifications, e.g., cycle-
wise nodal burnup values, compared to the majority having only
cycle-wise assembly averages. Such detailed irradiation data would
allow more detailed analyses of these FAs, allowing lesser modeling
assumptions as well. However, such detailed data were deliberately
averaged, e.g., from nodal values into assembly averages. The
motivation is that consistent, systematic modeling of the FAs is
essential. The validation study was conducted using similar codes,
ND, and modeling assumptions (both on the design and irradiation
data). The approach allows methodological, data, or calculational-
specific systematic differences between calculations and
measurements to be identified. Detailed modeling of individual

FAs and approximate one for others having reduced resolution
of their data could potentially contaminate the validation data with
optimistic biases related to higher-resolution modeling.

Selecting benchmarks could proceed by placing criteria on
the benchmark specifications, such as the irradiation data or the
measurements. It is desired to have many measurements
available with detailed specifications and low experimental
uncertainties. Typically, a limited number of measurements
are available that fulfill these requirements. Also, measurement
campaigns have significantly different levels of uncertainty. The
selection could be approached as a tradeoff between less strict
criteria on the specifications of the benchmarks allowing more
data to be collected for the validation process, and more strict
criteria associated with fewer validation data. In both cases,
missing specifications shall be completed with assumptions
such that benchmarks are systematically modeled. Assumed
specifications should be accompanied by uncertainties such
that missing relevant parameters will introduce significant
uncertainties, and irrelevant benchmark specifications will
eventually not have an impact. Lenient selection criteria will
allow less detailed benchmarks to be included, which will increase
the sample size; however, it could also introduce significant
uncertainties and result in detrimental predictive performance.
Strict selection criteria would allow fewer highly specified
benchmarks to be included in the validation process,
potentially also having low uncertainties. In this case, the
sample size could be the limiting factor, and the predictive
performance is not optimal. The optimal selection criteria
could be based on whether the uncertainties or the sample
sizes are more influential on the predictive performance.

The analyzed benchmarks are selected based on the uncertainty
of measurements, estimated by the corresponding laboratory at
upper and lower measured values. For the analyzed FAs,
uncertainties at intermediate measured decay heats are
interpolated linearly, as shown in Figure 1. Selecting a threshold
on the benchmarks’ uncertainties will introduce a tradeoff between a
larger sample having considerable uncertainty and a smaller sample
having low uncertainty. Nevertheless, benchmarks could be selected
considering their coverage of an interesting AOA, such as the short
cooling times for the analyzed GE-Morris measurements.

FIGURE 1
Uncertainties in measurements of the analyzed SFAs.
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3 Calculational methods

The decay heat calculations are performed using the SCALE
nuclear modeling and simulation code system (Bearden and Jessee,
2018) (version 6.2.3). The SCALE package is widely used in nuclear
system design, safety analyses, and LWR analyses. The SCALE
multi-group library (56-group structure) has reduced
computational requirements and is suitable for the current
application. The decay and fission yield data are based on the
ENDF/B-VII.1 nuclear data library (Chadwick et al., 2011), while
the libraries of the multi-group (MG) cross-section data (XS) are
based primarily on ENDF/B-VII.1 along with supplementary data
from the JEFF-3.0/A nuclear data library.

3.1 Decay heat calculations

The current study calculations relied on the SCALE code
system’s Polaris and ORIGEN codes for concurrent verification.
Both codes differ in their methods, approximations, and the details

of spatial modeling. The validation of Polaris and ORIGEN was
conducted previously (Shama et al., 2022) and furtherly analyzed in
the current study. Polaris is a lattice physics module commonly used
for the analysis of LWR FAs (Jessee et al., 2021; Mertyurek et al.,
2021). The module performs lattice calculations coupled with
ORIGEN for depletion and decay calculations. Polaris calculates
the SFA decay heat, along with the nuclide-wise contributions. The
ORIGEN calculations follow the steps: 1) generation of lattice-
specific irradiation-dependent XS data using TRITON (DeHart
and Bowman, 2011; Bearden and Jessee, 2018), 2) followed by XS
interpolations using the ARP utility, 3) followed by depletion and
decay calculations using ORIGEN. ORIGEN uses the interpolated
XS data, the total material of the FA (both the fuel and the cladding
and spacers), along with cycle-wise power densities and lengths. The
ORIGEN calculations were added because of the large experience
accumulated worldwide, and to be in a condition to verify the results
and conclusions based on the Polaris calculations.

The models of both Polaris and TRITON are 2D layouts
representing the active section of the FAs. The 2D models are
axially symmetric, implementing reflective boundary conditions

FIGURE 2
Uncertainty calculations using Polaris (top plot) and ORIGEN (bottom plot). The right branch is for the DO parameters, and the left is for the ND.
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(radially) and excluding the neighboring assemblies. Also, the
irradiation history resolution is at the level of cycle-average
values, as provided in the reference (SKB, 2006). Downstream
TRITON, ORIGEN is used, which is a zero-dimension code.

3.2 Uncertainty analyses

Stochastic propagation of uncertainties in calculations of SNF
characteristics is commonly applied in literature (Leray et al., 2016;
Rochman et al., 2016; 2018; Ilas and Liljenfeldt, 2017). In the present
study, calculated uncertainties and correlations are obtained
through stochastic propagation of uncertainties in the nuclear
data (ND) and the SFA design and operational parameters (DO).
The Sampler super-sequence of the SCALE package was used along
with Polaris and ORIGEN calculational sequences. Sampler
performs stochastic uncertainty propagations, generating and
running hundreds of input files of subsequences (e.g., Polaris)
and analyzing the outputs (Williams et al., 2013). The
subsequence iteratively uses ND and DO parameters obtained
through random sampling. Nuclear data are sampled from the
ND covariances (available in SCALE), and the DO parameters
are sampled from their joint probability distributions. The
outputs are distributions of the calculated decay heat values,
allowing uncertainties and correlations to be calculated.

The considered ND uncertainties are fission yield (FY) and XS
uncertainties. These uncertainties are available in the SCALE code
system, based primarily on the ENDF/B-VII.1 nuclear data. ENDF/
B-VII.1 covariance data and other supplementary data are sources
for the XS covariances. Fission yield variances (combining
independent and cumulative yields) are sources for the FY
covariances.

The DO uncertainties are based on literature values (NEA,
2016). The implemented uncertainties are similar to the ones
implemented in a previous study (Shama et al., 2021), which
excludes uncertainties in parameters such as the gap between
assemblies and the rod-to-rod pitch considering their negligible
contribution to the calculated uncertainties. The uncertainties of the
DO parameters around their means were assumed to follow normal
distributions bounded by ±3 σ. The form of the distribution, normal
vs. uniform, has shown little relevance toward calculated decay heat
uncertainties compared to the variance of the distribution (Shama
et al., 2021).

The heavy-metal mass of the FA is assumed to be precise, and a
negative correlation between the cross-sectional area of all fuel rods
and the fuel density is implemented. U-235 enrichments of all rods
are assumed to be fully correlated. Fuel temperatures, water densities
and temperatures, void fractions, and the boron content in the water
are the same throughout the lattice. In different cycles, these
parameters are assumed to be fully correlated. The cycle average
power densities are assumed to be normally distributed with a
standard deviation of 1.67%. They are also assumed to be fully
correlated between cycles, resulting in a burnup uncertainty of
1.67%. A full inverse correlation was assumed between the water
density and temperature for the PWRs. For the BWRs, the water
temperature is constant, and the water density variance originates
from the void fraction variance. Also, a full correlation was assumed

between the power density and fuel temperature in the PWR and
BWR FAs.

TheDOparameters can vary significantly along the FAs and during
the irradiation cycles. However, the implemented DO values and their
uncertainties are assembly-wise and cycle-wise averages rather than
local or instantaneous ones. For instance, the void fraction in the BWRs
changes axially, and the implemented nominal and uncertainty values
are axial averages. Similarly, the boron content is implemented as cycle
averages, which change during the irradiation cycles.

The uncertainty calculations using Polaris are straightforward,
as shown in Figure 2. Two independent branches of calculations are
performed for the ND and the DO parameters. Then, the decay heat
covariances obtained from each branch are combined. The
counterpart of ORIGEN proceeds in two steps (Figure 2). Firstly,
Sampler is used along with TRITON, similar to the Polaris case,
perturbing the ND and the DO parameters independently. The
output of TRITON is a library of XS data for each distinct FA design.
Combined with Sampler, the output is a library of perturbed XS data
for each distinct FA design. Then, using Python programming
language (Python Software Foundation, 2022), numerous ARP
and ORIGEN inputs are generated, incorporating the perturbed
XS data and the perturbed DO parameters. The XS libraries are
firstly used downstream in ARP interpolating into the FA-specific
XS data, then ORIGEN performs the depletion and decay
calculations using these interpolated data. In the ND branch, the
various runs of TRITON, ARP, and ORIGEN use the nominal DO
parameters. The three codes apply consistent perturbation factors
for the DO parameters in the DO branch. The perturbations are
625 for the Polaris models and 400 perturbations for the ORIGEN
ones—1250 and 800 considering both ND and DO perturbations.

Not all parameters listed in (Shama et al., 2021) are expressed in
the three codes. TRITON implements all these parameters similarly
to Polaris. In comparison, ARP and ORIGEN allow only
perturbations in a few parameters, such as the power density,
enrichment, moderator density, and the balance of the structural
materials (in addition to using the TRITON-generated perturbed XS
libraries). Similar to the Polaris case, the calculated covariances from
the ND and the DO branches are combined.

3.3 Expression of uncertainties

Uncertainties and correlations in both calculations and
measurements are considered. Uncertainties in the measurements
are shown in Figure 1. The measurements have no reported
correlations—an assumed value in the current study.
Uncertainties in the calculations are due to independent
uncertainties in the ND and the DO parameters, calculated as:

σ �
���������������������
1

N − 1
∑N

k
DHk −DH( )2√

(3)

Where DH is the average decay heat and DHk is the decay heat
calculated using perturbed ND or DO parameters. Eq. 3 is calculated
for both ND and DO parameters. The uncertainties of ND origin are
assumed uncorrelated with those of origin fromDOparameters. The
calculated decay heat uncertainty is obtained as follows:
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σ2C � σ2ND + σ2DO (4)
Also, the errors in the calculations and measurements are assumed

uncorrelated. The uncertainty of the bias is calculated as follows:

σ2B � σ2C + σ2E (5)
Correlations of the calculations result from consistently using

the same perturbed ND and perturbation factors in all models,
calculated as:

ρij �
1

N − 1
∑N

k�1
DHi

k −DHi( ) DHj
k −DHj( )

σ iσj
(6)

Where i and j refer to each pair of benchmarks in the
validation data.

3.4 Significance of the bias

In the current study, the null hypothesis is that the calculated
decay heat and the measured value are equal:

H0: C − E � 0 (7)

The alternative hypothesis is that they are significantly different:
Ha: C ≠ E. Testing the hypothesis proceeds by calculating a z-score
(Hayslett and Murphy, 1981; Draper, 2011) for each bias as:

zi � Bi

σB,i
� Ci − Ei

σB,i
(8)

The z-scores of all the data are weighted and combined using a
z-transform (Evans, 1996; Stouffer, S. A. et al., 1949):

�z � ∑N
i�1wizi�������������������∑N

i�1wi
2 + 2∑N

i< jwiwjρij

√ (9)

FIGURE 3
TheML algorithm starts with bias and correlation. The algorithm is repeated for random samples of benchmarks, i.e., sampling a singlemeasurement
from each SFA.

TABLE 1 Average biases of Polaris and ORIGEN, along with one standard
deviation (1 σ) considering the variance of the data.

FA type Polaris �B (W) ORIGEN �B (W)

PWR 4.7 ± 6.7 6.9 ± 7.2

BWR 1.2 ± 3.8 1.0 ± 3.7

All 3.0 ± 5.7 4.0 ± 6.5
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Where wi is the weight for zi, and ρij is the correlation between
zi and zj. The weights are assumed to be the same in the current
study. The correlations were calculated from the covariances as
follows:

ρij �
cov Bi, Bj( )
σB,iσB,j

(10)

Eq. 10 uses the covariance data of both calculations and
measurements. The latter covariances are calculated assuming
different levels of correlations between the benchmarks. Low
correlations between measurements or calculations in Eq. 10
would result in a higher combined z-score, easing the rejection
of the null hypothesis, i.e., the test is conservative. The availability of
covariance information between measurements could reduce this
conservatism.

4 Bias predictions of the random forest

The present study uses ML algorithms based on RF models to
predict the bias. The RF models (Breiman, 2001) are built using
numerous regression trees obtained by sampling from the data,
reducing the variance of the predictions. Within each tree, the target
response of an observation is obtained by averaging the response
values of the observations in the same terminal node, i.e., RF models
are localized regression or weighted neighborhood schemes (Lin and
Jeon, 2002). A terminal node is an interval in the predictor space
where the target response is approximated to have a constant value.
Predicting the response of x, located in a terminal node containing
N observations, proceeds as following:

ŷ x( ) � 1
N

∑N

n�1yn.w x,�x( ) (11)

Here, the weight w(x,�x) is one if the observation is located in the
same terminal node as �x, and zero otherwise. The predictions of
many trees are combined, e.g., weighted by their out-of-bag estimate.

The design matrix in the current study contains only one
variable: the correlation between benchmarks. In this learning
setting, the node containing the unit correlation is used for the
bias prediction of the target benchmark. The target benchmark and
the application case are always located at unit correlation. In
applying the RF model, the predicted bias is the average bias of
highly similar benchmarks located within a correlation interval from
unity [co, 1]. Here, co is a cutoff correlation above which
benchmarks contribute to the bias prediction of the target

benchmark or the application case. The cutoff correlation is also
a variable that depends on the data. The predicted bias at the unit
correlation (Bρ�1) using K trees, each having weight wk, is obtained
as follows:

Bρ�1 � 1
N

∑N

n�1wkBk.Iρ∈ co,1[ ] ρ( ) (12)

Here, the sum of weights is unity.

4.1 ML algorithm

The RFmodel is applied within the algorithm shown in Figure 3.
The data contain 167 measurements conducted on 98 unique SFAs
(several SFAs have multiple measurements). The algorithm starts
with a random sample of benchmarks, considering only one
measurement for each SFA. The algorithm is repeated by
considering numerous random samples. Within each iteration,
the correlation matrix is divided into 98 correlation vectors. The
bias at unit correlation is used as a test sample. An RF model is
obtained on the remaining section of the bias and the correlation
vector (the design matrix). The RF model is used to predict the bias
at unit correlation. The process resembles the leave-one-out cross-
validation procedure (LOOCV) (Raschka, 2020), providing an
estimate of the test error.

The main outcome of the algorithm is a vector of bias
predictions (corresponding to the original bias of the random
sample of benchmarks). Aggregated measures are obtained for
assessment of the bias-predictive performance, such as:

1. The coefficient of determination R2 (Wright, 1921).
2. The root-mean-square-error (RMSE) (Willmott, 1981).
3. The p-value of the two-sample Kolmogorov–Smirnov test (KS

test) (Daniel, 1990).

A secondary outcome of the algorithm is the p-value of each
benchmark obtained from the regressed model on the training and
validation data. The aggregated p-values are used in outliers
analyses.

5 Results

The bias prediction results are presented in this section. Firstly,
the data generated for the ML application are provided. The
validation bias, the parameter required to be predicted, is

TABLE 2 Averages along with one standard deviation of the calculated uncertainties 1 σ (%), both of ND and DO origins, the total calculated uncertainties, and the
fractional variances of DO uncertainties.

Code Polaris ORIGEN

Fuel type σDO σND σTotal FVDO σDO σND σTotal FVDO

PWR 2.1 ± 0.2 0.9 ± 0.2 2.2 ± 0.2 0.85 ± 0.05 2.1 ± 0.1 0.8 ± 0.1 2.2 ± 0.2 0.86 ± 0.05

BWR 2.0 ± 0.1 0.8 ± 0.1 2.1 ± 0.2 0.86 ± 0.04 2.0 ± 0.1 0.8 ± 0.1 2.1 ± 0.2 0.87 ± 0.04

All 2.0 ± 0.1 0.8 ± 0.1 2.2 ± 0.2 0.86 ± 0.05 2.0 ± 0.1 0.8 ± 0.1 2.2 ± 0.2 0.87 ± 0.05
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provided in Section 5.1. The correlation matrix, the parameter used
to learn the validation bias, is provided in Section 5.3. Sections 5.2,
5.4 were also included to give the uncertainty analyses results used to
generate the correlation data and statistical analysis of the
significance of the validation bias using the collected uncertainty
and correlation data. The last sections address the ML bias-
predictive performance, potential outliers, interpretation of the
ML models, differentiation between validation data having
different uncertainties, and verification of the ML results using
the Bayesian approach.

5.1 Validation results

The validation results in this study are updates of the ones
provided in (Shama et al., 2022), listed in Table 1. The average
Polaris bias of the PWRs is the same as the one in (Shama et al.,
2022). For the BWRs, it is 0.1 W less, accounting for the inclusion of
FA 2118 to the data (Barsebäck-1 reactor) and more detailed
geometry representations of 4 FAs from the Ringhals-1 and
Barsebäck-1 and 2 reactors. For ORIGEN, the current results are
significantly different from the ones in (Shama et al., 2022) for the
FAs of Ringhals-1, Barsebäck-1, Oskarshamn-2, San Onofre-1, and
Point Beach-2, considering more accurate irradiation histories and
lattice geometry representations in TRITON. The calculations using
TRITON are computationally intensive and necessitated
simplifications such as excluding corner and edge rods having
reduced diameters. In the current study, a more detailed
representation of the models is followed in the TRITON
calculations.

Polaris and ORIGEN provide calculated decay heat values
approximately 5 and 7 W higher than the measurements of the
PWRs, respectively. The corresponding bias for both codes is ~1 W
for the BWRs. Such performance could be satisfactory for several
applications. However, fluctuations are significantly large, resulting
in 1 σ of approximately 6 W, evaluated on all the benchmarks for
both Polaris and ORIGEN cases. On average, for the whole data, the
calculations are within 1.0%–1.2% of the measurements, along with
1 σ of 2.2%.

5.2 Uncertainty analyses

Uncertainties of ND and DO origins were separately propagated in
the calculational models for all benchmarks. Then, the covariance
matrices resulting from the ND and DO uncertainty propagations
are summed to obtain a covariance matrix due to the total calculational
uncertainties. The uncertainties of ND and DO origins are assumed
independent. Differences in the calculated uncertainties and
correlations between models perturbing the DO and ND together
and the current approach are calculated for the FA F32 of the
Ringhals-2 reactor (a PWR FA having 50 GWd/tU burnup) and the
FA 1177 of the Ringhals-1 reactor (a BWR FA having 36 GWd/tU
burnup). The comparison shows <0.3% and <0.1% differences in the
calculated decay heat uncertainties and correlations, respectively, which
are considered acceptable approximations in the current study.

The calculated uncertainties are summarized in Table 2,
represented as 1 σ of the calculated decay heat values. The tableTA
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lists uncertainties of ND and DO origins along with the total
calculated uncertainties. The DO uncertainties result is ~2%
uncertainty in the calculated decay heat for Polaris and ORIGEN,
whereas it is <1% due to ND uncertainties. No significant differences
are noted between the calculated Polaris and ORIGEN uncertainties
and the PWRs and the BWRs. Additionally, both calculated
uncertainties show low variances around their averages. These
observations indicate that uncertainties of the same origins are
propagated in the less-detailed ORIGEN models equivalently to
the more-detailed Polaris ones. The TRITON-generated perturbed
XS data, and the few model parameters expressed in the ORIGEN
model (such as power, burnup, enrichment, and moderator density)
are sufficient to express uncertainties equivalently to the more-
detailed Polaris models.

Uncertainties of different origins could be presented regarding
the fractional variance (FV). The contributions of DO uncertainties
to the total calculated uncertainties are evaluated as:

FVDO � σ2DO

σ2C
� σ2DO

σ2ND+σ2DO

(13)

The contributions of uncertainties of DO origins to the
calculated decay heat uncertainties are listed in Table 3. Similar
to the total uncertainties, the differences between the PWRs and the
BWRs are insignificant. The uncertainties of DO origins contribute
largely to the calculated uncertainties, resulting in ≥85% of the total
variance of the calculated decay heat.

Uncertainties in the FA burnup significantly contribute to the
calculated decay heat uncertainties (Shama et al., 2021). The
calculated decay heat uncertainties (both of ND and DO origins)
and the FVs of DO origins are plotted against the burnup in Figure 4.
They both show trends with burnup. On average, the higher the FA
burnup, the higher the calculated decay heat uncertainty (for both
Polaris and ORIGEN). Also, the FV of DO origins decreases at
higher burnups, i.e., uncertainties of ND origin increasingly
contribute to decay heat uncertainties at higher burnups.

The relevancy of individual uncertainties of the DO parameters
toward the calculated decay heat uncertainties is analyzed by
examining their correlations. For each benchmark, correlations
are calculated between the calculated decay heat (considering
both ND and DO uncertainties), and each of the perturbed DO

FIGURE 4
Polaris (top) and ORIGEN (bottom) calculated uncertainties of the decay heat (left plots), and the corresponding fractions of variance of DO origins
(right plots).
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parameters. Figure 5 shows plots of the calculated correlations,
indicating that burnup is a highly relevant parameter,
significantly and positively correlated with the decay heat for
Polaris and ORIGEN. The decay heat tends to show considerably
lower correlations with the other DO parameters, except for
parameters inducing neutron spectral changes such as the water
density and the cladding outer radius. Lower water density or larger
cladding outer diameter, lower moderation, and harder spectrum
tend to increase the calculated decay heat value in the analyzed
benchmarks.

5.3 Correlation matrices

The correlations between the calculated decay heats are obtained
for all benchmarks based on perturbations in the ND and the DO
parameters. When combined, they form the design matrices used in
the ML application. Figure 6 shows the calculated correlations
between the decay heats using both Polaris and ORIGEN. The
correlation heatmaps are ordered according to the burnup (top
to bottom and left to right), e.g., the upper left corners of the maps
show the obtained decay heat correlations for assemblies having
high burnup values. The lower left corners of the maps show the
obtained correlations for assemblies having high burnup values to
those having low burnup values. The correlations between the decay
heat values are positive and significantly high due to perturbations in
both the DO parameters and the combined ND and DO parameters.
For Polaris, only 2.5% of the correlations are below 0.51 considering

the ND perturbations and 0.87 considering the combined ND and
DO perturbations. The corresponding values for ORIGEN are
0.49 and 0.91. Relatively higher correlations are observed between
benchmarks having high similarity in their burnup. These high
correlations are obtained solely by perturbing the ND, also
combined with the DO parameters perturbations. Significant low
correlations are observed between several FAs and the rest of the
data (low correlation bands across the correlation matrices). Such
benchmarks belong to the San Onofre-1 and Point Beach-2 reactors.
However, these FAs show notably high correlations among
themselves.

The decay heat is an integral value resulting from the nuclear
decay of many radionuclides. Differences between the analyzed FAs,
such as their burnup and cooling time, change the correlations as
they impact nuclide-wise contributions to the decay heat and the
decay heat uncertainty differently. Four FAs differing in their
characteristics are analyzed (Table 3). The reference FA is I09
(Ringhals-2). The remaining three FAs have the following
differences from FA I09:

1. FA 8327 differs in the reactor of origin,
2. FA F32 essentially differs in the burnup,
3. FA C64 essentially differs in the cooling time.

Decay heat-relevant nuclides are analyzed, which
produce >99.9% of the decay heat in the analyzed FAs. Table 3
provides their contribution to the decay heat and its uncertainty due
to ND perturbations. The contributions from the fission products

FIGURE 5
Correlations of the calculated decay heat with the perturbedDOparameters. Themedian, first and third quartiles, andwhiskers are shown—whiskers
are 1.5 × interquartile range.
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(FP) and the actinides (AC) are also provided. The FA I09 is the
reference case, showing 7% decay heat uncertainty from the FP
(mainly Y-90) and 93% from the AC (Pu238, Am241, and Cm244).
Relative to FA I09, the remaining three FAs show the following:

1. FA 8327 shows approximately similar contributions from the FP
and AC and the nuclide-wise contributions to the decay heat and
its uncertainty. Its burnup and cooling time are similar to the
reference case.

2. FA F32 shows significantly low contributions from uncertainties
in the FP compared to the reference case. Contributions from the
Cm-244 nuclide to the decay heat and its uncertainty are
considerably higher relative to the reference case. The FA has
higher burnup than the reference case, and Cm-244 builds up
with burnup in an increasing trend.

3. FA C64 shows significantly high contributions to the decay heat
and its uncertainty from the FP. Shorter-lived FP, such as Rh-106
and Cs-134, significantly contribute to the decay heat at short
cooling times. Cs-134 alone contributes >50% to the decay heat
uncertainty, having a half-life of approximately 2 years. The
longer-lived ACs do not contribute as much as the reference
case (with respect also to the FP).

5.4 Significance of the validation bias

Comparing the bias to uncertainty allows for testing its
significance. Eqs 8, 9 are used to obtain a combined z-score for
all benchmarks, considering the calculations and measurements’
uncertainties and correlations. Uncertainties and correlations

FIGURE 6
Correlations between the calculated decay heats using Polaris (top row), and ORIGEN (bottom row). The left matrices result from perturbing the ND
and the DO parameters, whereas the right ones result from perturbing the ND solely. The matrices are ordered according to the burnup (top to bottom
and left to right).
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between the calculated decay heat values are presented in Sections
5.2, 5.3. Experimental uncertainties are based on literature (Section
2), whereas the correlations are not available, assumed herein.
Independent measurements from two facilities are considered
(Clab and GE-Morris); both used the same calorimeter type. The

measurements of the Clab facility are assumed to correlate with each
other with the same correlation ρE, independent from the
measurements at the GE-Morris facility. Similarly, the
measurements at the GE-Morris facility are assumed to correlate
with each other with the same correlation ρE.

Figure 7 shows the combined z-scores of both Polaris and
ORIGEN, individually for the PWRs and the BWRs. The plot
shows the variation of the combined z-scores over the analyzed
range of experimental correlations. Higher correlations between the
measurements reduce the significance of the calculated combined
z-scores. Calculating a combined z-score using Eq. 9 requires
accounting for the correlations between the biases—a summation
of the off-diagonal elements of the combined correlationmatrix. The
summation is positive, considering both the calculated and the
measurements’ correlations. This results in a larger denominator
in Eq. 9 over the entire range of the measurements’ correlations. The
combined z-scores could be interpreted to be insignificant over the
analyzed measurements’ correlations, considering a two-sided z-test
with a significance level of 0.05.

5.5 ML predictive performance of the decay
heat bias

The decay heat biases are predicted for the Polaris and ORIGEN
validation data using the calculated correlations, following the
algorithm described in Section 4. The algorithm is implemented
using the R programming language (R Core Team, 2022).

For the Clab validation data solely, the predictions show
0.40 and 0.48 reductions of the original variances for Polaris and

FIGURE 7
Combined z-scores (�z) vs. assumed correlations between the
measurements.

FIGURE 8
The validation biases of Polaris and ORIGEN. The Cook’s distance is shown with bars. The identified outliers are marked with circles (based on their
aggregate z-score).
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ORIGEN, respectively. Both reductions in the variances are
promising in the current application, and the test errors of both
models are 5.0 and 5.9 W, respectively. The test errors are higher for
the models using all the data (Clab and GE-Morris benchmarks).
Following the algorithm described in Section 4, numerous training
and testing iterations are performed, starting each time with a
random sample of benchmarks, considering only one
measurement for each SFA. Benchmarks highly correlated to
multiple calculations on the same SFA show significant variances
in their bias predictions. The multiple measurements on the same
SFA are typically associated with different biases, sampled
iteratively, and contribute to the variance in the predictions of
highly correlated benchmarks.

The bias predictions for Polaris and ORIGEN show acceptable
KS-test p-values. Considering a threshold p-value of 0.05, it is failed
to reject the null hypothesis that the observed bias and the predicted
one have the same distribution. The RF models are promising in

their bias predictions, providing biases that bear statistically
significant similarity to the observed ones, along with promising
reduction of the variance of the validation data.

5.6 Potential outliers

Outliers are referred to as abnormalities or deviants in the data
(Aggarwal, 2017), which differ significantly from other observations.
They can occur due to systematic or random uncertainties or
erroneous data—either erroneous calculations or measurements
in the present validation data. Measures of influence (such as
Cook’s distance) and hypothesis testing (such as the z-test) can
detect potential outliers. The z-test is used in the current study. The
outliers detection in the present study follows the algorithm in
Section 4, based on the regressed model onto the training and
validation section of the data.

FIGURE 9
The ML predicted bias vs. the observed validation one. The left plots are for the Clab and GE-Morris data, and the right plots are for the Clab data
solely. The redline is a 45° line. The validation data exclude two measurements on the 5F2 SFA.
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Data points are potential outliers with respect to the data and the
model. For such reason, the outliers detection in the current study is
selectively conservative, excluding the least number of
measurements. Benchmarks are identified as outliers when their
aggregate z-value is > 3 (corresponding to a threshold significance
level of 0.0027). The process is a repeated LOOCV procedure,
repeated as a whole and for random benchmark samples. The
p-values of each benchmark are aggregated, assuming that they
are uncorrelated, requiring that the median p-value be significant at
a threshold significance level of 0.00135. Also, selectively,

benchmarks are identified as outliers when detected in both
Polaris and ORIGEN validation data.

The outliers analyses are presented in Figure 8. For Polaris,
three measurements are detected as outliers, whereas they are
four for ORIGEN. Polaris and ORIGEN share two measurements
as potential outliers (two measurements on FA 5F2 of
Ringhals-3).

The design matrices are reduced, excluding the two detected
outliers, and the predictive modeling is redone. The bias prediction
results are shown in Figure 9, represented as the predicted bias vs.
the observed validation one. The measures in these figures include
the reduction, or explanation, of the variances using the RF models
applied on the reduced design matrices with respect to the original
data without removal of outliers, calculated as:

R2
final � 1 − σ2final

σ2initial
(14)

The error bars in Figure 9 are one standard deviation of the
predicted biases on the test section of the data. For both Polaris
and ORIGEN, excluding the outliers resulted in improvements in
the predictive performance of the models. The observation is
noted using the Clab data solely, also including the GE-
Morris data.

5.7 Interpretation of the models

The validation biases and the predicted ones are shown in
Figure 10. The data correspond to the Clab benchmarks solely.
Using correlations between benchmarks, the RF model partially
explains the observed bias (through the predicted one), reducing the
variance. The reductions in the variances are between 0.4 and 0.5,

FIGURE 10
Validation and RF predicted biases of Polaris and ORIGEN (only Clab data). The RF predicted bias is based on a few highly correlated benchmarks,
denoted by their average number �N.

FIGURE 11
Median correlations between the benchmarks of Clab (Clab-
Clab), GE-Morris (GE-GE), and between Clab and GE-Morris (Clab-
GE). The bars bound 95% of the data.
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excluding ~1% of the data as outliers. Initially, Polaris validation
shows an overestimation of the measured decay heat by 2.6 ±
4.8 W—considering each FA as an individual benchmark. Then,
the RF model results in a bias prediction represented as
f(ρ) ±3.8 W. The followings are concluded:

1. The predicted bias is not necessarily an overestimation. Unlike
the validation-based average bias, f(ρ) is negative for several
benchmarks.

2. The fluctuation of the error around the systematic part f(ρ) is
lower than its fluctuation around the average bias for the
validation data. The average difference between the validation
and the predicted bias is 0.1 W, along with 1 σ of 3.8 W.

3. The bias prediction on the target benchmark uses biases of a few
highly correlated benchmarks. These informative benchmarks
are correlated with the target one above a correlation cutoff. The
cutoff itself depends on the data, i.e., it is not constant. The bias is
predicted using 2 to 5 benchmarks in 90% and 86% of the Polaris
and ORIGEN cases, respectively.

5.8 Selection of benchmarks for validation

Decay heat-relevant properties differ between the Clab data (lower
measurement uncertainties) and GE-Morris data (higher measurement
uncertainties). The former data cover burnups between 15 and
51 GWd/tU and cooling times between 11 and 27 years, compared
to 27 and 39 GWd/tU and 3 and 8 years for the latter. These differences
result in different levels of correlations between the data. Considering
the Clab and GE-Morris benchmarks standalone, they correlate
significantly within each category, whereas the cross-correlations
between the Clab and GE-Morris ones are lower (Figure 11).

In the analyzed learning setting, highly correlated benchmarks
are used for bias prediction. Including the GE-Morris data would
incorporate validation benchmarks having high correlations to
discharged FAs with shorter cooling times, i.e., they are closer in
the correlation space to applications at shorter cooling times.
However, such data are accompanied by higher experimental
uncertainties, resulting in higher test errors. Incorporating the
GE-Morris data, the RMSE of the predictions increases from

FIGURE 12
Same as Figure 9 using the MOCABA algorithm.
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3.7 to 4.6 W. Using neighborhood-based prediction schemes would
motivate identifying and addressing sections of the validation data
having significant uncertainties.

5.9 Verification against the MOCABA
approach

The predictive performance of the ML neighborhood-based
scheme is benchmarked against its counterpart of the MOCABA
algorithm. MOCABA is a Bayesian update algorithm that utilizes
Monte Carlo sampling (Hoefer et al., 2015), which applies to the
SNF calculated decay heat as the integral parameter. The prediction
of the updated integral parameter using the MOCABA algorithm
depends on the similarity between the cases captured using their
covariance data. For the application case, the prediction relies more
on those cases that share significant covariance with the application.
However, in providing predictions, the algorithm is not as localized
as the RF model, which implements cutoffs on the correlations
between the cases. The algorithm is also applied using the R
programming language (R Core Team, 2022).

Figure 12 shows the bias predictions obtained using the MOCABA
algorithm, following the overall algorithm described in Section 4. The
algorithm is applied, excluding the two outliers identified in Section 5.6.
For Polaris and ORIGEN and the two analyzed datasets, the more
localized RF model yielded variance reductions in the range of
0.43–0.51, compared to 0.28 to 0.43 for the MOCABA algorithm.
The test errors of the RF models (3.7–5.1W) are also lower than those
of the MOCABA algorithm (6.1–9.1W). Nevertheless, considering the
acceptable KS-test p-values of both methods, they are both promising
bias-predictive methods in the current application. The MOCABA
algorithm is more utilized in literature in applications like CSA, and the
RF model also weights highly similar cases (even more localized) and
shows better predictive performance.

6 Conclusion

The study presents analyses of two hypotheses that the validation
bias of SNF decay heat can be shown to be insignificant using
uncertainty data and also be predicted using correlation data. The
Polaris and ORIGEN codes of the SCALE code system were validated
using published measurements performed at the Clab and GE-Morris
facilities. Uncertainties and correlations between the decay heats were
calculated, perturbing the nuclear data, fuel design, and operational
parameters. The validation, uncertainty, correlation, and bias prediction
results of both Polaris and ORIGEN show similarities.

The biases have not shown statistical significance, considering
uncertainties and correlations. Such a conclusion supports the
validation of both codes in SNF decay heat calculations. The
study also shows that the considered benchmarks are highly
correlated. Fuel assemblies showing similarity in their burnup
and cooling time have significantly high correlated decay heats.
High correlations resulted in promising bias predictive performance
in the application of machine learning algorithms. Such conclusion
suggests that the area-of-applicability of the validation data could be
constructed using correlations, consequentially burnup and cooling
time, which is recommended for future work.

The application of machine learning algorithms, random forest (RF)
models weighting highly correlated benchmarks, resulted in bias
predictions that show similarities to the validation bias. The variance
of the validation bias was reduced by 0.4–0.5, applying the RFmodel and
excluding twomeasurements. Few benchmarks (2–5) typically contribute
to the target benchmark’s bias prediction. Also, the predictive
performance was analyzed using data differing in their sample size
and measurement uncertainties. It is lower on data having higher
measurement uncertainties at the expense of expanding the validation
data into shorter cooling times. The performance of the RF model is
benchmarked against its counterpart of the MOCABA Bayesian
approach, both showing promising bias-predictive performance,
particularly for the more localized RF model.
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