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For studying the traffic safety of the high-speed railway, this research considers
high-quality second-level wind speed data as its basis. However, the quality of
second-level wind speed data can be greatly lowered by disturbances during data
collection and storage. Therefore, it is crucial to control the data quality during
collection and storage.Wind speed data along the high-speed railway are unstable
and non-linear. In order to adapt to this characteristic, this study combines a
convolutional neural network (CNN), long short-term memory (LSTM), and
isolated forest from the time dimension to form a quality control (QC)
algorithm for wind speed monitoring data. First, CNN is used to extract the
original data features, which are then transferred to the LSTM network for
one-step prediction. The prediction residual of the model is obtained and sent
to the isolated forest, where the abnormal value position in the original wind speed
data is calibrated by detecting the abnormal value position in the prediction
residual. Comparative experiments have been conducted to test the
performances of the three different QC methods. The results show that the
error detection rate of CNN–LSTM–IF in this research method is approximately
0.95. For different terrains and seasons, the method has certain robustness and
generalization.
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1 Introduction

Strong winds are one of the biggest meteorological threats to the safety and operation of
high-speed rail. A strike of strong wind on the high-speed rail during normal operation will
cause it to derail or overturn in a few seconds (Zhang et al., 2020). As the acquisition,
transmission, and storage of the wind speed data are disturbed by various factors, the quality
of the second-level wind speed data is greatly reduced. This hinders the scientific assessment
of high-speed rail driving safety. The quality control (QC) of the real-time observation data
for the second-level wind speed ensures data accuracy. In this way, monitoring can be
accurate, and early warning is possible. The QC of the historical observation data for the
second-level wind speed can keep the data complete and accurate. The data can serve as the
basis for the study of high-speed rail driving safety, contributing to the early warning of
strong wind and the optimal layout of monitoring stations.

In recent years, scholars fromChina and other countries have conducted extensive research on
the QC algorithm of meteorological observation data. Their studies focus on the single-station QC
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algorithm, built from the time dimension of the wind speed observation
data, and themulti-station interconnectionQC algorithm, built from the
spatial dimension. The literature review of the first study direction
(i.e., the one from the time dimension) can be summarized as follows:
Jiménez et al. (2010) evaluated the quality of wind speed and direction
through an extreme value check, a time consistency check, and time
series homogenization. Then, he analyzed and corrected the abnormal
data in the dataset. Tian et al. (2020) proposed a random sampling-
arithmetic average method for the QC of the meteorological observation
data. This method is based on random observation, which can effectively
improve the quality of the meteorological observation data. Salvação
et al. (2022) used weather research forecasting, a regional atmospheric
model, to improve wind datasets. The model combines its predictions
with remotely sensed wind observations in enhanced wind speed
analyses that lead to blended winds. Xiong et al. (2017) proposed a
new QC method based on gene-expression programming (GEP) to
identify potential outliers in the surface hourly temperature observations.
Compared to the spatial regression test (SRT) and inverse distance
weighting (IDW), GEP and SRT can generate results better than IDW
in all cases. To control the quality of wind speed observation data,
Shen et al. (2021) established a correlation function between the target
station and the reference station and introduced the Standard Normal
Homogeneity Test (SNHT) into the QC. Estévez et al. (2018) the weight
estimated via the distance. or correlation coefficient between the
observation stations to control the quality of temperature observation
data from a spatial perspective. His method can identify doubtful values
in temperature observation data and improve data accuracy.
Considering the limitations of current QC methods in different
regions and on multiple time scales, the kernel regression algorithm
is applied to the QC of surface air temperature observations. Ye et al.
(2020) improved the kernel regression (IKR) method based on an
adaptive algorithm and particle swarm optimization. The
RainGaugeQC scheme described in this study aims to provide real-
time QC of the telemetric rain gauge data. It consists of several checks:
detection of exceedance of the natural limit and climate-based threshold
and the conformity checking of rain gauge and radar observations,
consistency checking of time series from heated and unheated sensors,
and spatial consistency checking of adjacent gauges. The approach
proposed by Ośródka et al. (2022) focused on the reliability
assessment of individual rain gauge observations.

In short, the studies on the QC of meteorological observation
data focused more on the temperature and precipitation and less on
the wind speed. Even those focusing on wind speed observation data
only explore minute-level meteorological stations. Their wind-speed
studies lacked second-level observation data that were non-
stationary and non-linear. Therefore, this study proposed a QC
algorithm that combined CNN, LSTM, and IF for the second-level
wind speed observation data. The data were from fivemeteorological
observation stations along a high-speed railway in China. The
method provides sufficient basic data for the research on high-
speed rail driving safety.

2 Data

Meteorological observation stations along a high-speed railway
in China have different geographical environments. Therefore, this
study selects five stations to collect the second-level wind speed

observation data (stations 1, 2, 3, 4, and 5). The locations of the five
stations are shown in Figure 1. All the second-level wind speed
observation data from the five target stations come from ultrasonic
anemometers along the railway. The anemometers are arranged on
both sides of the track. These data are susceptible to disturbances
from the monitoring environment and passing trains. Station 1 is
beside the Yangtze River; Station 2 is in the city; Station 3 is in the
hills; Station 4 is in the plain; and Station 5 is beside a lake. Data from
2018 were selected for the QC research to keep the integrity of the
wind speed observation data on the time scale. The data have passed
basic QC checks, such as the extreme value and format checks. Being
accurate second-level observation data for wind speed, it has already
eliminated obvious gross errors.

3 Materials and methods

3.1 CNN

The convolutional neural network (CNN) model, whose
structure is shown in Figure 2, adopts local connectivity and
weight sharing, which can map the original data into high-
dimensional data for training and effectively extract the
features (Dua et al., 2021). In the convolutional layer, the
local connectivity and weight sharing greatly reduce the
number of parameters in the training process and improve the

FIGURE 1
Geographical location distribution of the five stations.

FIGURE 2
CNN structure.
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model’s training speed. This helps the model efficiently extract
the original data features. In the pooling layer, the abstract
understanding of the original data and the drop of the feature
dimension effectively reduce the number of training parameters.
Moreover, the model overfitting degree decreases with more
efficient extraction of features (Kattenborn et al., 2021;
Moolchandani et al., 2021). Compared to traditional neural
networks, the main advantage of CNNs is that they can
automatically detect important features without the help of
human supervision. For example, given pictures of cats and
dogs, it can learn the key features of each class by itself. In
addition, the number of parameters required for training
reduces significantly as all the features have been extracted
already.

3.2 LSTM

The recurrent neural network (RNN) can only obtain
information from closer sequences than from earlier ones. When
dealing with long sequence data, it often loses information from the
earlier sequences (Chang et al., 2019; Sherstinsky, 2020; Lindemann
et al., 2021). Therefore, the problem of RNN is its short-term
memory due to the gradient vanishing of RNN units. Long
short-term memory (LSTM) solves this problem by introducing
the gate mechanism, which includes the forget gate, the input gate,
the output gate, and the cell state.

Each LSTM unit is calculated as follows.

3.2.1 Forget gate
The last time’s output value and the current input value are

calculated to obtain the output value of the forget gate, as shown in
Eq. 1:

ft � σ wf. ht−1, xt[ ] + bf( ), (1)

where ft is the forget gate, · is the dot product of two vectors, σ is the
sigmoid, ht−1 is the unit at the previous time, w is the weight, xt is
the input vector at the time t, and b is the bias vector.

3.2.2 Input gate
The last time’s output value and the current input value are

entered into the input gate to obtain the output value and the
candidate cell state of the input gate as follows:

it � σ wt ht−1, xt[ ] + bi( ), (2)
ct% � tanh wc ht−1, xt[ ] + bc( ), (3)

where it is the input door, ct% is the cell state at the current time, and
tanh(·) is the hyperbolic tangent activation function.

3.2.3 Update of the current cell state
The current cell state is the product of the previous cell state and

the forget gate, plus the product of the current cell state and the input
gate as follows:

ct � ft · ct−1 + it · ct%, (4)
where it is the input door and ct% is the current cell state.

3.2.4 Output gate
The output t and input xt are entered into the input value of the

gate as time t to obtain the output gate as follows:

ot � σ wo · ht−1, xt[ ] + bo( ), (5)
ht � ot · tanh ct( ), (6)

where tanh(·) is the hyperbolic tangent activation function, ct is the
cell state of the hidden layer at the time t, and ot is the output gate.

3.3 IF

The basic principle of isolation forest (IF) is to divide the data
space into two subspaces with a random hyperplane. The subspace
will further divide until there is only one data node in each subspace,
forming the IF (Lesouple et al., 2021; Zolfaghari and Golabi, 2021).

For a dataset with n data points, the isolation tree has a
maximum height of n − 1 and a minimum height of log(n). IF
determines whether the datum x is an outlier based on the path
h(x), the length from the leaf node x to the root node. The
maximum possible height of the path h(x) increases linearly
with n, and the mean possible height increases with log(n).
Given the similarity between the isolation tree and the binary
search tree, h(x) is normalized using the following equations:

s x, n( ) � 2
E h x( )( )
c n( ) , (7)

c n( ) � 2H n − 1( ) − 2
n − 1( )
n

( ), (8)

h k( ) � ln k( ) + 0.577, (9)
where s(x, n) is the anomaly score of node x, E(h(x)) is the
expected value of the height h(x) of node x on multiple isolation
trees, c(n) is obtained based on the average search length (ASL) in
the case of search failure, and 0.577 is the Euler–Mascheroni
constant. Eq. 7 reflects that the anomaly score s(x, n) is the
monotone decreasing function of h(x), with a value range of
[0, 1]. The closer the score is to 1, the greater the probability of
the outlier. There is no obvious outlier in the whole dataset if the
score of most data is close to 0.5.

3.4 CNN–LSTM–IF

Based on the non-stationary and non-linear characteristics of
second-level wind speed observation data and considering the
advantages of the algorithms mentioned previously, this study
proposes a QC algorithm that combines CNN, LSTM, and IF. It
is used for the second-level wind speed observation data of five
meteorological observation stations along a high-speed railway in
China. The detailed CNN-LSTM-IF flow is as follows:

Step 1: Select the measured second-level wind speed x �
(x1, x2, x3, . . . xm+n) of the target station.

Step 2: Use CNN to convolute the measured second-level wind
speed x � (x1, x2, x3, . . . xm+n) to extract the features of the original
data and obtain the convolved feature ŷ � (ŷ1, ŷ2, ŷ3, . . . ŷm+n).
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Step 3: Input the extracted feature y � (y1, y2, y3, . . .yn) to the
LSTM for a single-step forecast with a window of sizem to obtain the
forecast second-level wind speed y � (y1, y2, y3, . . .yn). Then,
obtain the corresponding forecast residual E � (E1, E2, E3, . . .En).

Step 4: Input the forecast residual E � (E1, E2, E3, . . .En) into IF
for outlier detection.

Step 5: If the forecast residual is detected as an outlier, correct the
outlier of the corresponding position with the linear interpolation;
otherwise, repeat Step 1, Step 2, Step 3, and Step 4 until the end.

The detailed CNN–LSTM–IF flow is shown in Figure 3.

3.5 Evaluation indicators

The root mean square error (RMSE) was used to show the
difference between measured and predicted values and reflect the
performance of the forecast model. The error-detecting rate, type I
error, and type II error were adopted to measure the error-detecting
capability of the model. Among the three indicators, the error-
detecting rate is the ratio of the number of correctly detected
doubtable values to the number of all doubtable values; type I
error is the ratio of normal values that have been incorrectly
detected as doubtable values; and type II error is the ratio of
doubtable values that have been incorrectly detected as normal
values (Xiong et al., 2022).

Support vector regression (SVR) was used as the comparison
method to test the performance of the proposed method. SVR is a

data mining method based on statistical theory. As an extension of the
SVM, it is designed to handle regression analysis problems. The SVR
structure (Figure 1) is similar to that of the ANN model. The input and
output layers are connected by a hidden layer, which can be calculated
automatically based on the dataset (Inapakurthi and Mitra, 2022).

4 Results and analysis

This study used CNN to extract the original data features. The
extracted features were then input to the LSTM for the single-step
forecast to obtain the forecast residual. Then, the forecast residual
was input into the IF for outlier detection. Finally, the results of the
CNN–LSTM, LSTM, and SVR were analyzed separately to compare
their forecast performance and error-detecting capabilities.

4.1 Analysis of forecast performance

This study used the forecast residual to detect abnormal second-
level wind speed. Therefore, CNN–LSTM, LSTM, and SVR were first
compared based on their forecast performances. The test dataset was
the second-level wind speed observation data from five
meteorological observation stations along a high-speed railway in
China in 2018. The average RMSE of the three algorithms for all days
in the corresponding season and the RMSE of each algorithm in the
corresponding season were derived. The RMSE of the three
algorithms is shown in Figure 4.

Figure 4 shows that the medians (0.1, 0.13, and 0.18) and the
means (0.1, 0.13, and 0.18) of the RMSE of CNN–LSTM in different
seasons across the five stations are minimal, indicating a high
forecast performance of CNN–LSTM. The CNN–LSTM has the
densest indicator distribution among the three algorithms, with an
RMSE of 0.07–0.15. This indicates that the CNN–LSTM has high
robustness and accuracy. The RMSE obtained by CNN–LSTM is
more concentrated at a low value. The densest indicator distribution
results show that the proposed method performs better than other

FIGURE 3
CNN–LSTM–IF flow.

FIGURE 4
RMSE of the three algorithms.
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methods by yielding good results for different cases. Compared to
the other two algorithms, the CNN–LSTM can better extract the
features of wind speed observation data. With CNN, the algorithm
can map the high-dimensional data into the low-dimensional data.
After the extracted features are entered into the LSTM for a single-
step forecast, the LSTM’s strong time-series memory supports the
forecast of the wind speed observation data in different terrains and
seasons.

4.2 Analysis of error-detecting capability

CNN–LSTM–IF is good at detecting abnormal observation data
of second-level wind speed. This study used controlled variables to
demonstrate its advantages. The outlier detection methods based on
forecast residuals were combined with single-step forecast
algorithms. In other words, IF was combined with CNN-LSTM,
LSTM, and SVR, respectively. Moreover, the second-level wind
speed observation data of five meteorological observation stations
along a high-speed railway in China in 2018 were used as the test
dataset. The average RMSE of the three algorithms for all days in the
corresponding season and the RMSE of each algorithm in the
corresponding season were derived. The RMSEs of the three
algorithms are shown in Figure 4. The error-detecting indicators
of CNN–LSTM–IF, LSTM–IF, and SVR–IF are shown in Figure 5.

Figure 5 shows the size distribution of the error-detecting
indicators of the three algorithms. It is basically the same in
different seasons. CNN–LSTM–IF has the best error-detecting
indicators, with the error-detecting rate, type I error, and type II
error being approximately 0.95, 0.1, and 0.05, respectively. LSTM–IF
has the second-best error-detecting indicators, with the error-detecting
rate, type I error, and type II error being approximately 0.91, 0.12, and
0.09, respectively. SVR-IF has the worst error-detecting indicators, with
the error-detecting rate, type I error, and type II error being
approximately 0.88, 0.2, and 0.12, respectively. Therefore, the error-
detecting capability of CNN–LSTM–IF is better than that of the other

two algorithms. As the five stations are in different regions, they may be
affected by the regional microclimate. In different seasons, their error-
detecting capability may change. Specifically, Station 1 has the lowest
ability to detect errors in the summer because of the prevailing summer
winds and complex wind speed fluctuations (Zeng et al., 2018). Station
2’s ability to detect errors becomes the weakest in the fall due to the
frequent strong autumn winds. Station 3’s ability to detect error is the
weakest in summer because the wind speed in the summer varies
significantly as temperature changes, especially at extremely high
temperatures. Station 4’s error-detecting capability is the worst in
spring when the transit of cold air causes obvious fluctuations in
wind speed. The ability of Station 5 to detect errors drops most in
the winter, as atmospheric circulation generates strong winter winds.

To further verify the differences among the three algorithms
(CNN–LSTM, LSTM, and SVR) in detecting abnormal observation
data of second-level wind speed, they were used for single-step
forecasts on different data types. The reasons for their different
error-detecting capabilities were analyzed based on the forecast
residuals (Figure 6).

Figures 6A–D show that the SVR has the poorest forecast
performance compared to CNN–LSTM and LSTM. It results in large
forecast errors in regions I and III of Figure 6A, region II of Figure 6B,
regions I and III of Figure 6C, and region II of Figure 6D. If the forecast
residual is input into the IF for outlier detection, many normal second-
level wind speeds will be detected as abnormal. From the enlarged partial
view of region II of Figure 6A and region I of Figure 6D, we can see that
the abnormal second-level wind speed in the wind speed sequence for a
single-step forecast in the three algorithms results in large forecast
residuals. According to region II of Figure 6A and region II of
Figure 6D, the normal second-level wind speed is detected as the
abnormal second-level wind speed. LSTM and SVR cause large
forecast residuals in region III of Figures 6A, D. In comparison,
CNN–LSTM has much smaller forecast residuals, as shown in region
III of Figure 6A. CNN–LSTM will not detect the normal second-level
wind speed as abnormal. From the enlarged partial view of Figures 6B, C,
we can see that the three algorithms cause large forecast residuals in

FIGURE 5
Comparison of the error-detecting capability of the three algorithms: (A) Error-detecting rate, (B) Type I error, (C) Type II error [S1-5 is short for
section 1-5].
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region III of Figure 6B and region II of Figure 6C, resulting in the normal
second-level wind speed being detected as the abnormal second-level
wind speed. The LSTM and SVR cause large forecast residuals in region
II of Figure 6B and region III of Figure 6C, resulting in the normal
second-level wind speed being detected as the abnormal second-level
wind speed. Abnormal second-level wind speed in the wind speed
sequence often leads to a large forecast residual at the normal
second-level wind speed. However, CNN–LSTM avoids false
detection with its unique feature extraction ability. The features of
high-dimensional wind speed observation data are extracted by
dimension reduction, thus reducing the chance of generating
large forecast residuals. Using the forecast residuals generated by the
single-step forecast, CNN–LSTM proved to be more suitable for QC.

Moreover, Table 1 shows the performance of different
methods for RMSE, error-detecting rate, and the

computational burden. As we can see, CNN–LSTM–IF is
better than other methods. One explanation is that the
proposed algorithm combines the advantages of the CNN,
LSTM, and IF algorithms. According to the computational

FIGURE 6
Comparison of the difference in error-detecting capability of the three algorithms: (A) Isolated type outliers, (B) Serrated type outliers, (C) Step type
outliers, (D) Unmeasured type outliers.

TABLE 1 Performance of different methods for RMSE, error-detecting rate, and
the computational burden.

CNN–LSTM–IF CNN–LSTM LSTM SVR

RMSE (m/s) 1.64 1.78 1.62 1.63

Error-detecting
rate (%)

95 94 92 93

Computational
burden (s)

0.03 0.04 0.03 0.05
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burden index, the time cost is very small despite the complex
structure of the proposed algorithm.

5 Conclusion

Based on the non-stationary and non-linear characteristics of
second-level wind speed observation data, this study proposes a QC
algorithm that combines CNN, LSTM, and IF. This proposed algorithm
is used to detect different types of abnormal second-level wind speed in
the second-level wind speed observation data. The observation data are
from five meteorological observation stations along a high-speed
railway in China. The main conclusions of this paper are as follows:

(1) The CNN–LSTM–IF adopted the CNN–LSTM for single-step
forecasting. In the detection of abnormal second-level wind speeds,
this algorithmcanproduce large forecast residuals at abnormal second-
level wind speeds and small forecast residuals at normal second-level
wind speeds. In this way, false or missed detection is avoided.

(2) The CNN–LSTM–IF constructed the single-station QC algorithm
from the time dimension according to the results of tests performed
at the five meteorological observation stations along a high-speed
railway in China in different seasons. The algorithm had good
error-detecting capability and stability in different seasons, with an
error detection rate of approximately 0.95.
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