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The implementation of an energy management strategy plays a key role in
improving the fuel economy of plug-in hybrid electric vehicles (PHEVs). In this
article, a bi-level energy management strategy with a novel speed prediction
method leveraged by reinforcement learning is proposed to construct the
optimization scheme for the inner energy allocation of PHEVs. First, the
powertrain transmission model of the PHEV in a power-split type is analyzed in
detail to obtain the energy routing and its crucial characteristics. Second, a
Q-learning (QL) algorithm is applied to establish the speed predictor. Third, the
double QL algorithm is introduced to train an effective controller offline that
realizes the optimal power distribution. Finally, given a reference battery’s state of
charge (SOC), a model predictive control framework solved by the reinforcement
learning agent with a novel speed predictor is proposed to build the bi-level
energy management strategy. The simulation results show that the proposed
method performs with a satisfying fuel economy in different driving scenarios
while tracking the corresponding SOC references. Moreover, the calculation
performance also implies the potential online capability of the proposed method.
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1 Introduction

The contradiction between energy shortage and the booming development of the
automotive industry has been increasingly prominent in recent years. Vehicle
electrification that substitutes fossil fuel with cleaner electrical energy has become a
critical development trend in this field (Li et al., 2017). The plug-in hybrid electric
vehicle (PHEV), which is widely known as a promising solution in new energy vehicles,
takes the considerations of both driving range and energy saving. PHEVs contain two power
sources, generally: the electricity stored in batteries or super-capacitors (as the primary
power source) and fuel (as the secondary power source). Therefore, the PHEVs can
coordinate the motor and engine according to their respective energy characteristics in
complex driving conditions so as to avoid low operational efficiency that may lead to
unnecessary energy consumption and emission (Biswas and Emadi, 2019). However, the
effective conversion between the two different power sources is usually reflected as a time-
varying and non-linear optimization problem that makes it difficult to design a general
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energy management strategy (EMS) for PHEVs, and the precise
control of PHEV powertrain has become the focus of current
academic research.

Currently, the EMS of PHEVs can be divided into two types:
rule-based EMSs and optimization-based EMSs (Han et al., 2020).
Among these, the rule-based EMSs are generally based on the
experience of engineering implementation, and a series of control
rules are preset to realize the energy distribution of the power
system. The charge-depleting/charge-sustaining (CD/CS) strategy
is the most widely used rule-based EMS (Overington and
Rajakaruna, 2015). Taking advantage of the large battery
capacity, in the CD mode, the battery serves as the unique power
source that drives the vehicle. When the battery’s state of charge
(SOC) drops to a certain threshold, the strategy switches to the CS
mode and the power for battery charging and vehicle driving is
provided by the engine to ensure that the SOC runs near the
threshold. However, there is an obvious downside to this strategy
that with increasing driving mileage, the fuel economy worsens
(Singh et al., 2021). Rule-based EMSs highly rely on engineering
experience and find it difficult to adapt to various operating
conditions while ensuring satisfactory fuel economy.

Optimization-based EMSs can be further classified into two
categories: global optimization and instantaneous optimization. The
global optimal EMS is featured as knowing the global information
about the working conditions in advance and then allocating the
optimal energy to the power source that can be solved by common
algorithms such as the dynamic programming (DP) (Peng et al.,
2017), Pontryagin’s minimum principle (PMP) (Chen et al., 2014),
and game theory (GT) (Cheng et al., 2020). In Lei et al. (2020), DP is
first applied to perform offline global optimization for a PHEV, and
by combining the K-means clustering method, a hybrid strategy
considering the driving conditions is proposed, which achieves a
similar fuel economy to that of the DP. In Sun et al. (2021), the
formal characteristics of the bus on a fixed section of a road are fully
taken into account, while the authors propose a PMP algorithm that
can be applied in real time to achieve near-optimal fuel economy.
However, global optimization methods have a common
characteristic of being too computationally intensive for online
applications (Jeong et al., 2014). Thus, they are frequently
employed as evaluation criteria for other methods or for
extracting optimal control rules in general. The instantaneous
optimization methods, such as the equivalent consumption
minimization strategy (ECMS) (Zhang et al., 2020a; Chen et al.,
2022a), model predictive control (MPC) (Guo et al., 2019; Ruan
et al., 2022), and reinforcement learning (RL) (Chen et al., 2018;
Zhang et al., 2020b), have become common approaches in solving
energy management online application problems. TheMPCmethod
can effectively deal with multivariate constraint problems with
strong robustness and stability and has been widely employed in
control problems that are strongly non-linear (He et al., 2021). In
Quan et al. (2021), a speed prediction MPC controller was
developed, and on the basis of the Markov speed predictor, an
exponential smoothing rate had been hired to modify the Markov
speed predictor. In Zhang et al. (2020c), Markov and back
propagation (BP) neural networks were engaged for speed
prediction, and an EMS combined vehicle speed prediction based
on the adaptive ECM strategy (AECMS) algorithm was presented,
which could improve fuel economy by 3.7% when compared to the

rule-basedmethod. In Zhou et al. (2020a), a fuzzy C-mean clustering
integrating Markov co-rate prediction had been exerted to regulate
the battery’s SOC rate under different conditions. In Guo et al.
(2021a), a real-time predictive energy management strategy was
proposed, a model predictive control problem was formulated, and
numerical simulations were carried out all yielding a desirable
performance of the proposed PEMS in fuel consumption
minimization and battery aging restriction.

With the rapid development of artificial intelligence technology,
RL has attracted much attention for its strong learning ability and
real-time capability in tackling high-dimensional complex problems
due to its unique learning behavior (Ganesh and Xu, 2022). Chen
et al. (2020) proposed a stochastic MPC controller based on
Markov’s speed prediction and Q-learning (QL) algorithm, which
can achieve fuel economy similar to that of the stochastic DP (SDP)
strategy. In Yang et al. (2021), considering the long-term nature of
direct reinforcement learning training processes, an indirect
learning EMS based on a higher-order Markov chain model was
proposed.

Based on the abovementioned literature review, MPC and RL
have been widely applied in the energy management of PHEVs.
According to the authors’ knowledge, in the design EMS using MPC
method, general speed prediction methods such as the Markov
(Zhou et al., 2020b), neural network (Chen et al., 2022b), or
combination (Lin et al., 2021; Liu et al., 2021). However, the RL
algorithm is rarely applied in designing the speed prediction
controller. In addition, considering that the RL feature regulates
better and avoids the random error generated by the Markov and
neural network methods in predicting vehicle speed, a bi-level EMS
based on RL speed prediction is proposed in this study. The RL
algorithm is adopted in the upper layer controller to establish the
speed predictor, and the double QL algorithm is exercised in the
lower layer to perform rolling optimization. Numerical simulations
are conducted to validate and evaluate the fuel economy effect of the
proposed method, and the computational efficiency and
applicability of the proposed method on different reference
trajectories are further analyzed. The main contributions of this
study are as follows: 1) the speed prediction problem is solved by the
RL method and 2) an RL controller combining RL velocity
prediction and RL rolling optimization is established, which

FIGURE 1
Powertrain transmission configuration of the PHEV.
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provides effective support for the online application of machine
learning methods on PHEVs.

The remainder of this article is assigned as follows: Section 2
constructs the EMS objective function, and the powertrain structure
of the PHEV is analyzed in detail by using the mathematical model.
In Section 3, the speed predictor is established by QL, and its
prediction accuracy is analyzed. In Section 4, the bi-level EMS
framework is built, and the double QL controller is employed to
carry out the rolling optimization process. Section 5 verifies the
effectiveness, applicability, and practicality of the proposed method.
Section 6 provides the conclusion of this study.

2 Modeling of PHEV

A power-split PHEV is taken as the research object in this study,
of which the prototype model is the Toyota Prius. The powertrain
transmission configuration of the PHEV is shown in Figure 1, which
consists of an engine, a lithium-ion battery pack, two electric motors,
a planetary gear power distribution unit, and two electrical energy
converters. Thereinto, the engine is connected to the planet gear,
motor 1 is connected to the ring gear, and motor 2 is connected to
the sun gear. The planetary gear power distribution unit can make
the engine, motor, and wheels operate without interfering with each
other so as to realize the reasonable distribution of the driving force
of the whole vehicle through the power coupling relationship. The
detailed vehicle structure parameters are listed in Table 1.

In this article, the main objective is to rationalize the energy
transfer relationship between the engine and battery such that the
total fuel consumption of the vehicle in a driving cycle is minimized.
The cost function can be expressed as

J � minFueltotal � min∫T

0
Fuelratedt, (1)

Fuelrate � f ωeng,Teng( ), (2)

where Fueltotal denotes the total fuel consumption during the whole
driving cycle, Fuelrate indicates the instantaneous fuel consumption,
T represents the total time of the whole driving cycle, ωeng stands for
the engine speed, and Teng means the engine torque. In order to
obtain the instantaneous fuel consumption of the PHEV, the energy

demand model and energy flow relationship of the PHEV are
analyzed.

In the study, the lateral dynamic effects of the vehicle are
ignored, and the complex vehicle model is considered to be a
simple quasi-static model. For a given driving condition,
according to the longitudinal dynamics model of the vehicle, the
power demand of the vehicle can be deduced as

Pdrive � Ff + Fw + Fi + Fj( )v, (3)

where Pdrive indicates to the power demand of the vehicle; Ff, Fi, Fw,
and Fj, respectively, signify the rolling resistance, grade resistance,
air resistance, and acceleration resistance; and v is the vehicle speed.
The four types of resistances can be formulated as

Ff � mgf cos α
Fw � CdAv

2/21.15
Fi � mg sin α
Fj � δma

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (4)

wherem denotes vehicle mass, gmeans gravitational acceleration, f
represents the rolling resistance coefficient, α indicates to the slope
of travel, Cd defines the air resistance coefficient, A stands for the
windward area of the vehicle, δ refers to the rotating mass
conversion factor of the vehicle, and a is the acceleration.

In integrating the PHEV energy transfer model as shown in
Figure 1, the required power of the vehicle is provided by the engine
and battery, and the battery drives two electric motors to provide
kinetic energy, and the demand power is presented as

Pdrive � Pfinal · ηfinal
Pfinal � Peng + Pess( ) · ηgear
Pess � Pmot1/ηmot1 + Pmot2/ηmot2( ) + Pelec

Pess � ωmot1 · Tmot1( )ηmot1 + ωmot2 · Tmot2( )ηmot2( ) + Pelec

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (5)

where Pfinal, Peng, Pess, Pmot1, Pmot2, and Pelec represent the power of
the main gearbox, engine, battery, motor 1, motor 2, and electrical
accessories, respectively. ηfinal, ηgear, ηmot1, and ηmot2 mean the
transmission efficiency of the main reducer, transmission unit,
motor 1, and motor 2, respectively. ωmot1 and ωmot2 denote the
speed of motor 1 andmotor 2, respectively.Tmot1 andTmot2 stand for
the torque of motor 1 and motor 2, respectively. Considering that
the engine and the two motors work by means of a planetary gear
unit, the coupling relationship can be expressed as

TABLE 1 Main parameters of the power-split PHEV.

Unit Parameter Value

Vehicle Mass 1801 kg

Engine Peak power 57 kW

Lithium-ion battery Nominal capacity 39 Ah

Motor 1 Peak power 50 kW

Rated power 25 kW

Motor 2 Peak power 30 kW

Rated power 15 kW

Planetary gear construction Sun gear 30

Ring gear 78

FIGURE 2
Engine optimal operating line.
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ωeng � 1/1 + μ( )ωmot1 + μ/1 + μ( )ωmot2

Teng � 1 + μ( )Tmot1 � 1 + 1/μ( )Tmot2
{ , (6)

where μ indicates the gear ratio of the planetary gear.
Eqs 2–6 reveal that the total fuel consumption of the vehicle

throughout the driving cycle is decided by controlling the engine
speed and torque. Considering that two control degrees of
freedom—the speed and torque—increase the complexity of the
control strategy, the engine optimal operating line (OOL), as shown
in Figure 2, is engaged to constitute their mapping relationship and
simplify the calculation process (Chen et al., 2015). Giving an engine
power request, an optimal engine speed and, consequently, the
optimal engine torque can be obtained. Thus, the fuel
consumption rate of the engine at each moment can be
determined through the engine fuel consumption rate map, as
shown in Figure 3. The corresponding mathematical relationship
can be exhibited as

ωeng � hp Peng( ). (7)

With the introduction of the engine OOL, it can be found from
Eqs 2–7 that the instantaneous fuel consumption of the engine can
be determined from the battery power, power demand, and vehicle
speed, that is,

f ωeng,Teng( ) � f Pdrive, Pess, v( ). (8)

In this study, a simple equivalent circuit model that includes the
internal resistance and open-circuit voltage is applied to characterize
the performance of the battery as

Iess � OCV −

OCV2 − 4RintPess

√
2Rint

Pess � OCV · Iess − Iess
2Rint,

SOC t( ) � SOCinit − 1

Cess∫t

0
Iessdt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where Iess is the battery current, OCV denotes the open-circuit
voltage, Rint represents the internal resistance, SOC(t) indicates the
SOC value at time step t, SOCinit means the initial SOC value, and
Cess stands for the battery capacity. In this equivalent circuit model,
the open-circuit voltage and internal resistance are determined by
the instantaneous SOC value, as shown in Figure 4. It can be found

that when the SOC decreases, the open-circuit voltage decreases
from 220 V to 165 V and internal resistance varies from 0.09Ω to
0.14Ω.

According to the analysis mentioned above, it is found that
instantaneous fuel consumption can be obtained when the battery
power is determined. Therefore, in this study, battery power is
applied as the control variable to obtain fuel consumption.
Considering the power limitations and performance
requirements of the PHEV, the following constraints also have
to be made:

Pdrive min <Pdrive <Pdrive max

Peng min <Peng <Peng max

Pess min <Pess <Pess max

Pmot1 min <Pmot1 <Pmot1 max

Pmot2 min <Pmot2 <Pmot2 max

SOC min < SOC< SOC max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ , (10)

where the subscripts indicate the minimum and maximum values of
the variables, respectively.

Based on the abovementioned energy flow analysis, a bi-level
EMS based on RL speed prediction will be developed to determine
the optimal battery power at each moment, which is described in
detail in the Section 3.

3 Speed prediction based on QL

3.1 QL algorithm

As an important milestone of the RL algorithm, QL has been
widely used in many fields due to its characteristics of efficient
convergence and easy implementation (Watkins et al., 1992). The
main idea of the QL algorithm is to form a value function Q that can
be directly iterated and updated by state–action pairs and update the
value function Q through the interaction between the agent and
environment to obtain the optimal action strategy set under certain
conditions. The QL algorithm can be summarized in a simple five-
tuple representation S, A, γ, R, π{ }, where S denotes the state
variable, A denotes the action variable, R denotes the reward
function, γ denotes the discount factor of the agent in the
learning process, and π denotes the optimal action strategy set
for the agent to interact with the environment.

FIGURE 3
Engine fuel consumption rate MAP.

FIGURE 4
Variation of OCV and Rint with the SOC.
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In the QL algorithm, the agent is a learner and the decision
maker, interacting with different states of the environment at each
moment. The agent decides at according to the current state st. After
receiving the decision, the environment enters the new state st+1 and
gives the corresponding reward rt+1, and the agent continuously
learns and improves its actions on the basis of the reward received
until the maximum cumulative reward is obtained. The cumulative
expected reward obtained by the agent in the learning process is
known as the expectation function, and it can be described as

V � E ∑T
t�0
γtrt⎛⎝ ⎞⎠. (11)

As future actions and states are unpredictable when the agent
performs the current action, the state–action pair function Q is
introduced to estimate the expected future payoffs those result from
the actions according to some future strategy in the currently known
state. This can be expressed as

Q s, a( ) � r s, a( ) + γEπ Q s′, a′( )[ ], (12)
where s′ denotes the next state, a′ denotes the action corresponding
to the next state, and after the learning task is accomplished by the
agent, the optimal state–action pair function Qp(s, a) is obtained as

πp � argmax
a∈A

Qp s, a( ). (13)

During the learning process of the agent, the updated rule of the
value function can be expressed as

Q s, a( ) ← Q s, a( ) + β r + γmax
a

Q s′, a( ) − Q s, a( )( ), (14)

where β represents the learning efficiency. The greater the learning
efficiency, the faster the convergence speed, but it should not be too
large or otherwise it will lead to the problem of overfitting.

In Section 3.2, QL is employed for speed prediction in preparing
the groundwork for bi-level energy management later on.

3.2 Speed prediction based on QL

In this study, the QLmethod is employed for speed prediction in
the bi-level energy management framework. In the QL-based speed
predictor, the state space, action space, and reward function of the
controller system have to be determined first. The driving speed of
the vehicle is taken as the state variable, and the vehicle speed is
discretized into m intervals, which can be expressed as

S ∈ v1spd, v
2
spd, v

3
spd,/, vmspd{ }, (15)

where vspd represents the current speed state. Moreover, the
acceleration can be regarded as a random variable due to the
strong uncertainty in the actual driving process of the vehicle.
Therefore, the acceleration is taken as the control variable, and it
ranges from −4m/s2 to 4m/s2 and is discretized into n intervals as

A � a1acc, a
2
acc, a

3
acc,/, anacc{ }. (16)

The instantaneous reward is set to the absolute value of the
difference between the predicted vehicle speed and the actual
value as

vdiff t( ) � vpre t( ) − vreal t( )∣∣∣∣ ∣∣∣∣, (17)

where vpre(t) and vreal(t), respectively, denote the predicted velocity
and real velocity. The specific reward value is defined as

r t( ) �

100 0≤ vdiff ≤ 0.25
75 0.25< vdiff ≤ 0.5
50 0.5< vdiff ≤ 1
25 1< vdiff ≤ 1.5
0 1.5< vdiff ≤ 2
−1000 vdiff > 2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ . (18)

After setting the state space, action space, and reward function of
the controller, five standard cycles: CLTCP, JC08, WLTC, LA92, and
FTP75, as shown in Figure 5, are applied as the training cycle to train
the QL speed prediction controller, and the number of iterations is
set to 500. As can be seen from Figure 5, the five standard operating
cycles cover a variety of speed segments, such as low speed, medium
speed, high speed, and rapid acceleration/deceleration. Here, the QL
is engaged to cover future speeds, and the iteration process is
tabulated in Table 2. The cumulative reward of the QL velocity
controller for different prediction time domains is depicted in
Figure 6, where the cumulative reward gradually converges to a
constant value as the number of iterations increases. Figure 7 shows
the cumulative reward difference at each iteration process with
different prediction time domains; similarly, the difference
flattens out and gradually converges to a stable value as the
number of iterations increases continuously. From this point on,
we find that the QL speed controller gradually converges and
stabilizes after 500 iterations of learning.

3.3 Contrast analysis

During the actual vehicle operation, the acceleration of the
vehicle features strong uncertainty, which can be described as a
discrete Markov chain model (Ganesh and Xu, 2022); therefore, the
Markov chain model is applied as an ordinary method for speed
prediction. To effectively validate the proposed speed prediction
method, the prediction results based on the Markov chain model are
compared. Note that the proposed method and the Markov chain
model are trained with the same training data, and the UDDS,
HWFET, NEDC, and WVUSUB cycles are each applied to test the
models.

In addition, two different error functions—Err and RMSE—are
calculated to evaluate the speed prediction performance as

Err t( ) �

∑tp
i�1

vpret,i − vrealt,i( )2/tp

√√
RMSE � ∑T

t�1
Err t( )/T

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ , (19)

where Err(t) denotes the RMSE value of the predicted velocity series
and actual velocity series in the predicted time domain at time t, tp
represents the predicted time domain, vpret,i denotes the predicted
speed at the i‑th second after time t, vrealt,i represents the actual
velocity at the i‑th second after time t, and T indicates the total
duration of the working cycle.
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The comparison results of the two velocity predictors with the
prediction length varying within 3 s, 5 s, 10 s, and 15 s that are based
on the UDDS cycle are shown in Figure 8, and the statistic errors are
given in Table 3.

It is noted from these comparison results that the Markov
method is a random prediction method with different speed
prediction values for each step, whereas the QL velocity

prediction method is a highly regular prediction method with the
same velocity prediction trajectory at different moments when the
velocity value is in a certain state interval range. Therefore, the
advantages of the QL speed prediction method can be obtained such
that if the convergence of the QL training process can be guaranteed,
the interference of the prediction accuracy caused by the
randomness of speed prediction can be avoided.

FIGURE 5
Training cycle.

TABLE 2 Iterative process of the QL speed predictor.

Training process

Sets the initialization parameters of the QL method

For i = 1: iteration

For j = 1: length of training conditions

Finding the state s corresponding to the current vehicle speed

For k = 1: prediction time domain

Select and execute the acceleration actions according to the ε greedy algorithm, and calculate the predicted velocity at the next moment

Calculate the reward r(t) according to (17) and (18)

Update the Q matrix based on (14)

End for

End for

End for

FIGURE 6
Cumulative reward.

FIGURE 7
Cumulative reward difference for each iteration.
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In addition, Table 3 shows the RMSE indexes of the two
methods. Taking the Markov method as the benchmark, it can
be found that the prediction accuracy improves with the increase of
prediction time, especially for high-speed conditions such as

HWFET. Although the prediction accuracy is very low when
compared with Markov speed prediction at 3 s, the prediction
accuracy also improves with the prediction time, which can
likewise indicate that the QL velocity prediction method can

FIGURE 8
Comparison of speed prediction results: (A) Markov speed method and (B) QL speed method.
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TABLE 3 Comparative analysis of speed prediction results.

Prediction length UDDS HWFET

Markov method QL method Improved accuracy Markov method QL method Improved accuracy

3 s 0.9798 0.9431 3.75% 0.5225 0.6352 −21.57%

5 s 1.4614 1.3884 5.00% 0.77 0.8901 −15.60%

10 s 2.5678 2.3965 6.67% 1.3063 1.4666 −12.27%

15 s 3.4919 3.2024 8.29% 1.7932 1.8006 −0.41%

Prediction length NEDC WVUSUB

Markov method QL method Improved accuracy Markov method QL method Improved accuracy

3 s 0.6897 0.7494 −8.66% 0.6389 0.6293 1.50%

5 s 1.0622 1.0637 −0.14% 0.9611 0.9051 5.83%

10 s 1.8978 1.8184 4.18% 1.6409 1.6473 0.39%

15 s 2.6923 2.5404 5.64% 2.2628 2.2256 1.64%

Note: +, improved; −, reduced.

FIGURE 9
Framework of the bi-level EMS.
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avoid the interference of prediction accuracy caused by the
randomness of the prediction. Considering the influence of
prediction duration on the design of EMS, the design prediction
duration of bi-level energy management in the following is 10 s.

4 Bi-level energy management strategy

The MPC is a rolling optimization control algorithm
implemented online that combines predictive information and a
rolling optimization mechanism for better control of performance
when dealing with non-linear models. The bi-level EMS designed in
this study is shown in Figure 9. The upper controller is the speed
prediction model developed in the section 3.2, of which the
prediction length is 10 s; and the speed prediction results are
input into the lower controller. In the lower controller, a valid
and convergent double QL offline controller is trained first, and the
SOC trajectory calculated by the double QL offline controller is
treated as the reference trajectory of the MPC. Based on the
prediction model of input vehicle speed information, the first
sequence of the control sequences in the prediction time domain
is output after correction by feedback. The double QL offline
controller is first introduced as described in Section 4.1.

4.1 Double QL offline controller

The double QL algorithm is an improved QL algorithm
proposed by Watkins et al. (1992). The double QL differs from
the QL algorithm in employing two state–action pair functions to
solve the optimal action according to Eq. 14. It is known that the
update of the optimal value function Q depends on maxQ(s′, a),
and the QL method updates the expected value by taking the
maximum value of Q before finding the expected value, which
results in an overestimation of the action value to a large extent.
Therefore, the double QL avoids overestimating the value function
by constructing two Q functions and also ensures the iterative
efficiency of the algorithm. To a certain extent, it can be
considered that the double QL therefore achieves better results
than the QL method.

In the double QL algorithm of this study, the power demand Preq

and battery SOC are set as the state variables and can be discretized
by l and p intervals. The battery power output Pess is set as an action
variable and discretized into k intervals, and the state variables and
action variables of the algorithm are represented as

S ∈ SOC1, P1
req( ), SOC1, P2

req( ), SOC1, P3
req( ),/, SOCp, Pl

req( ){ }
A � P1

ess, P
2
ess, P

3
ess,/, Pk

ess{ }⎧⎨⎩ . (20)

The instantaneous reward function r(t) is judged by the engine’s
on–off and SOC values, and the specific reward function value is
expressed as

r t( ) �

−Fuelrate · 106 eng on � 1 ∩ 0.3≤ SOC≤ 0.9
−Fuelrate · 106( ) · 10 eng on � 1 ∩ SOC< 0.3 | SOC > 0.9( )
0.5/Fuelrate max eng on � 0 ∩ 0.3≤ SOC< 0.5
1/Fuelrate max eng on � 0 ∩ 0.5≤ SOC< 0.7
2/Fuelrate max eng on � 0 ∩ 0.7≤ SOC< 0.9
−2000 eng on � 0 ∩ SOC < 0.3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ , (21)

where eng on � 1 indicates that the engine is turned on, eng on � 0
indicates that the engine is turned off. Fuelrate max indicates to the
maximum value of engine fuel consumption MAP as shown in
Figure 3. A special explanation has to be made here: the engine
on–off mode is simply an on–off threshold, that is, when the engine
power is greater than a certain threshold, the engine is turned on,
and when it is less than this threshold value, the engine is turned off.
This can be expressed as

eng on � 1 Peng ≥Peng on

eng on � 0 Peng <Peng on
{ , (22)

where Peng on is the threshold value for the engine when turned on.
Since the two Q functions QA and QB are employed to evaluate the
value function, the choice of the optimal action of Eq. 13 can be
rewritten as

πopt: a t( ) ← randi A( ) if ε≤ c
argmax QA s t( ), :( ) + QB s t( ), :( )( ) if ε> c

{ , (23)

where c represents a random number from 0 to 1, and ε is the greed
factor. In the process of updating the two Q functions, there is a
random number b (b ∈[0, 1)) that is applied to select which Q
function is being updated, which can be represented as

updateQA if b> 0.5
updateQB elseif

{ . (24)

Similarly, the update process for the two Q functions can be
rewritten as

a
− � argmaxaQA s′, :( )
QA s, a( ) ← QA s, a( ) + β r + γQB s′, a−( ) − QA s, a( )( )
b
− � argmaxaQB s′, :( )
QB s, a( ) ← QB s, a( ) + β r + γQA s′, b

−( ) − QB s, a( )( )
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (25)

where s′ is the new state obtained by executing action a, a
−
and b

−

are the actions with maximum values of QA and QB at state s′,
respectively. It can be noted from Eq. 25 that each update of the
Q function requires the use of a sample value for the another Q
function, which can also be considered an unbiased estimate of
the value function update. Theoretically, this method of
updating functions avoids overestimation of the function
values (Chen et al., 2015). After the two Q functions update
the function values with each other, the optimal strategy can be
expressed as

πp
opt � argmax QA + QB( ). (26)

The training cycle shown in Figure 5 is also employed to train
the double QL controller. The error value of each iteration of the
double QL controller is shown in Figure 10. It can be noted that
the difference of the value function of each iteration gradually
decreases and levels off when the number of iterations gradually
increases; this indicates that the algorithm gradually converges,
indicating that the agent trained by the double QL algorithm is
effective.

In this study, the double QL algorithm is applied as the basis for
the bi-level energy management rolling optimization process, and
the design process of the bi-level EMS will be analyzed in detail later.
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4.2 Controller implementation

In this study, the state transfer equation of the MPC controller
can be expressed as

x t + 1( ) � f x t( ), u t( ), w t( )( ), (27)
where x(t) denotes the system state variable at time t, u(t) denotes
the control variable at time t, and w(t) denotes the random
perturbation variable, such as the predicted speed. In the energy
management optimization problem of this study, the state variable
of the system is the battery, i.e., x � SOC; the system control variable
is the battery power, i.e., u � Pess; and the system stochastic
perturbation is the predicted vehicle speed. The prediction time
domainNp of the MPC controller designed in this study is equal to
the control time domain Nc, both of which are 10 s. The optimized
indicator function in each prediction time domain can be
expressed as

Jt � min ∑t+Np

t

ffuel t( ) + fsoc t( ), (28)

where Jt is the optimization target in the prediction time domain
[t, t +Np], ffuel(t) represents the instantaneous fuel consumption
function at each moment, i.e., ffuel(t) � Fuelrate(t), and fsoc(t)
denotes the cost of deviation of the battery SOC(t) from the
reference trajectory SOCref(t) at time t, which is expressed as

fsoc �
0 SOC t( )> SOCref t( )
α SOC t( ) − SOCref t( )( )2 SOC t( )< SOCref t( ){ , (29)

where α denotes a positive weighting factor. The purpose of setting
the cost function for the battery’s SOC is to ensure that the actual
SOC fluctuates around the SOC reference trajectory.

The rolling optimization processes of the designed bi-level
energy management controller are narrated as follows.

1) According to the speed and acceleration of future driving
conditions, the QL speed predictor is employed to estimate the
speed sequence vt+1, vt+2, . . . vt+Np in the prediction time domain.

2) The power demand sequence Pdrive,t+1, Pdrive,t+2, . . .Pdrive,t+Np in
the predicted time domain is calculated from Eqs 3, 4 and the
velocity sequence vt+1, vt+2, . . . vt+Np.

3) The reference SOC trajectory SOCref(t, t +Np) is used for
rolling optimization in combination with the double QL
controller. The rolling optimization process is shown in
Table 4. In the rolling optimization process, the two Q
matrixes obtained from the double QL controller training are
denoted as Qoriginal A and Qoriginal B, and the two Q matrixes
involved in the rolling optimization are denoted as Qroll A and
Qroll B. The state space and action space in the roll optimization
process are consistent with the settings in the double QL
controller.

4) After a feedback correction session, the first control variable in
the control time domain is output to the PHEV model. It should
be noted here that since the double QL controller has converged
during the training of the offline controller, the optimization
process of the bi-level energy management is performed by
rolling the optimization with the predicted time domain only
and no more multiple iterations are performed.

The process of MPC rolling optimization is shown in Figure 11.
For each step of the rolling optimization, the inputs are the speed
prediction sequence, SOC reference value, and demand power
sequence in the predicted time domain. The two Q matrixes
Qoriginal A and Qoriginal B are obtained from these three inputs,
which are involved in the rolling optimization process, and the
two matrixes are employed to perform optimization in the predicted
time domain based on Eq. 25.

5 Results and discussion

In this section, four standard driving conditions are applied as
the test data set, i.e., WVUSUB, NEDC, and two real-world driving
cycles (KM1 and KM2). These cycles are combined into three
different sets, as shown in Figure 12; the first cycle is composed
of three WVUSUB and three NEDC, referred to as Cycle 1; the
second cycle is composed of five KM1, and the third cycle is
composed of 12 KM2. There are two reasons for setting two
actual working conditions KM1 and KM2: the first is to verify
the effectiveness of the proposed strategy under training conditions
of different time lengths, while on the other hand, it is to ensure that
different energy management strategies can reduce the SOC to the

FIGURE 10
Difference of the value function of each iteration.

Frontiers in Energy Research frontiersin.org10

Yang et al. 10.3389/fenrg.2023.1153390

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1153390


lowest threshold. The performance of the proposed method is
evaluated from the following three perspectives: first, the
effectiveness of the proposed method is compared with the
double QL offline controller, QL, CD/CS, and SDP. Second,
considering that the SOC trajectory of double QL is utilized as
the reference trajectory for the design of the proposed method, three
different SOC reference trajectories are utilized for expanding the
application scope of the proposed method to show the applicability
of the proposed method in different SOC reference trajectories.
Finally, the computational efficiency of the proposed method is
analyzed to verify its practicality.

5.1 Comparison with different methods

Table 5 lists the comparison results of fuel consumption for
different EMSs under three cycle sets with SOC correction. It can be
noted that the fuel-saving effect of the double QL method is better

than that of the QL method because the double QL avoids the
overestimation of the values caused by a single Q matrix in the QL
method. Moreover, since the SOC curve of the double QL method is
applied as the reference trajectory, fuel consumption of the proposed
method is also closer to the double QL method. Furthermore, when
compared to the SDPmethod, the fuel consumption of the proposed
method is 2.73%, 3.38%, and 1.57% higher under the three different
driving cycles, respectively, and is approximately closer to that of the
SDP method. In addition, the fuel consumption of the proposed
method is only 0.32% when compared to that of the QL method
under a 12-KM2 driving cycle.

The SOC curves of different EMSs are shown in Figure 13. As the
penalty function of adding the SOC in the rolling optimization
process, it can be noted that the SOC trajectory of the proposed
strategy can effectively track the reference trajectory and fluctuate
around the reference trajectory. To further verify the effectiveness of
the proposed method, Figure 14 depicts the engine efficiency of the
SDP, double QL, and the proposed method under different

TABLE 4 Rolling optimization process.

The rolling optimization process

1. Extract the two Q matrixes, Qoriginal A , Qoriginal B , S, and A from the double QL controller

2. Find the corresponding state sequence st, st+1 , . . . st+Np by predicting the demand power and SOC reference trajectory in the time domain

3. The action sequences corresponding to the state sequences are proposed fromQoriginal A andQoriginal B , and the new learningmatrixesQroll A andQroll B are formed from them

4. Start the rolling optimization process

For k � t: t +Np

Initialization state s � t

The action is selected and executed by the ε − greedy algorithm shown in (23), and the reward function is updated using (29) rroll � fsoc

Initialize b to update Qroll A and Qroll B

if b> 0.5

Qroll A(s, a) ← Qroll A(s, a) + β(rroll + γQroll B(s′, argmaxaQroll B(s′, : )) − Qroll A(s, a))
else if

Qroll B(s, a) ← Qroll B(s, a) + β(rroll + γQroll B(s′, argmaxaQroll B(s′, : )) − Qroll A(s, a))
End if

s � k + 1

End for

FIGURE 11
Principle of MPC rolling optimization.

Frontiers in Energy Research frontiersin.org11

Yang et al. 10.3389/fenrg.2023.1153390

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1153390


verification cycles, from which it can be seen that these control
methods make the engine work in a more efficient region. Moreover,
taking 12 KM2 as an example, the engine operating point of the

proposed method is the closest one to the SDPmethod and therefore
fuel consumption of the proposed strategy is also the closest method
to that of the SDP method. In summary, different methods are

FIGURE 12
Test cycles: (A) Cycle 1; (B) 5 KM1; (C) 12 KM2.

TABLE 5 Comparison of the fuel consumption result of different methods.

Test cycle Method Fuel consumption (kg) Ending SOC Fuel saving (%)

Cycle 1 CD/CS 1.1183 0.3134 —

SDP 1.0510 0.3134 5.97

QL 1.0796 0.3134 3.46

Double QL 1.0733 0.3134 4.02

Proposed method 1.0821 0.3134 3.24

5 KM1 CD/CS 1.6004 0.3014 —

SDP 1.4709 0.2960 7.45

QL 1.4994 0.2979 5.90

Double QL 1.4980 0.2979 5.99

Proposed method 1.5286 0.2979 4.07

12 KM2 CD/CS 1.4372 0.2967 —

SDP 1.3121 0.2887 7.65

QL 1.3339 0.2907 6.40

Double QL 1.3256 0.2907 6.98

Proposed method 1.3385 0.2907 6.08
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utilized to compare fuel consumption, and the comparison results
demonstrate that the proposed method features the effectiveness in
fuel saving from different perspectives.

5.2 Tracking effect of different reference
trajectories

The rolling optimization process and reference trajectory of the
proposed method are based on the double QL offline controller. To
further validate the learning effect of the proposed method, three
different SOC reference trajectories, that include SDP, QL, and liner
distance, are employed to validate the extension of the proposedmethod.
Among them, the linear distance reference trajectory is given as

SOCdis t( ) � SOCinit − Disdrive
Disall

SOCinit − SOClow( ), (30)

where SOCdis(t) denotes the linear distance for the reference SOC at
time step t. SOCinit indicates the initial SOC value, which is set as 0.9.
SOClow means the final SOC value at the end of the driving cycle,
which is set as 0.3.Disall represents the distance of the entire driving
cycle. Disdrive stands for the distance that has been traveled.

Figure 15 shows the SOC curves of the proposed method for
these three different SOC trajectories under 5 KM1 and
12 KM2 driving cycles. It can be noted that the SOC curves
obtained by the proposed method are consistent with the

decreasing trend under different working cycles, and all of them
can be well tracked. Similarly, according to the enlarged figure of
Figure 13, it can also be seen that the SOC curve of the proposed
method basically floats above and below the reference trajectory due
to the setting of the penalty function for the SOC during the rolling
optimization. From this point of view, the proposed method can
track the reference trajectory effectively.

Table 6 shows the fuel consumption results of the proposed
method under three different reference trajectories. Taking the CD/
CS fuel consumption as the benchmark, the proposed method yields
high fuel economy for all three different reference trajectories. In the
5-KM1 driving cycle, fuel saving of the proposed method under the
three reference tracks are 5.58%, 4.22%, and 3.89%, respectively. In
the 12-KM2 driving cycle, fuel saving of the proposed method under
the three reference tracks are 6.64%, 5.06%, 4.33%, respectively.
Comparing the fuel consumption of the three different reference
trajectories, it can be observed that the SDP reference trajectory
shows the best fuel saving performance, and the worst is the linear
distance reference trajectory. The reason for this phenomenon can
be attributed to the SDP strategy, which is a global suboptimal
method, while the QL is a local optimal method, therefore the
reference trajectories obtained by these two methods possess the
global suboptimal or local optimal characteristics, while the linear
distance reference trajectory does not feature the optimization
characteristics, and the fuel economy is the lowest among these
trajectories.

FIGURE 13
SOC curves of different methods: (A) Cycle 1; (B) 5 KM1; and (C) 12 KM2
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5.3 Computational efficiency analysis

In this study, the calculation time for a single step of the
proposed method is evaluated on a laptop computer, which is

equipped with the Intel Core i7 @2.3 GHz processor and 16 GB
RAM. Note that the computational time does not include the
training time for the speed predictor and double QL offline
controller but only includes the time for speed prediction and

FIGURE 14
Engine efficiency of different methods under different driving cycles: (A) Cycle 1; (B) 5 KM1; and (C) 12 KM2.
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computation time for the MPC controller. The calculation time is
tabulated in Table 7, and it can be noted that the calculation time
of each step ranges from 8.36 to 10.07 ms, which indicates that
the proposed method has the potential for online
implementation.

6 Conclusion

This study proposes a bi-level EMS to solve the energy
management problem of PHEVs. First, considering the

uncertainty of acceleration in the process of driving, the
acceleration is taken as the action, and a QL-based speed
predictor is constructed by the reinforcement learning
algorithm. Second, considering different speed intervals
during vehicle driving, the double QL method is utilized to
establish an offline controller and its fuel economy is verified.
Then, the QL speed predictor and double QL offline controller
are integrated into the MPC, in which the double QL method
performs the rolling optimization to construct a bi-level energy
management controller. The effectiveness, applicability, and
practicality of the proposed method are verified by standard
and measured driving cycles. The results show that the proposed
method is capable of exerting high fuel economy control for the
PHEVs with favorable tracking performance for the different
reference trajectories, and the calculation efficiency of the
proposed method shows the potential capacity for real-time
applications.

Our future work will focus on considering the impact of traffic
information on vehicle fuel economy and the study of fuel
economy of intelligently connected vehicles with intelligent
traffic information. In addition, the proposed method should be
further optimized by hardware-in-the-loop and real vehicle
experiments.

FIGURE 15
SOC curves under different reference trajectories: (A) 5 KM1. (B) 12 KM2.

TABLE 6 Fuel consumption results under three different reference trajectories.

Test cycle (KM) SOC reference Fuel consumption (kg) Ending SOC Fuel-saving (%)

51 CD/CS (no reference) 1.6004 0.3014 —

SDP reference 1.5045 0.2979 5.58

QL reference 1.5263 0.2979 4.22

Line reference 1.5529 0.3092 3.89

122 CD/CS (no reference) 1.4372 0.2967 —

SDP reference 1.3305 0.2907 6.64

QL reference 1.3532 0.2907 5.06

Line reference 1.3825 0.3007 4.33

TABLE 7 Computational efficiency.

Single-step calculation time (ms)

Cycle 1 5 KM1 12 KM2

Speed prediction 0.79 0.76 0.87

MPC 7.8 7.6 9.2

Total 8.59 8.36 10.07
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Nomenclature

PHEV plug-in hybrid electric vehicle

EMS energy management strategy

CD/CS charge depleting/charge sustaining

SOC state of charge

DP dynamic programming

PMP Pontryagin’s minimum principle

GT game theory

ECMS equivalent consumption minimization strategy

MPC model predictive control

RL reinforcement learning

BP back propagation

QL Q-learning

SDP stochastic DP

OOL engine optimal operating line

RMSE root-mean-square error

Fueltotal total fuel consumption

Fuelrate instantaneous fuel consumption

T total time of the whole driving cycle

ωeng engine speed

Teng engine torque

Pdrive power demand of the vehicle

Ff rolling resistance

Fi grade resistance

Fw air resistance

Fj acceleration resistance

v vehicle speed

m vehicle mass

g gravitational acceleration

f rolling resistance coefficient

α slope of travel

Cd air resistance coefficient,

Awind

windward area of the vehicle

δ mass conversion factor of the vehicle

Pf inal power of the main gearbox

Peng power of the engine

Pess power of the battery

Pmot1 power of motor 1

Pmot2 power of motor 2

Pelec power of the electrical accessories

ηf inal transmission efficiency of the main reducer

ηgear transmission efficiency of the transmission unit

ηmot1 transmission efficiency of motor 1

ηmot2 transmission efficiency of motor 2

ωmot1 speed of motor 1

ωmot2 speed of motor 2

Tmot1 torque of motor 1

Tmot2 torque of motor 2

μ gear ratio of the planetary gear

Iess battery current

OCV open-circuit voltage

Rint internal resistance

SOC(t) SOC value at time step t

SOCinit initial SOC value

Cess battery capacity

S state variable in QL

A action variable in QL

R reward function in QL

a9 action corresponding to the next state

β learning efficiency

vspd current speed state

vpre(t) predicted velocity

vreal(t) real velocity
vdif f (t) difference between the predicted vehicle speed and actual
value

Err(t) RMSE value of the predicted velocity series and actual
velocity series

tp predicted time domain

vpret,i predicted speed at the i‑th second after time t

vrealt,i actual velocity at the i‑th second after time t

eng on � 1 engine is turned on

eng on � 0 engine is turned off

Fuelrate max the maximum value of engine fuel
consumption MAP

Peng on threshold value for engine turned on

c a random number from 0 to 1

ε greed factor

x(t) system state variable at time t

u(t) control variable at time t

w(t) random perturbation variable

Np prediction time domain

Nc control time domain

Jt optimization target in the prediction time domain [t, t +Np]
SOCref (t) SOC reference trajectory

f f uel(t) instantaneous fuel consumption function at each moment

f soc(t) cost of deviation of the battery’s SOC from the reference
trajectory at time t

α a positive weighting factor

SOCdis(t) linear distance for the reference SOC at time step t

SOClow final SOC value at the end of the driving cycle
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