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When the winding of the power transformer is short-circuited, the winding will
experience constant vibration, which will cause axial instability of the winding, and
then lead to winding looseness, deformation, bulge, etc., therefore, a diagnosis
method based on the Improved Pelican Optimization Algorithm and
Convolutional Neural Network (IPOA-CNN) for short-circuit voiceprint signal
of transformer windings is proposed. At the same time, considering the input
parameter dimension of deep learning cannot be too high, a new feature
parameter selection method is constructed for this model. Firstly, the
frequency characteristics of winding acoustic vibration signals are analyzed,
and then the characteristic parameters of transformer acoustic signals are
extracted by Wavelet Packet Energy Spectrum (WPES) and Mel Frequency
Cepstrum Coefficient (MFCC), respectively. Then, the two methods are
combined to construct the WM feature extraction algorithm, and the Weighted
Kernel Principal Component Analysis (WKPCA) is used to reduce the dimension of
the feature to obtain the feature parameters with accurate feature information and
low redundancy; Finally, combined with Sobol sequence to optimize the initial
population of Pelican Optimization Algorithm (POA), the convolution kernel of
Convolutional neural network (CNN) was optimized by IPOA, and the optimal
convolution kernel was obtained. The transformer winding short-circuits
voiceprint diagnosis models of WKPCA-WM and IPOA-CNN were constructed,
which realized the accurate diagnosis of winding short-circuit voiceprint. The
validity and feasibility of the method are verified by the acoustic signal data
collected in the laboratory.
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1 Introduction

According to statistics, when the power transformer winding is short-circuited, under
the interaction of the suddenly increased short circuit current and the leakage magnetic field,
a large electromagnetic force will be generated. This electromagnetic force will intensify the
winding vibration, thus affecting the vibration acoustic signal of the power transformer. The
vibration acceleration is more significant than the acceleration during regular operation. The
winding will be impacted by the short circuit, and the winding will be slightly deformed.
After several short circuit impacts, Due to the cumulative effect, the transformer winding will
also be damaged due to instability. The mechanical state of transformer winding can be
judged according to the acoustic signal generated by winding vibration. Therefore, the
research on power transformer winding short circuit fault diagnosis based on acoustic signals
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has attracted much attention. Currently, the research on power
transformer winding short circuits mainly focuses on the winding
looseness and deformation caused by incorporating short circuits.

In the analysis of transformer winding short-circuit characteristics.
Arivamudhan et al. (2014) applied the fusion of wavelet transform and
Hilbert Huang transform to extract the feature of the transformer short
circuits. Ahn et al. (2012) uses finite element simulation to study the
physical characteristics of short circuits. Shi et al. (2019) analyzed the
transient state of winding interphase short circuit using half frequency
ratio of the acoustic spectrum, and characterized the process of quick
current accumulation. Xian et al. (2021) established the “field circuit”
coupling model of the transformer using ANSYS, and analyzed the
transient characteristics of winding short circuits, including
electromagnetic parameters, winding loss, and other parameters.
Zhang et al. (2021) studied the physical aspects of inter-turn short
circuits of windings and the causes of faults. Borucki, (2012) studied the
characteristic quantity of transformer winding short-circuit fault by
using the vibration acoustic signal analysis process. However, the above
method only analyzes the characteristics of different short circuits of
power transformer windings and the causes of winding deformation
and looseness caused by short circuits.

In transformer winding short-circuit fault diagnosis. Abbasi and
Gandhi (2022) used new hyperbolic fuzzy entropy metric to
diagnose the internal mechanical structure when the winding is
short-circuited. Bigdeli and Abu-side (2022) used K-means and
GOA frequency response methods to diagnose internal mechanical
deformation caused by winding short circuits. Bjelić et al. (2022)
used the reverberation time method to diagnose the transformer
winding short circuit, and got a suitable identification. Tarimoradi
et al. (2022) analyzed the internal mechanical defects of transformer
windings from four indexes using the frequency response method.
However, the problem with the above methods is that the fuzzy
entropymethod is too dependent on the sample and cannot consider
the horizontal impact between indicators; The frequency response
method must check the winding after shutdown, and other
operations, so it has certain limitations in diagnosis; The problem
of K-means method is that K-value is challenging to determine and
easy to fall into local optimum; Reverberation time method cannot
predict the superposition of complex sound waves. Ezziane et al.
(2022) used FRA and improved SVM to classify and identify
transformer winding short circuit faults. Islam Abusiada et al.
(2015) used improved FRA to diagnose transformer winding
short circuit fault. SVM is difficult to implement large-scale
training samples and solve the multi-classification problem.
Tango et al. (2022) used regression analysis and frequency
methods to diagnose transformer windings. Beckham et al.
(2022) used the ANN network to analyze transformer winding
short circuit faults. However, the results of regression analysis are
easy to show an S-shape, resulting in no discrimination between the
effects of many interval variables; the training speed of ANN is too
slow, there are many parameters, and the calculation is too large.

In recent years, with the rise of deep learning, there has been a new
idea for transformer fault diagnosis. Convolution Neural Networks
(CNN) can also be applied to transformer voiceprint fault diagnosis.
Compared with artificial neural network and traditional machine
learning methods, deep learning can process massive data and
compress data at the same time. Secondly, it does not need feature
engineering, has strong adaptability, and does not need conversion. It is

also widely used in image detection and recognition, target detection,
speech recognition, semantic segmentation, fault classification and
other fields. The advantages and disadvantages of transformer
voiceprint feature are the basis of whether the transformer fault
diagnosis and detection system can accurately identify the fault.
Therefore, how to effectively extract the transformer voiceprint
feature and reasonably select the transformer voiceprint feature are
the key issues. This paper will discuss the feature extractionmethod and
fault identification method applied to the transformer sound signal.

To solve the above problems, this paper proposes a method based
on WKPCA-WM and IPOA-CNN to diagnose the short-circuit
voiceprint of transformer windings. Firstly, WPES and MFCC
extract the characteristic parameters of the transformer acoustic
signals, respectively. Secondly, a comprehensive feature extraction
method of WM is constructed. WKPCA is used to reduce the
dimension of the fused features. The initial population of POA is
optimized in combination with the Sobol sequence. Finally, IPOA is
used to optimize the convolution kernel of CNN. WKPCA-WM and
IPOA-CNN are used to build the transformer winding short-circuit
voiceprint diagnosis models, realizing accurate diagnosis of transformer
short-circuit fault; the validity and feasibility of the method are verified.

2 Analysis of acoustic vibration signal of
transformer winding

2.1 Vibration and sound generation
mechanism of power transformer winding

The magnetic field of transformer mainly includes main
magnetic field and leakage magnetic field, which is the source
of transformer winding vibration. When the current flows
through the winding, the existence of alternating leakage
magnetic field causes electromagnetic force on the winding. It
is assumed that the current flowing through the winding under
steady-state operation is:

I � Im sin ωt + ϕ0( ) (1)
Where, Im is the winding current amplitude, ω is the angular

frequency of the current in the winding, ϕ0 is the initial phase of
winding current.

When magnetic flux leakage flows through non-ferromagnetic
materials, it mainly passes through the main air gap, winding,
compression structure or oil tank closure, and is mainly the axial
magnetic density component. Simplify the calculation formula of
magnetic induction intensity. Under static conditions, the magnetic
induction intensity can be expressed as:

Bt � �kIm cosωt (2)
Where, �k is the electrodynamic coefficient between magnetic

induction intensity and current.
The calculated electrodynamic force acting on the coil is:

F � BtI · 2πR
� �kIm cosωt · Im sin ωt + ϕ0( ) · 2πR
� 2πR�kI2m

1
2
sin 2ωt + ϕ0( ) + 1

2
sin ϕ0( ) (3)
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According to Formula (3), the vibration angular frequency of
winding coil is 2ω, For the power grid with a fundamental frequency
of 50 Hz, 100 Hz is the main frequency of transformer winding
vibration. Due to the existence of other harmonic current
components in the power grid and the effect of non-linear
materials in the transformer, there are also a small number of
other frequency components in the vibration signal of the
transformer winding.

The noise propagation of the transformer can be described by
the Stokes equation of fluid mechanics, as shown in Eq. 4.

1
c2

z2p

zt2
− ∇2p � 0 (4)

The relationship between vibration speed and sound pressure
can be expressed by Formula (5):

v � p

ρc
(5)

In Eq. 5, v is the mass vibration velocity, p is the sound pressure,
c is the speed of sound, and ρ is the fluid density.

In order to characterize the correlation between vibration and
acoustic signals, Pearson correlation coefficient is introduced in this
paper. Pearson correlation coefficient, also known as correlation
similarity, is a statistic that can reflect the degree of similarity
between variables. Pearson correlation can be more stable when
the data set is large and there are individual abnormal data. Its
correlation is characterized by the similarity between variable data.
The similarity is between −1~1. When the value is positive, it is
positive correlation. The greater the absolute value, the greater the
range of positive correlation, and vice versa. Pearson correlation
coefficient between normalized vibration displacement data and
noise voiceprint data is defined as:

Pxi,xj �
cov Xi, Xj( )
σ Xi( )σ Xj( ) � ∑n

k�1
xik − xi( ) xjk − xj( )																						∑n

k�1
xik − xi( )2∑n

k�1
xjk − xj( )2√ (6)

In Formula (6): σ(Xi), σ(Xj) is the standard deviation of
vibration displacement data and noise sound data; n is the
number of data, xi, xj is the average of vibration displacement
data and noise sound data.

The control structure of the transformer adopts Dyn11 wiring
mode. The voltage of the high-voltage side voltage source is 400 V, the
frequency is 50 Hz, and the phase difference is 120°. The effective
value of the induced current at the high voltage side is 11.5 A, and the
effective value of the induced current at the low voltage side is 288.7 A.
The topology of transformer control system is shown in Figure 1.

2.2 Analysis of the influence factors of
transformer acoustic signal under different
voltage levels

The acoustic signal of transformer winding is generated under the
action of electromagnetic force and transmitted to the surface of oil
tank through fasteners and transformer oil. From the above analysis of
the principle of winding vibration and sound generation, it can be seen
that the main factors that affect the acoustic signal characteristics of
transformers with different voltage levels are as follows:

1) The load current is different. When the voltage level is
determined, it mainly depends on the capacity of the
transformer. Obviously, the greater the load current flowing
through the transformer during operation, the more
significant the winding vibration signal.

2) Transformer winding structure. This is related to the inherent
vibration characteristics of the transformer body. For a vibrating
body, themagnitude of its vibration response actually depends on the
excitation (voltage or current) and the inherent mechanical
characteristics of its structure. Under the condition that the
excitation is determined, the vibration response is closely related
to its inherent mechanical characteristics, while the inherent
mechanical characteristics of the transformer body are affected by
its winding mechanical structure and fastening method and degree.

FIGURE 1
Power transformer circuit simulation topology.
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2.3 Analysis of signal characteristics of
transformer winding during normal
operation and short circuit

Through the analysis of the frequency domain data of the power
transformer acoustic signal, it can be seen that the main component
of the winding acoustic signal during the regular operation of the
transformer is the even frequency multiplication component of
50 Hz. The odd frequency multiplication component is less,
mainly based on the fundamental frequency of 100 Hz. As shown
in Figure 2, the acoustic signal frequency of the winding during
regular operation of the transformer is mainly 100 Hz, 200 Hz, etc.,

When the transformer winding is a short circuit, because the
acoustic vibration signal has a great relationship with the current
flowing through the winding, when the current suddenly increases, it
will generate greater electromagnetic force under the interaction

with the leakage magnetic field. This electromagnetic force will
aggravate the winding vibration and thus affect the acoustic signal of
the transformer body. When a transformer in regular operation
suddenly has a two-phase short circuit, its winding vibration
acceleration is significantly higher than that in regular operation.
At this time, the winding will be subject to quick circuit impact
effect. When the transformer is subject to a short circuit impact, the
winding will be slightly deformed. If it is not handled in time, fasten
the pressing nails of the winding and the pull plates and pull rods of
the iron yoke, and strengthen the clamping force of the leads. After
several short circuit impacts, Due to the cumulative effect, the
winding will still be unstable. Figure 3 shows the frequency
domain diagram of the short circuit in phases ab, ac, and bc of
windings.

It can be seen from the frequency domain analysis results in
Figure 3 that when two phases of the winding are short-

FIGURE 2
Frequency distribution of acoustic signal in normal operation of transformer winding.

FIGURE 3
Frequency distribution of acoustic signal in two-phase short circuit of transformer winding.
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circuited, the frequency distribution of the acoustic signal of the
winding is mainly within 1000 Hz. The amplitude size and
frequency distribution of the acoustic signal displayed by the
acoustic signals between different phases are not entirely the
same. The frequency characteristics are relatively complex, and
there is no definite change rule. The frequency is generally
characterized by a high content of low-frequency components,
and the frequency distribution is mainly below 1000 Hz.

3 Feature selection based on
WKPCA-WM

3.1 Feature extraction of transformer
acoustic signal based on WPES and MFCC

3.1.1 Acoustic signal feature extraction based on
WPES

According to the theory of wavelet packets, there are
generally three steps to decompose the transformer acoustic
signal: Wavelet packet decomposition of the acoustic signal,
calculation of interval energy of each frequency band, and
construction of characteristic parameters (Saleh and Rahman,
2005).

Figure 4 below is a schematic diagram of three-level wavelet
packet decomposition.

In the schematic diagram, (i, j) represents the j node of the i
layer. For the three-level wavelet packet decomposition, different
points represent different signal characteristics, where (0, 0) is the
original sound signal s.

Step 1: Perform three-layer wavelet packet decomposition on
the transformer acoustic signal, extract the signal characteristics
of eight frequency components in the third layer from low to
high, and name the coefficients of the third layer as X3j. The
decomposed signals in different frequency bands can be obtained
by reconstructing of wavelet packet decomposition coefficients
X3j. If S3j represents the reconstructed signal X3j, the original
signal can be defined as:

S � S30 + S31 + S32 + ... + S37 (7)

Step 2: Calculate the total energy of signals in each frequency
band. If E3j represents the energy of S3j, j � 1, 2, 3...., 7, then:

E3j � ∫S3j t( )
∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2dt � ∑n

k�1
x2
jk

∣∣∣∣∣ ∣∣∣∣∣ (8)

Among them, xjk(j � 0, 1, 2, ..., 7, k � 1, 2, 3, ..., n) represents
the amplitude of the discrete points of the reconstructed
signal S3j .

Step 3: Construct the eigenvector and arrange the eigenvectors
E3j obtained in Step 2 to obtain the eigenvector T.

T � E30, E31, E32, ..., E37[ ] (9)
Generally speaking, the value E3j is very large, affecting

the efficiency of subsequent data analysis. Therefore, the vector T

is normalized, and the total energy E �
					∑7
j�0

E2
3j

√√
, then:

FIGURE 4
Three-layer wavelet packet decomposition diagram.

FIGURE 5
Flow chart for extracting characteristic parameters of wavelet
packet energy spectrum of transformer sound signal.
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T′ � E30

E
,
E31

E
, .....,

E37

E
[ ] (10)

The process of extracting characteristic parameters of wavelet
packet energy spectrum of transformer sound signal is shown in
Figure 5.

Three-layer wavelet packet decomposition of the transformer
sound signal can extract the energy characteristics in each frequency
band. Assuming the frequency amplitude is 1000 Hz, for a more
intuitive explanation, the frequency range of the third-layer
reconstructed signal is given as shown in Table.1.

3.1.2 Acoustic signal feature extraction based on
MFCC

The acoustic signal feature extractionMFCC algorithm based on
MFCC has been widely used in speech recognition (Rieger et al.,
2014) and fault diagnosis (Li et al., 2014). Therefore, this paper
constructs the transformer voiceprint feature extraction method by
referring to the MFCC feature extraction steps.

The specific MFCC parameter extraction process of the
transformer acoustic signal is as follows:

3.1.2.1 Pretreatment
3.1.2.1.1 Preemphasis. The first-order high pass filter is generally
used for pre-emphasis, and the transformer acoustic signal after pre-
emphasis processing is set as y(n), then the expression of y(n) is:

y n( ) � x n( ) − αx n − 1( ) (11)
Where: x(n) refers to the transformer acoustic signal of the current

frame, x(n − 1) refers to the transformer acoustic signal of the previous
frame, α refers to the pre-emphasis coefficient, and generally takes
0.94~0.97.

3.1.2.1.2 Endpoint detection. If a short-time acoustic signal is
x(m), its length isN, and its short-time energyE calculation formula is:

E � ∑N−1

m�0
x2 m( ) (12)

The calculation formula of its short-time zero-crossing rate Z is:

Z � 1
2
∑N−1

m�0
sgn x m( )[ ] − sgn x m − 1( )[ ]∣∣∣∣ ∣∣∣∣ (13)

Where sgn[·] is a symbolic function, namely:

sgn x[ ] � 1, x≥ 0( )
−1, x< 0( ){ (14)

3.1.2.1.3 Framing. When processing a complete transformer
sound signal, it is first divided into several frames, and then
analyzed using the static process analysis method. To ensure
continuity and smoothness between frames, the structure is
moved for 10 ms to ensure the coincidence between
boundaries.

3.1.2.1.4 Windowing. If the frame signal is x(n), the window
function is w(n), and the signal after windowing is y(n), then:

y n( ) � x n( )w n( ), 0≤ n≤N − 1 (15)
At present, Hamming Window is commonly used. Its

formula is:

w n( ) � 0.54 − 0.46 cos
2n

L − 1
( ) 0≤ n≤ L − 1

0 Others

⎧⎪⎨⎪⎩ (16)

3.1.2.2 fast Fourier transform
Perform a fast Fourier transform on each frame of the

transformer acoustic signal and calculate its spectral line
energy:

X i, k( ) � FFT xi n( )[ ] (17)
E i, k( ) � X i, k( )| |2 (18)

3.1.2.3 Frequency filtering of transformer acoustic signal
To calculate the energy in the TSS filter when the spectrum of

each frame passes through the TSS filter is actually to multiply and
add the spectral line capacity E(i, k) in the frequency domain and
the corresponding Hm(k) frequency domain of the TSS filter, as
shown in Formula (13):

S i, m( ) � ∑N−1

k�0
E i, k( )Hm k( ) 0≤m≤M (19)

Where: m is the number of filters.

3.1.2.4 Discrete cosines transform (DCT)
The logarithm of the energy calculated in Step 3 is taken

first, and the TSS spectral coefficients obtained are all real
numbers. Then DCT is used to convert the TSS spectral
coefficients to the domain, and the standard cepstrum
coefficients based on the TSS frequency are finally obtained,
with the formula as follows:

TSSFCC i( ) �
		
2
M

√ ∑M−1

m�1
log S i, m( )[ ] cos πn 2m − 1( )

2M
[ ] (20)

Where:m is themth TSS filter,M represents the number of TSS
filters.

From the step of MFCC coefficient extraction, the most critical
parameter is the number of transformer acoustic signal filters. Since
the frequency of the transformer acoustic signal is mainly
concentrated in the frequency doubling of 100 Hz, and the
number of filters should not be too small, the number of filters
selected is 40.

TABLE 1 Frequency range of the third layer reconstruction signal of
transformer acoustic signal.

Signal Frequency range Signal Frequency range

S30 0–125 Hz S34 500–625 Hz

S31 125–250 Hz S35 625–750 Hz

S32 250–375 Hz S36 750–875 Hz

S33 375–500 Hz S37 875–1000 Hz
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3.2 Feature extraction method based on
WPES-MFCC

After wavelet packet energy spectrum decomposition, each frame
of transformer sound signal can be expressed as a 32-dimensional
feature vector, while each frame after MFCC extraction is a 40-
dimensional feature vector. On the one hand, these two eigenvectors
have relatively large dimensions and are more redundant when
combined; On the other hand, studies have shown that the use of
DCT in the calculation of MFCC parameters results in different
contributions of each dimension of MFCC parameters to the
recognition results (Ke et al., 2014). It is considered to combine the
wavelet packet energy spectrum with the features in MFCC that have a
large contribution to the fault diagnosis results to obtain the feature
parameters with rich and accurate feature information and low
redundancy, effectively improving the accuracy and speed of fault
diagnosis and avoiding the disaster of dimensionality.

3.2.1 Feature dimension reduction based on
WKPCA

KPCA (Shi et al., 2016) is a non-linear generalization of
principal component analysis (PCA) (Aminullah et al., 2020).

Through non-linear transformation ψ(·) sample data can be
mapped to a high-dimensional space F, and then PCA is used
for feature dimensionality reduction.

KPCA’s dimension reduction steps for the characteristics of
transformer acoustic signals are as follows:

1) For the sample matrix XN×M, the covariance matrix C in the
feature space F

C � 1
N

∑N
r�1
ψ xr( )ψ xr( )T (21)

Where: r is the number of rows of the sample matrix; r �
1, 2, ...., N xr is the rth row data of the matrixX;M is the number of
columns of the matrix X.

2) The eigenvalues and eigenvectors of the covariance matrix are
λ and v, respectively. They satisfy the formula:

λv � Cv (22)
3) Define the matrix Kr,u � K(xr, xu) � ψ(xr)ψ(xu), u �

1, 2, ....,N whose kernel function is N × N, introduce a weighting

factor α to satisfy v � ∑N
r�1

αψ(xr), so the mth principal kernel element

Tm of the sample matrix X in the feature space can be obtained as:

Tm � vψ x( ) � ∑N

r�1αK x, xr( ), m � 1, 2, .....,M (23)

Where: x is an independent variable, which can take any row of
the matrix X.

WKPCA, an algorithm for feature dimensionality reduction of
transformer acoustic signals, is obtained by introducing a weight factor.
The eigenvalues are arranged in ascending order, and the feature vectors
are also changed accordingly. According to the relationship between the
principal components representing the original signal features, the first
ten dimensional feature elements of the cumulative contribution rate
are the critical feature parameters of transformer acoustic signals.

3.2.2 Feature selection based on WPES-MFCC
Firstly, calculate the cumulative contribution rate of wavelet

packet energy spectrum and MFCC. The cumulative contribution
rate of wavelet packet energy spectrum features is shown in
Figure 6A, and the cumulative contribution rate of MFCC
features is shown in Figure 6B.

It can be seen fromFigure 6 that although the cumulative contribution
rates of wavelet packet energy spectrum andMFCC feature parameters are
different, the existing problem is that the cumulative contribution rates of
some important feature dimensions are the same, so it is difficult to
separate their first 10 dimensional feature parameters.

The total cumulative contribution rate is obtained by weighting
the cumulative contribution rate of WPES and MFCC. The ranking
of characteristic parameters varies with the introduced weighting
factors α. When Tables 2, 3 have different weighting factors, the
usual parameters of transformer WPES and MFCC are sorted in
ascending order, taking only the top 10.

It can be seen from Table.2 that the viscosity between WPES
feature parameters is large, the importance of each feature parameter
is not different, and the feature selection is greatly affected by the
expected weight factor α; On the contrary, the 18th dimension of the
MFCC feature matrix is the most crucial feature parameter
dimension, followed by the 9th, 16th, and 17th dimensions.

The 10-dimensional WPES characteristic parameters WPES �
[a1, a2, ..., a10] selected when the weight factor α values are the
same are combined with the ten dimensional MFCC characteristic
parameter MFCC � [b1, b2, ....., b10] to form a new 20-dimensional

FIGURE 6
Cumulative contribution rate of wavelet packet energy spectrum and MFCC.
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matrixWM � [a1, a2, ...., a10, b1, b2, ...., b10], which is the characteristic
parameters of transformer acoustic signal based on WM.

In this paper, the characteristics whose incremental contribution
rate is higher than 95% are taken as the main parameters. It can be
seen from Figure 7 that the cumulative contribution rate obtained by
different weight factors is higher than 95%. However, when the
weight factor α is 0.2, the cumulative contribution rate of WPES and
MFCC comprehensive characteristic parameters is the highest.
Therefore, we can think that when the weight factor is 0.2, the
typical parameters obtained at this moment are the most
representative of the characteristics of transformer acoustic
signals. The cumulative contribution rate of comprehensive
features of different weight factors is shown in Figure 7.

When the weight factor value is 0.2, the complete feature
parameters reach the optimal value, as shown in Figures 8A, B
when the WPES comprehensive feature cumulative contribution
rate and MFCC comprehensive feature cumulative contribution rate
are, respectively.

4 Diagnosis model of transformer
winding short circuit with voiceprint

Taking the optimal characteristic parameters as the input of
the deep learning model can not only improve the network
performance, but also significantly improve the computing
speed. The convolution kernel of the convolution layer in the
original CNN network is a standard convolution kernel, which
cannot directly obtain the features of an extensive range, and lacks
the adaptability to the changes in object shape and attitude; In

addition, when the number of features channels becomes more
extensive, the convolution kernel parameters become more
prominent, which will increase a lot of computational overhead.
Therefore, this paper proposes a new intelligent optimization
algorithm for the convolution kernel of CNN. The Pelican
optimization algorithm is used to train the convolution kernel
of the convolution neural network to find the best convolution step
size. The size of the optimized convolution kernel is prepared by
the convolutional neural network to achieve multiple iterations of
the CNN, so the diagnostic model gradually converges.

4.1 Basic unit model of convolutional neural
networks

The convolutional neural network has strong adaptability, and is
good at local mining data features, extracting global training
features, and classification. CNN structure consists of the input
layer, convolution layer, pooling layer, whole connection layer, and
output layer.

The convolution operation is an integral part of a
convolutional neural network. The convolution operation
consists of two parts, one is the input parameter, and the
other is the convolution kernel function. Output feature
mapping is a parameter after convolution calculation. It can
be seen from Figure 9 that the convolution calculation process
and matrix multiplication have similar but different principles.
This close connection between input and output is called a full
connection. Still, the too dense a connection will lead to an
increase in the amount of computation, which will cause
specific difficulties in the training and learning of neural
networks. The local sensing function of the convolutional
neural network makes its input and output interact locally,
which is a sparse connection. The schematic diagram is shown
in Figure 9.

In Figure 10, the gray line represents the whole connection of
the traditional neural network, and the red line represents the
sparse connection of the local perception of the convolutional
neural network. The local perception function of the
convolutional neural network can efficiently extract signal
features from the noisy power transformer acoustic signals. Its
meaningful features are only detected by smaller convolution
kernels, which also make the stored parameters less, thus
improving the computational efficiency of the model. As
shown in Figure 10, when the convolutional neural network
represented by the red and green lines is sparsely connected,
the input parameters “B” and “C” are shared parameter sets. This
feature is called parameter sharing. That is, the same convolution
core shares the same convolution value and offset term.
Parameter sharing eliminates the need to learn a set of
individual parameters for each location, which makes the
convolutional neural network more concise and efficient in
model learning and parameter training.

Pooling is also an essential level in convolutional neural
networks. The pooling process mainly refers to the “secondary
processing” of features extracted from the convolutional layer
through the pooling function. The pooling process of a
convolutional neural network has the advantages of feature

TABLE 2 The ascending order of WPES comprehensive characteristic
parameters.

Weighting factor α WPES feature parameters in
ascending order

0 14, 6, 11, 25, 29, 24, 7, 8, 12, 22

0.2 14, 11, 6, 25, 16, 22, 19, 7, 8, 5

0.4 15, 16, 7, 17, 14, 18, 24, 22, 8, 11

0.6 11, 25, 1, 19, 22, 25, 15, 12, 18, 13

0.8 26, 20, 22, 5, 23, 29, 25, 6, 4, 9

1.0 19, 15, 13, 10, 21, 8, 20, 3, 6, 7

TABLE 3 Ascending ranking ofMFCC comprehensive characteristic parameters.

Weighting factors α MFCC feature parameters in
ascending order

0 18, 26, 24, 9, 35, 16, 17, 31, 2, 36

0.2 18, 9, 16, 17, 23, 24, 31, 36, 2, 5

0.4 18, 9, 16, 17, 10, 12, 5, 31, 36, 2

0.6 18, 9, 16, 17, 23, 2, 24, 36, 31, 12

0.8 18, 9, 16, 17, 24, 36, 31, 2, 25, 12

1.0 19, 32, 34, 26, 2, 27, 5, 10, 14, 23
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extraction invariance, dimension reduction sampling characteristics,
and effective prevention of overfitting. Based on convolution, the
weak features of power transformer vibration signals can be further
optimized, screened, and extracted. Commonly used pooling
functions include the average pooling function and the maximum
pooling function. The full pooling function used in this paper is
shown in the following Eq. 24.

Fi
j � max xi−1

j , s( ) (24)

Where, Fi
j is the output feature of the pooling layer; xi−1

j is the
output feature mapping for the convolution layer; s is the pooled size.

It can be seen from Formula (24) that the pooling operation is to
divide the characteristics of the acoustic signal of the power
transformer output from the convolution layer into pooling areas
of size s, and use the pooling function to obtain the maximum value
of the site, that is, the most apparent feature. The ultimate pooling
operation is performed in a specific step size sequence to get the
output of the acoustic signal characteristics of the power transformer
after the final pooling operation process.

The back-propagation algorithm in the convolutional neural
network is one of the characteristics that convolutional neural
network is superior to the traditional neural networks. The
formal neural network training process is mostly a one-way
forward transmission of “input parameters—raining and
learning—classification processing—output results” one by one,

which will make the output results have a significant deviation.
At the same time, the back-propagation algorithm in the
convolutional neural network is similar to the feedback link in
the motion control system. When the input power transformer
sound signal propagates forward in the convolutional neural
network model, the back-propagation can allow the cost function
to reverse propagate the error through the network structure, and
update the gradient calculation. The back-propagation algorithm in

FIGURE 7
Cumulative contribution rate of WPES and MFCC comprehensive characteristic parameters with different weight factors.

FIGURE 8
Cumulative contribution rate of comprehensive characteristic parameters of weight factor α = 0.2.

FIGURE 9
Schematic diagram of the convolution operation process.
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a convolutional neural network can minimize the feature extraction
error of the power transformer acoustic signal, and it can correct the
error of the extracted feature, providing the maximum guarantee for
better learning, training, and accurate identification of power
transformer winding short circuit.

4.2 POA algorithm

The Pelican optimization algorithm (POA) (Trojovský and
Dehghani, 2022) has high reliability and consistency, has strong
optimal solution ability, and can be optimized with fast acceleration
convergence and strong stability. Pelican optimization algorithm
steps are as follows:

4.2.1 Initialize
The mathematical description of Pelican population

initialization is as follows:

xi,j � lj + rand · uj − lj( ), i � 1, 2, ...., N, j � 1, 2, ..., m (25)

Where: xi,j is the jth dimension position of the ith pelican;N is
the population number of pelicans; m is the dimension to be solved;
a rand is a random number in the [0, 1] range; uj and lj are the upper
and lower boundaries of the jth dimension of the problem.

In the Pelican optimization algorithm, the pelican population
can be represented by the matrix of Eq. 26:

X �

Xi

..

.

Xi

..

.

XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

X1,1 / X1,j / X1,m

..

.
1 ..

. ..
.

Xi,1 / Xi,j / Xi,m

..

. ..
.

1 ..
.

XN,1 / XN,j / XN,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

(26)

Where:X is the population matrix of pelicans;Xi is the position
of the ith pelican; In Pelican optimization algorithm, the accurate
function of solving the problem can be used to calculate the accurate
function value of Pelican; the accurate function value of the pelican
population can be expressed by the vector of the accurate function
value:

F �

F1

..

.

Fi

..

.

FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

�

F X1( )
..
.

F Xi( )
..
.

F XN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

(27)

Where: F is the objective function vector of pelican population;
Fi is the objective function value of the ith pelican.

4.2.2 Stage I: Approaching prey (exploration stage)
In the first stage, the pelican determines the location of its prey,

and then moves to this determined area. Model it as follows:

xP1
i,j �

xi,j + rand · Pj − I · xi,j( ), FP <Fi

xi,j + rand · xi,j − Pj( ), else

⎧⎨⎩ (28)

Where: xP1
i,j is the jth dimension position of the ith pelican

after the first stage update; a rand is a random number in the
range [0,1]; I is a random integer of 1 or 2; Pj is the jth
dimension position of the game; FP is the target function
value of prey.

In the POA algorithm, if the objective function value is
improved at this part, the new position of the pelican is accepted.
In this type of update, also known as an effective update, the
algorithm cannot move to the non-optimal region. This process
can be described by the following formula:

Xi � XP1
i , FP1

i <Fi

Xi, else
{ (29)

Where: XP1
i is the unique part of the ith pelican; FP1

i is the
objective function value based on the new position of the ith pelican
updated in the first stage.

4.2.3 Phase II: Surface flight (development phase)
In the second stage, when the pelicans reach the water’s

surface, they spread their wings on the water’s surface, move
the fish up, and then put their prey in their throat bag.
Modeling this behavior process of the pelican can make the
POA algorithm converge to a better location in the hunting
area, which increases the local search ability and development
ability of the POA algorithm. This behavior of pelicans during
hunting is mathematically modeled as follows:

xP2
i,j � xi,j + R · 1 − t

T
( ) · 2 · rand − 1( ) · xi,j (30)

FIGURE 10
Schematic diagram of sparse connection in convolution process.
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Where: xP1
i,j , x

P2
i,j is the jth position of the ith pelican based on the

second stage update; a rand is a random number in the range [0, 1];
R is a random integer of 0 or 2; t is the number of current iterations;
N,T is the maximum number of iterations.

When the development phase is over, the target function value
of the new location will be updated. The updated formula as
follows:

Xi � XP2
i , FP2

i <Fi

Xi, else
{ (31)

4.3 Sobol sequence initialization population

The distribution of initial solutions in the solution space of
the swarm intelligence algorithm will significantly affect the
convergence speed, and optimization accuracy of the
algorithm, and the initial solutions with uniform distribution
will help to improve the performance of the algorithm. The
standard POA uses random numbers to initialize the
population, and the distribution of the initial population is
relatively uneven. In this paper, the Sobol sequence is used to
initialize the population. To compare the spatial distribution of
random numbers generated by random distribution and Sobol
sequence (Duan and Liu, 2022), a random number distribution
diagram of 500 population in two-dimensional space is generated
within the range of [0,1]. From the comparison in Figure 11, it
can be seen that the population distribution obtained by the
Sobol sequence is more uniform and covers the solution space
more thoroughly.

This paper compares IPOA with POA, BOA, GWO, GSA, PSO,
and ABC based on the same population size, maximum number of
iterations and running times, as shown in Figure 12.

For the two stages of POA, we need to judge the minimum value
of the objective function of the two stages, to update the parameters.
As seen from Figure 11, under the same population size, the
maximum number of iterations, and the number of runs, the
fitness value of IPOA is the minimum. That is, the error is the
minimum. Compared with other algorithms, the fitness of IPOA is
optimal.

4.4 Flow chart of transformer winding short
circuit diagnosis based on WKPCA-WM and
IPOA-CNN

As an essential parameter of CNN, the convolution kernel
directly affects the accuracy and stability of the transformer
winding short-circuit diagnosis model. Input the convolution step
of CNN into the IPOA algorithm, and set the objective function as
the judgment basis to calculate the convolution step with the best
diagnosis performance through iterative optimization. WKPCA-
WM and IPOA-CNN training flow chart is shown in Figure 13.
The detailed steps are as follows:

1) WM characteristic parameters are input into the convolutional
neural network.

2) Pelican optimization algorithm is used to train the
convolution kernel of the convolution neural network to

find the best convolution step. First, the Sobol sequence is
used to optimize the initial population and determine the
population size X. The optimal optimization path is obtained
according to the number of iterations and the random number
generated. Finally, the fitness function value is calculated, and
the optimal convolution kernel size is input to the convolution
layer.

3) The optimized convolution kernel size is trained by the
convolutional neural network, and the numbers are input into
the convolution layer, pooling layer, and top connection layer in
turn. Convolution neurons can extract mixed features of
training data.

4) The output loss function is calculated, and the weight value is
updated through the gradient descent principle to achieve
multiple iterations of CNN, so the diagnostic model gradually
converges.

5) After several iterations, the test data set is used to judge the
generalization ability and diagnostic ability of WKPCA-WM and
IPOA-CNN.

6) According to the diagnosis results, the number of nodes, iteration
times, lose value, and other parameters used in the neural
network are adjusted.

7) Repeat steps (2–6) until the WKPCA-WM and IPOA-CNN
models with the best performance for transformer winding
short-circuit diagnosis are obtained.

5 Experimental verification

5.1 Transformer acoustic signal acquisition
test platform

The test platformmainly collects the acoustic signals of different
two-phase short circuits of power transformer windings and the
acoustic signals of the body during normal operation. The specific
experimental acquisition scheme is as follows: arrange relevant
measuring points on the front, side and top of the body surface
of a practical transformer; Collect the acoustic signal of a two-phase
short circuit of winding and the acoustic signal of the body of the
power transformer during regular operation. The power transformer
acoustic signal acquisition test platform based on the capacitive gun
microphone is shown in Figure 14.

The actual deployment of the simulation experiment for the
established transformer winding short-circuit voiceprint
diagnosis model is: Intel Core I7-6500U processor, the
primary frequency is 3.1 GHz, 8G memory, and the
Tensorflow environment is built in Python for model training
and analysis.

5.2 Evaluating indicator

To test the accuracy and generalization of theWKPCA-WM and
IPOA-CNN transformer winding short-circuit diagnosis models
established in this paper. The accuracy of the test set is one of
the evaluation indexes in this paper; Cross Entropy Loss (CE Loss) is
introduced as the second quantitative evaluation index. Cross
Entropy Loss depicts the distance between the actual output and
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the expected output of the established model. The objective function
of the quantitative index is shown in Formula (32). For the two
evaluation indicators, the higher the identification accuracy
described in indicator 1, the more accurate the identification of
the power transformer winding short circuit; The smaller the cross
entropy loss related in indicator 2, the better the accuracy and
robustness of the identification model.

fCEmin � −∑N
i�1
y′
ilg yi( ) (32)

In Formula (32): N is a number of samples; y′
i is the

correspondence between the ith sample and the actual model, 1 for
correspondence and 0 for not correspondence; yi ∈ [0, 1] is the
identification probability of the ith sample in different categories.

In order to better evaluate and analyze the model established
in this paper, this paper also introduces several kinds of
indicators commonly used in machine learning to verify the
model; the main indicators are sensitivity, F1-score and
precision.

5.2.1 Sensitivity
In the classification task, the sensitivity rate refers to the recall

rate of each category. Recall rate refers to the proportion of the
predicted positive samples in the actual positive samples.
Sensitivity rate is also called Recall rate. That is to say, the
higher the sensitivity rate, the lower the corresponding
probability of missing detection, and the more concerned is
the probability of negative samples being detected. The
specific calculation formula is as follows, that is, the ratio of
the diagonal value of each column of the confusion matrix to the
sum of all the values of this column:

SEN � TP

TP + FN
(33)

5.2.2 Precision
In classification tasks, precision refers to the accuracy of each

category. When evaluating the overall precision of the model, it is
usually obtained by calculating the precision of each category first,

FIGURE 11
Distribution of individuals generated by random method and Sobol sequence.

FIGURE 12
Comparison of performance between IPOA and different optimization algorithms.
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and then weighted average. The precision rate refers to the
proportion of the actual positive samples in the positive samples
predicted by the model to the positive samples predicted. The higher
the precision rate, the lower the corresponding false detection

probability, that is, the more concerned about the classification
precision of the positive samples. The calculation formula is as
follows: The ratio of the diagonal value of each row of the confusion
matrix to the sum of all values of that row:

FIGURE 13
Transformer winding short circuit diagnosis model of WKPCA-WM and IPOA-CNN.

FIGURE 14
Transformer acoustic signal acquisition experimental platform.

TABLE 4 Analysis of comparison results of different model experiments.

Network model Training set accuracy Test set accuracy Training set loss value Test set loss value

Textual model 99.65 99.50 0.0107 0.0116

CNN-LSTM 96.72 96.25 0.0183 0.0197

CNN 93.78 93.36 0.0252 0.0267
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PRE � TP

TP + FP
(34)

5.2.3 F1-Scoe
F1-score is the harmonic average of precision rate and sensitivity

rate, and the calculation formula is:

F1 � 2*PRE*SEN
PRE + SEN

(35)

5.3 Analysis of experimental results

Based on the same experimental environment and
experimental data, this paper takes LR = 0.01 as the optimal
learning rate. It conducts comparative experiments on
WKPCA-WM and IPOA-CNN models, CNN-LSTM models,
and CNN models. The comparative analysis results of the three
models are shown in Table 4. After calculation, the sensitivity,
F1-score and precision results under different models are shown
in Table.5.

It can be seen from Table.4 that WKPCA-WM and IPOA-
CNN power transformer winding short circuit identification
models have been established based on the idea of deep
learning. The identification accuracy of both the training set
and the test set is higher than that of CNN-LSTM and CNN
models, and the accuracy of test set is 3.25%~6.14% higher than
that of the other two models. Its cross-entropy loss value is also
smaller than the other two commonly used single models, and
the loss value is 0.0081~0.0151 smaller than the other two
models. The result of the confusion matrix identification is
shown in Figure 15.

It can be seen from Table 5 that the transformer winding short
circuit voiceprint recognition model established in this paper has its
own advantages in different indicators. First of all, in terms of

TABLE 5 Precision, sensitivity and F1-Score of different models.

Different models Precision (%) Sensitivity (%) F1-score (%)

Model in this paper 98.85 98.60 98.72

CNN-LSTM 95.43 98.24 96.81

CNN 92.63 98.37 95.41

FIGURE 15
Disturbance matrix of transformer sound winding short circuit
identification.

FIGURE 16
Comparison of accuracy results of different model training processes.
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accuracy, the error detection rate of the model in this paper is low
when identifying faults, while for CNN-LSTM and CNNmodels, the
accuracy rate is low; Secondly, in terms of sensitivity, the error rate
of the three models is basically the same, but in terms of the final
comprehensive classification rate, the model in this paper performs
better, and the F1-Score of the other two models is relatively low.
Therefore, no matter from the accuracy rate and the cross entropy
loss value.

In this paper, the confusion matrix is used to measure the
recognition result of the model on the samples. The proposed
model can effectively identify the short winding circuit, with an
average recognition rate of 99.5%.

The comparison results of diagnostic accuracy and a cross-entropy
loss of the three models in the training process are shown in Figures
16, 17.

The test set is used to verify the generalization ability of the
transformer winding short-circuit diagnosis model based on the
WKPCA-WM and IPOA-CNN. Through the verification of the test
set, the diagnostic accuracy of WKPCA-WM and IPOA-CNN
models is higher than the other two commonly used models.
From the results of the evaluation indicators, the performance of
the transformer winding short-circuits identification model
established in this paper is better than the other two models. It
can be seen from Figure 16 that, with the increase in the number of
training iterations, the recognition accuracy is gradually rising, and
the diagnostic accuracy of the model is rising faster than the other
two models. After about the 200th iteration, the recognition
accuracy reaches the superior value and tends to be stable, and
the convergence of the model is also more robust than the other two
models.

It can be seen from Figure 17 that with the increase of training
iterations, the loss rate of the model decreases gradually. Among them,
the loss values of the WKPCA-WM and IPOA-CNN models
consistently declined in 250 iterations until they reached a stable
state, and the models performed well. In transformer winding short

circuits diagnosis, WKPCA-WM and IPOA-CNN models based on
deep learning have high precision diagnosis ability and excellent
generalization ability.

6 Conclusion

In this paper, transformer winding short-circuit acoustic
signal is taken as the research object. Using the transformer
winding short-circuit acoustic signal data collected in the
laboratory, and based on WKPCA-WM and IPOA-CNN, a
two-phase short-circuit acoustic signal diagnosis model of the
transformer winding is established. The main conclusions are as
follows:

1) A feature selection method of transformer acoustic signal based
on WM is proposed. Through the combination of two different
algorithms and according to the characteristics of transformer
winding acoustic signal, more suitable feature parameters are
selected. Compared with a single feature extraction algorithm, it
has better noise immunity.

2) WKPCA is used to reduce the dimension of WM features, sort
and select the selected high-dimensional features, and select
the first 20-dimensional features that are more representative
and can better reflect the acoustic signal of transformer
windings, which effectively solves the problem of high
feature redundancy and extensive calculation caused by the
combination of the two methods; Secondly, by constructing a
new comprehensive feature parameter as the input of the deep
learning model, not only the performance of the model can be
improved, but also the recognition accuracy of fault diagnosis
can be improved.

3) The CNN network is optimized by IPOA. First, the Sobol
sequence is used to optimize the initial population of POA,
and then the optimal convolution kernel of the model in this

FIGURE 17
Comparison chart of cross entropy loss results in different model training processes.
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paper is obtained by optimizing the convolution kernel, which
makes the model have better diagnostic accuracy

4) The transformer winding short-circuit voiceprint diagnosis model
based on WKPCA-WM and IPOA-CNN is constructed, and the
CNN-LSTM and CNN algorithms are compared. The results show
that the diagnosis model built in this paper is more accurate in the
diagnosis accuracy within the same iteration number, and tends to
be stable when the iteration number reaches 200. After
250 iterations, the accuracy of winding short-circuit fault
diagnosis reaches 99.50%, the accuracy rate also reached 98.85%,
the sensitivity reached 98.60%, and the F1-Score reached 98.72%,
The validity and accuracy of the model are verified.

The paper explains the factors that affect the acoustic signals of
transformer windings under different voltage levels, which are mainly
determined by the load current and winding structure. However, due to
incomplete data acquisition, the acoustic signals of transformers with
different voltage levels have not been compared and analyzed one by
one, mainly for a 10 kV power transformer. In addition, because the
actual condition of the measured transformer is not known, besides the
voltage level, the operating life the structure of the transformerwill affect
the characteristics of the acoustic signal. Therefore, it is necessary to
continue to accumulate more measured data of acoustic signals in the
future, and conduct more in-depth statistical analysis of the
characteristics of acoustic signals of transformers in combination
with the operation history of transformers and laboratory tests.
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Nomenclature

Im winding current amplitude

ω angular frequency of the current

ϕ0 initial phase of winding current

�k electrodynamic coefficient between magnetic induction intensity
and current

v mass vibration velocity

p sound pressure

c speed of sound

ρ fluid density

σ(Xi), σ(Xj) standard deviation of vibration displacement data and
noise sound data

xi, xj average of vibration displacement data and noise sound data

X3j wavelet packet coefficient of the third layer

S3j reconstructed signal

E3j energy

xjk energy amplitude

S original signal

T feature vector

E total energy

TSS(f) transformer acoustic signal frequency

Hm(k) bandpass filter
f(m) center frequency
fh maximum frequency

fl minimum frequency

fs sampling frequency

y(n) transformer acoustic signal

x(n) current frame transformer acoustic signal

x(n − 1) previous frame transformer acoustic signal

α pre-emphasis coefficient

x(m) short time signal at a certain time

N length

E short-time energy

Z short time zero crossing rate

sgn[·] symbolic function

x(n) frame signal

w(n) window function

y(n) signal after windowing
m number of filters

M number of TSS filters

r number of rows of the sample matrix

XN×M sample matrix

x an independent variable

Fi
j output feature of the pooling layer

xi−1
j output feature mapping for the convolution layer

s pooled size

N population number of pelicans

m dimension

X population matrix of pelicans

F objective function vector of pelican population

I a random integer of 1 or 2

FP the target function value of prey

R a random integer of 0 or 2

t number of current iterations

N,T maximum number of iterations

N a number of samples

TP true positive

FN false negative

FP false positive
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